生物信息学的研究意义范例6篇

前言:中文期刊网精心挑选了生物信息学的研究意义范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

生物信息学的研究意义

生物信息学的研究意义范文1

关键词:中职;食品生物;信息化教学

中图分类号:G712 文献标识码:B 文章编号:1002-7661(2015)10-036-01

由于信息化在各行各业中都开始广泛的应用,在食品工业中也逐渐发挥着重要的作用。许多视频共成长的问题,都可以借助计算机得以解决,诸如食品科学信息的收集、分析、查询、检索等。所以,在教学过程中就应当将信息化的元素融入到教学中来,以培养出具备高水平、高素质的学生。

一、信息化教学在中职食品生物工艺专业教学中的重要性

在食品工程中,信息技术的应用主要体现在计算机科学和食品科学技术的基础上。在中职食品生物工艺专业的教学中,应用信息技术一方面能够帮助学生提升计算机应用水平,另一方面还能帮助学生掌握食品工程中经常使用的计算机技术,有效提升视频人才的科学素养与科研能力。再加上信息爆炸,知识更新的速度让教学陷入了尴尬的境地。在课程中需要大量增加新的知识和内容,另一方面学生的负担也因此加重,学校和教师都面临着压力。信息化教学能够很好地协调这一矛盾,通过传统教学与信息化教学的相互融合形成优势互补,从而改善教学结构。因此,面对信息化的浪潮,为了更好地深化教育改革,需要在食品生物工艺专业应用信息化教学。

二、信息技术在中职食品生物工艺专业教学中的应用

1、常规教学中的应用

信息技术在中职食品生物工艺专业教学中的常规应用主要指的是多媒体课件的使用。多媒体不仅能为学生呈现出文字、图画,减轻教师的工作量,还能降所学内容以视频、声音等方式呈现,吸引了学生注意力的同时,也加深了知识在学生脑海中的印象。教师甚至可以根据自己的需要,使用DV、手机等工具进行视频的录制,然后经过软件处理在课堂上得以呈现,极大程度上方便了教学。

2、网络精品课程

网络精品课程是一种全新的教学模式,相比于传统的教学模式,更具分享性。由于自主课堂的开放性,能够让学生和教师在网络平台上自由交流,并共享优质的资源,不受时间和空间的约束,提升的教学的效率,拓宽了教学的形式。

3、虚拟仿真实训软件

虚拟仿真实训软件能够对教学过程进行智能模拟,学生可以借助人机对话的发昂视,主动地进行学习、复习、测试等,并及时将信息反馈给教师,让教师了解学生掌握知识点的状况。同时,虚拟仿真实训软件的使用,还能降实际生产过程中的各种工作情境进行模拟,从而对实践环节教育资源缺乏经费不足的情况进行缓解。例如在进行“啤酒的生产工艺和生产参数”知识点进行教学时,通过虚拟仿真实训软件,能够有效地提升学生的兴趣,帮助他们更好地掌握知识技能。

三、信息化教学在中职食品生物工艺专业应用对策

1、与食品生物工艺专业相结合

由于食品生物工艺专业涉及到很多实践内容的学习,而教学的设备、资源有限,往往不能让所有学生都参与到实践中来。对于工艺流程内容的学习,教师可以利用动画或是录像来演示,帮助学生更好地理解知识,并提升学生的动手操作能力。

2、激发学生的学习兴趣

由于中职学生的年龄较小,而食品生物工艺专业的学习涉及到很多环节和知识点,学生对于该专业难免丧失兴趣。但是兴趣对于学生的重要性不言而喻,只有对该专业保持兴趣,学生才能真正融入到课堂的学习中来。因此,利用信息化教学的各种手段,能够将丰富、新鲜、有趣的信息以各种各样的方式传递给学生,特别是使用视频、声音等方式,相比于传统的板书更能吸引学生的学习兴趣,同时还能增强学生对知识点掌握的程度。

3、提升教师对信息化技术的掌握

许多中职教师还沿用传统的教学方式,对于信息化技术的掌握不够透彻。许多老师将信息化应用于课堂上,只是使用多媒体课件,而课件内容的选择和材料的制作,都是从网上直接找来的,没有结合本班学生的实际情况。使用这样的课件进行教学,很难真正发挥其应有的作用。除了使用多媒体课件之外,许多教师还是沿用着传统的教学手段,并没有从根本上理解信息化教学的内涵。教师应当合理选择、利用信息化的资源,并将食品生物工艺专业的知识与信息技术进行科学的整合,从而优化教学方案。而教师对于信息化技术的掌握程度也会对这一过程造成直接的影响,因此教师应当提升自己的信息化素养,真正发挥信息化教学的优势。

4、提升教学资源建设水平

教学资源是课堂质量好坏的重要评价标准之一,因此,选择恰当的教学资源,并将这些资源与信息技术结合在一起,就能更有效的实现教学目的。首先,教学资源建设应当结合学生的特征,通过对该阶段学生心理、思维等多个方面的分析,结合专业知识,确定教学资源。中职学生的年龄较小,因此在教学资源的选择上,应当简单易懂,让学生不会因听不懂课而讨厌上课。同时还可以将心理学的内容应用于教学资源建设中,关注学生对于本专业学习的心理,从而让学生快乐学习的同时,掌握专业知识与技能。

目前,信息化教学如一股春风,迅速席卷了教育的各个领域。在中职食品生物工艺专业中,如何应用信息化教学也成为相关从业者研究的重点问题。而中职学生的年龄较小,对于学习的兴趣不高,缺少学习的动力等问题也却是阻碍着教学目标的实现。同时学校资源有限,师资力量不足等问题,同样需要信息化教学来弥补。只有将信息化教学与本专业的内容相结合、激发学生的学习兴趣、提升教师对信息化家书的掌握、提升教学资源水平的建设,才能真正实现教学目标,让学生在快乐学习的同时提升专业水平。

参考文献:

[1] 刘春清.邬晓晨.食品生物工艺专业教学指导方案研制[J]. 中国科教创新导刊. 2013(20)

生物信息学的研究意义范文2

生物信息学是在生命科学、计算机科学和数学的基础上逐步发展而形成的一门新兴交叉学科,其实质就是利用信息科学与技术对生物数据进行获取、处理、存储、、分析和解释,进而揭示纷繁复杂的数据中所蕴含的生物学本质[1]。作为21世纪生命科学领域发展最为迅速的学科之一,生物信息学已经成为生命科学研究领域的重要学科[2]。实验室的每一项技术,从简单的基因克隆、基因数据分析到生物大分子进化研究都需要应用到生物信息学,因此,对于生物类专业的学生而言,掌握生物信息学的相关知识尤为重要。我国各大专院校都在不断努力创新和改进现有生物信息学课程的教学方法与方式。因此,作者结合近五年来开设生物信息学课程的教学实践,分析了目前生物信息学课程教学中存在的主要问题,提出几点建议,希望能够有助于推动生物类专业生物信息学课程教学质量的提高。

一、生物类专业生物信息学课程教学中的问题

1.生物信息学教材的选择。生物信息学的发展速度快、内容广泛,目前很多国内高校使用的教材多为国外教材的影印版或者中文翻译版本,国内引进的生物信息学相关的英文原版教材中有些属于科普性质,内容过于简单,而有些偏重介绍生物信息学的计算方法或模型的建立,过于复杂[3]。而国内相关教材更新较慢,课堂内容涵盖的知识面和知识点相对减缩,而且一些前沿的数据和先进软件没有讲授,这些对学生的发展和生物信息知识的合理运用极为不利[4],因此,目前导致很多高校教师无法选择适用于生物类专业的生物信息学教材。

2.教学大纲安排不合理。生物信息学是一门集分子生物学、计算机科学和数学等多个学科的交叉学科,它囊括了基因数据获取、基因预测、序列比对、序列拼接、分子进化、蛋白质序列分析、蛋白质结构预测、分子建模、药物设计以及基因芯片蛋白芯片等内容模块,同时各领域内容还涉及到具体的计算方法、概率统计、机器语言等知识模块。由于课时设置有限,如果教师在课堂教学对各领域内容面面俱到,会造成大部分内容都只是蜻蜓点水,学生学完以后虽然接触了很多东西,但在生物研究中遇到实际问题还是束手无策。

3.教学内容滞后。生物信息学是一个快速发展的学科,随着生物学科自身的发展和研究的深入,新的数据库和信息资源不断涌现,各种数据库和软件的更新换代非常频繁,如果教师所讲授的在线服务器、分析软件、讲解实例都不是当前最普遍的,学生学完后打开最新的在线服务器或是相关分析软件依然不会操作。

4.教学方法和教学手段存在不足。生物信息学教学普遍采用普通教室多媒体讲授,而生物信息学课程是一个实践操作课,学生经常要动手操作,普通多媒体教学与实践操作教学相脱节。传统的讲授很难与实践教学效果相比,很多学生虽完成了生物信息学课程学习,也接受了很多生物信息学的理论知识,但在进入大四阶段做课题研究完成毕业论文时,遇到需要在数据库查询序列、用软件分析序列或蛋白性质、结构特点等问题时依然束手无策。

二、生物类专业生物信息学课程教学建议

1.调整教学大纲。对于生物类专业的学生来说,生物信息学是生物研究中的辅助工具,不需要掌握生物信息学算法或软件编程细节,而是培养学生运用生物信息学的方法来解决生物研究中遇到的问题,比如能够应用检索工具查找序列等相关的数据信息、利用比对软件或是BLAST在线服务器对感兴趣的序列进行比对分析、选择适当的建树方法对DNA或蛋白序列进行系统发育树的构建、可分析蛋白序列信息并预测其三维结构以及引物设计等。因此对于生物类专业学生的教学,应重点培养学生的实践能力,尤其是关于数据库的使用和分析软件的操作,使他们以后在生物相关领域的工作中能学以致用,所以对于当前生物类专业的培养目标应以应用为核心安排教学大纲。据此,确定了以下的教学内容:教学内容共54学时,分为理论基础和上机实践两部分。理论教学内容共36学时包括:生物信息学绪论、生物信息数据库的查询与搜索、基因和蛋白质序列比对、序列拼接、生物进化与分子系统发育分析、基因预测与引物设计、蛋白质结构及其预测、计算机辅助药物设计;上机实践共18学时包括:常用生物数据库的查询与搜索、核酸序列检索与分析、多重序列比对和系统发育树的构建、PCR引物设计及评价、蛋白质序列分析及结构预测。

2.教学内容主次分明。由于生物信息学技术及分析手段更新迅速,教学内容会显得越来越臃肿,作者建议对于生物类专业的学生可以以生物信息学方法的掌握和生物信息学工具的应用来设计教学内容,关于生物信息学本身涉及到的一些数学模型和编程算法,可简略讲授,教学过程中尽量把有限的教学学时用到以生物信息学为工具解决生物学研究问题的教学中去,避免“面面俱到”的灌输式教育。例如,对于讲授序列比对这一章的知识,关于序列比对所使用的方法PAM和BLOSUN矩阵,对于如何采用数学方法构建这些计分矩阵过程可略过,只需简要介绍PAM和BLOSUN矩阵的概念意义以及用途,重点放在如何使用生物信息学软件进行序列比对,并理解各参数设置的意义。另外,在生物信息学各教学内容模块中涉及到的相关数据库及软件种类繁多,其数量在不断增加,版本也在不断更新。例如在讲授生物信息数据库的查询与搜索这一章节时,涉及到的数据库有核酸序列数据库、蛋白质序列数据库、蛋白质结构数据库、基因组数据库、蛋白组数据库、代谢组数据库等,而每个种类又含多个不同的数据库,比如核酸序列数据库有GenBank、EMBL和DDBJ等,蛋白质序列数据库有swiss-prot、TrEMBL、NCBI和UniProt等。因此,我们重点介绍了3大门户网站NCBI、EBI和SIB,其中我们着重介绍了NCBI的用于提取序列信息的工具――Entrez系统,Entrez将科学文献、DNA和蛋白质序列数据库、蛋白质三维结构数据、种群研究数据以及全基因组组装数据整合成一个高度集成的系统。因此我们给学生演示并要求学生掌握如何采用Entrez查询DNA和蛋白质序列等。另外在讲授分子进化与系统发育分析这一章节时,要进行序列比对及系统发育树的构建,可以使用ClustalW、BioEdit、DNAstar、phylip、MEGA、PAUP等本地软件,也可以使用The PhylOgenetic Web Repeater(POWER)和Evolutionary Trace Server等网络在线服务器分析。考虑到软件的通用型、易用性及本专业学生的英语水平、计算机操作水平,我们选择ClustalW进行多序列比对,然后采用phylip软件包构建系统发育树,并要求学生掌握如何使用这两个软件构建系统发育树。MEGA及其他在线服务器只简单介绍具体操作方法作为辅助资料供学生自学。

生物信息学的研究意义范文3

关键词:大数据;生物信息学;教学探索

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)29-0210-02

一、引言

生物信息学是由生物学与数学、计算科学交叉形成的前沿学科,主要通过研发并应用计算机技术及数学与统计方法,对海量生物数据进行管理、整合、分析、建模,从而解决重要的生物学问题,阐明新的生物学规律,获得传统生物学手段无法获得的创新发现。生物信息学是当今生命科学和自然科学的重大前沿领域之一,是多学科之间的交叉领域。因此,做好生物信息学教学工作对提高生物信息学研究水平具有重要的理论和实践意义。

随着高通量测序数据的大量出现,生命科学已经进入到大数据时代,生物信息学研究的重点将转移到组学的研究上。相应地,生物信息学教学的重点也要从单个基因的分析转向多个基因甚至在组学水平的分析。在生物大数据背景下,对生物信息学专业的人才需求也将越来越大。本文结合生物大数据的特点和教学经验,谈谈目前生物信息学教学中存在的问题,并针对这些问题提出自己的建议和方法。

二、生物大数据的特点

“大数据”一词最初起源于互联网和IT行业,它具有数据量大、数据多样化、高速、有价值等特点。生物大数据不仅带有“大数据”的特点,而且具有生物数据自身的特性,具体表现在:

1.数据量大:全球每年生物数据总量已经达到EB量级,完整的人体基因组有约30亿个碱基对,个体化基因组差异达6百万碱基。同时由于高通量测序成本的下降,目前大量的生物物种得以全基因组范围的基因组从头测序、重测序以及转录组测序,积累了大量的生物数据。

2.数据种类多:由于测序仪器种类繁多,产生的测序数据格式也各不相同。除高通量测序产生的基因组和转录组数据外,另外还有蛋白组、代谢组、表型组、相互作用组的序列数据和结构数据。

3.数据增速快:这主要体现在数据的急剧增长速度上,几乎每一周都有关于某一物种的全基因组或者转录组测序的信息。尤其是随着新一代测序技术的发展,更大数量级的基因组数据产出日渐增加――每台高通量的测序仪每天可产生约100GB的数据。

4.数据价值高:随着生物信息学的发展,越来越多有价值的信息可从生物数据中挖掘出来,这些价值不仅体现在生物科研领域,而且已应用于农业和医学等领域。

三、大数据背景下生物信息学教学中存在的问题

经过多年的发展,生物信息学教学虽然有了一定的提高和改善,但还存在一些问题,主要表现在:

(一)课程设置不合理

生物信息学是由生物学与数学、计算科学交叉形成的前沿学科,对生物背景的学生来说,需要掌握计算机和数学特别是统计学方面的知识和技能。但由于受课程设置的影响,很多学校只把C语言作为计算机的必修课,而没有在大一或者大二年级开设概率论和数理统计,并且生物统计学等课程也只是在大三或者大四才作为选修课或者限定选修课来开设的,造成部分开课专业学生的数理基础比较薄弱,因此在后续学习中存在一定的困难。

(二)教材内容不够全面

由于生物信息学发展日新月异,各种分析生物大数据的算法、方法和软件层出不穷,并且其更新换代是非常快的,而国内外相关教材的内容不够全面,并且其更新速度较慢,不能紧跟生物信息学的最新发展,造成教师在授课时要综合多本生物信息学教材的内容,不利于学生对生物信息学内容的全面掌握,从而制约了生物信息学教学的发展。

(三)教师的教学方法单一

生物信息学课程目前虽然在很多院校已经开设,但由于该学科对教师的授课水平和学生的学习能力要求较高,目前多数学校对于生物信息学的授课方式还是以教师讲授为主的填鸭式教学方式。随着大数据时代的到来,传统的教学方式和方法远不能满足生物信息学教学的需要。

四、生物大数据背景下生物信息学教学的建议和方法

为了适应大数据背景下生物信息学的教学形势,针对目前教学中存在的问题,作者结合自己的教学实践,建议从以下5个方面改进和提高生物信息学教学。

(一)合理设置基础课,强化基础理论

生物信息学是一门交叉性很强的学科,以复杂而强大的理论体系作为支撑,所涉及的内容包括计算机编程、信息检索以及数据库技术等。为了让学生学好生物信息学这门课程,各院校可以合理设置生物信息学的专业基础课,将生物信息学课程定位在大三或者大四年级学生,在大一、大二年级做好高等数学、数据库原理以及Perl语言等与之相关课程的教学工作,这些学生在掌握了一些与生物信息学相关的基础理论知识后,其对生物信息学的学习能力和理解能力才会有较大的提高。此外,学校要鼓励学生了解国内外有关大数据和生物信息学技术的发展趋势,并推荐有代表性且通俗易懂的文章和书籍,以强化学生的基础理论体系,为生物信息学的学习提供必要的知识储备

(二)培养大数据意识,加强对大数据分析的科学素养

生命科学研究已经进入到大数据时代,生物大数据的挖掘已经在农林科学、医学等领域产生巨大的效益,所以我们要培养学生树立大数据思维意识,全面认识生物大数据带来的机遇和挑战。生物信息学以生物数据为对象展开分析,它同时具备具体性和抽象性的特点。具体性是指以数据为对象挖掘出的生物学知识是客观存在的,其对生物学规律的解释性较强;抽象性是针对生物信息学中的理论和方法而言的,一般要求学生具有一定的生物信息学专业基础。在进行生物信息学教学时,要激发学生的学习兴趣,逐渐培养学生的大数据意识,规范学生对大数据分析的基本方法。可以通过实例,让学生参与到具体的生物信息学分析中去,以便理解生物信息学数据分析的基本操作流程,并在业余时间开展生物大数据在农业和医药行业成功应用的案例调查,以便激发学生利用生物信息学手段分析大数据的热情。

(三)优化教材内容,精心安排教学内容

鉴于目前生物信息学发展速度快,而国内外相关教材的更新速度较慢,所以要求在生物信息学教材的选取方面要下大力气,并且在授课时整合各个教材的优点。一般在生物信息学授课中整合以下三本书的内容:David W. Mount编写的《Bioinformatics Sequence and Genome Analysis》、李霞主编的《生物信息学》以及陈铭编写的《生物信息学》。

在教学过程中,为了使学生在有限的课堂教学时间内掌握生物信息学课程的主要内容,首先要优化课程教学体系,统筹安排教学内容,在生物信息授课中要抓住以下两条主线:序列―结构―功能―进化;基因组―转录组―蛋白组―相互作用组―代谢组,多组学贯穿。同时针对不同专业的特点与人才培养目标要求,合理分配各章节的教学课时,做到突出与专业密切相关的内容重点精讲。如在生物技术专业中,增加课时讲授分子药物设计章节,不仅要让学生了解生物信息学与分子药物设计的关系,而且要让学生掌握计算机辅助药物设计的理论方法以及软件操作。因此,以生物信息学教学内容的两条主线为依托,紧密围绕各专业的培养目标,做到理论联系实际,构建的教学体系和教学内容既能让学生掌握学科的知识理论体系,又有利于培养学生理解、分析、运用学科知识解决实际问题的能力。

(四)合理选用教学方法,提高教学效果

实践表明,不同的教学内容采用不同的教学方法授课可以收到良好的教学效果。为实现生物信息学课堂教学目标,完成相应的教学任务,教师要根据每堂课的教学内容,采用合适的教学方法,调动学生学习的积极性和主动性,提高课堂教学效果。可以从解决问题的角度出发进行理论教学。在理论课教学中,如果仍沿用传统的灌输式教学模式,肯定达不到预期的教学效果。课堂教学还可以根据需要,适时融入案例教学、问卷调查、多媒体展示、影片教学等方法,提高实际教学效果,培养学生的综合素质和创新思考能力。

上机实习注重发挥学生的主观能动性。生物信息学是一门实践性很强的课程,上机实习是教学的重要环节,它不但能够帮助学生更好地理解理论课所学知识,而且能够提高学生运用生物信息学的理论和方法解决实际问题的能力,对培养学生独立思考能力、观察能力、动手能力起着重要作用,更是培养学生创新能力的重要途径。

(五)理论和实践相结合,注重考核的灵活化

生物信息学是一门融合了多个学科的实践性很强的课程,对应的考核方式应该与其他专业课程有所区别,其最终的成绩不应该只以理论课考试的成绩为准。理论知识的考核注重学生对生物信息学基本概念、分析流程和主要分析算法的掌握情况,主要以试卷考核的方式为主,采用统一考核方式和评判标准。对于上机技能的考核,主要强调的是学生对不同类型数据进行分析时应掌握的相关软件使用技能的考查,也应纳入到学生的成绩考核中,我们认为理论考试占70分、实习成绩占30分是一个好的评价方式。

五、结束语

大数据背景下对生物信息学的教学提出了新的更高的要求。本文针对《生物信息学》教学中存在的问题,结合自己的教学经历对改进生物信息学教学和方法进行了一些探讨。本文认为要做好大数据时代的生物信息学教学,要从强化基础理论、培养大数据意识、精心设计教学内容、创新教学方法和改革考核评价体系等五个方面来开展和抓好生物信息学教学。

参考文献:

生物信息学的研究意义范文4

关键词: 生物信息学 农业研究领域 应用

“生物信息学”是英文单词“bioinformatics”的中文译名,其概念是1956年在美国田纳西州gatlinburg召开的“生物学中的信息理论”讨论会上首次被提出的[1],由美国学者lim在1991年发表的文章中首次使用。生物信息学自产生以来,大致经历了前基因组时代、基因组时代和后基因组时代三个发展阶段[2]。2003年4月14日,美国人类基因组研究项目首席科学家collins f博士在华盛顿隆重宣布人类基因组计划(human genome project,hgp)的所有目标全部实现[3]。这标志着后基因组时代(post genome era,pge)的来临,是生命科学史中又一个里程碑。生物信息学作为21世纪生物技术的核心,已经成为现代生命科学研究中重要的组成部分。研究基因、蛋白质和生命,其研究成果必将深刻地影响农业。本文重点阐述生物信息学在农业模式植物、种质资源优化、农药的设计开发、作物遗传育种、生态环境改善等方面的最新研究进展。

1.生物信息学在农业模式植物研究领域中的应用

1997年5月美国启动国家植物基因组计划(npgi),旨在绘出包括玉米、大豆、小麦、大麦、高粱、水稻、棉花、西红柿和松树等十多种具有经济价值的关键植物的基因图谱。国家植物基因组计划是与人类基因组工程(hgp)并行的庞大工程[4]。近年来,通过各国科学家的通力合作,植物基因组研究取得了重大进展,拟南芥、水稻等模式植物已完成了全基因组测序。人们可以使用生物信息学的方法系统地研究这些重要农作物的基因表达、蛋白质互作、蛋白质和核酸的定位、代谢物及其调节网络等,从而从分子水平上了解细胞的结构和功能[5]。目前已经建立的农作物生物信息学数据库研究平台有植物转录本(ta)集合数据库tigr、植物核酸序列数据库plantgdb、研究玉米遗传学和基因组学的mazegdb数据库、研究草类和水稻的gramene数据库、研究马铃薯的pomamo数据库,等等。

2.生物信息学在种质资源保存研究领域中的应用

种质资源是农业生产的重要资源,它包括许多农艺性状(如抗病、产量、品质、环境适应性基因等)的等位基因。植物种质资源库是指以植物种质资源为保护对象的保存设施。至1996年,全世界已建成了1300余座植物种质资源库,在我国也已建成30多座作物种质资源库。种质入库保存类型也从单一的种子形式,发展到营养器官、细胞和组织,甚至dna片段等多种形式。保护的物种也从有性繁殖植物扩展到无性繁殖植物及顽拗型种子植物等[6]。近年来,人们越来越多地应用各种分子标记来鉴定种质资源。例如微卫星、aflp、ssap、rbip和snp等。由于对种质资源进行分子标记产生了大量的数据,因此需要建立生物信息学数据库和采用分析工具来实现对这些数据的查询、统计和计算机分析等[7]。

3.生物信息学在农药设计开发研究领域中的应用

传统的药物研制主要是从大量的天然产物、合成化合物,以及矿物中进行筛选,得到一个可供临床使用的药物要耗费大量的时间与金钱。生物信息学在药物研发中的意义在于找到病理过程中关键性的分子靶标、阐明其结构和功能关系,从而指导设计能激活或阻断生物大分子发挥其生物功能的治疗性药物,使药物研发之路从过去的偶然和盲目中找到正确的研发方向。生物信息学为药物研发提供了新的手段[8,9],导致了药物研发模式的改变[10]。目前,生物信息学促进农药研制已有许多成功的例子。itzstein等设计出两种具有与唾液酸酶结合化合物:4-氨基-neu5ac2en和4-胍基-neu5ac2en。其中,后者是前者与唾液酸酶的结合活性的250倍[11]。目前,这两种新药已经进入临床试验阶段。tang sy等学者研制出新一代抗aids药物saquinavir[12]。pungpo等已经设计出几种新型高效的抗hiv-1型药物[13]。杨华铮等人设计合成了十多类数百个除草化合物,经生物活性测定,部分化合物的活性已超过商品化光合作用抑制剂的水平[14]。

现代农药的研发已离不开生物信息技术的参与,随着生物信息学技术的进一步完善和发展,将会大大降低药物研发的成本,提高研发的质量和效率。

4.生物学信息学在作物遗传育种研究领域中的应用

随着主要农作物遗传图谱精确度的提高,以及特定性状相关分子基础的进一步阐明,人们可以利用生物信息学的方法,先从模式生物

中寻找可能的相关基因,然后在作物中找到相应的基因及其位点。农作物的遗传学和分子生物学的研究积累了大量的基因序列、分子标记、图谱和功能方面的数据,可通过建立生物信息学数据库来整合这些数据,从而比较和分析来自不同基因组的基因序列、功能和遗传图谱位置[15]。在此基础上,育种学家就可以应用计算机模型来提出预测假设,从多种复杂的等位基因组合中建立自己所需要的表型,然后从大量遗传标记中筛选到理想的组合,从而培育出新的优良农作物品种。

5.生物信息学在生态环境平衡研究领域中的应用

在生态系统中,基因流从根本上影响能量流和物质流的循环和运转,是生态平衡稳定的根本因素。生物信息学在环境领域主要应用在控制环境污染方面,主要通过数学与计算机的运用构建遗传工程特效菌株,以降解目标基因及其目标污染物为切入点,通过降解污染物的分子遗传物质核酸 dna,以及生物大分子蛋白质酶,达到催化目标污染物的降解,从而维护空气[16]、水源、土地等生态环境的安全。

美国农业研究中心(ars) 的农药特性信息数据库(ppd) 提供 334 种正在广泛使用的杀虫剂信息,涉及它们在环境中转运和降解途径的16种最重要的物化特性。日本丰桥技术大学(toyohashi university of technology) 多环芳烃危险性有机污染物的物化特性、色谱、紫外光谱的谱线图。美国环保局综合风险信息系统数据库(iris) 涉及 600种化学污染物,列出了污染物的毒性与风险评价参数,以及分子遗传毒性参数[17]。除此之外,生物信息学在生物防治[18]中也起到了重要的作用。网络的普及,情报、信息等学科的资源共享,势必会创造出一个环境微生物技术信息的高速发展趋势。

6.生物信息学在食品安全研究领域中的应用

食品在加工制作和存储过程中各种细菌数量发生变化,传统检测方法是进行生化鉴定,但所需时间较长,不能满足检验检疫部门的要求,运用生物信息学方法获得各种致病菌的核酸序列,并对这些序列进行比对,筛选出用于检测的引物和探针,进而运用pcr法[19]、rt-pcr法、荧光rt-pcr法、多重pcr[20]和多重荧光定量pcr等技术,可快速准确地检测出细菌及病毒。此外,对电阻抗、放射测量、elisa法、生物传感器、基因芯片等[21-25]技术也是未来食品病毒检测的发展方向。

转基因食品检测是通过设计特异性的引物对食品样品的dna提取物进行扩增,从而判断样品中是否含有外源性基因片段[26]。通过对转基因农产品数据库信息的及时更新,可准确了解各国新出现和新批准的转基因农产品,便于查找其插入的外源基因片段,以便及时对检验方法进行修改。目前由于某些通过食品传播的病毒具有变异特性,以及检测方法的不完善等因素影响,生物信息学在食品领域的应用还比较有限,但随着食品安全检测数据库的不断完善,相信相关的生物信息学技术将在食品领域发挥越来越重要的作用。

生物信息学广泛用于农业科学研究的各个领域,但是仅有信息资源是不够的,选出符合自己需求的生物信息就需要情报部门,以及信息中介服务机构提供相关服务,通过出版物、信息共享平台、数字图书馆、电子论坛等信息媒介的帮助,科研工作者可快速有效地找到符合需要的信息。目前我国生物信息学发展还很不均衡,与国际前沿有一定差距,这需要从事信息和科研的工作者们不断交流,使得生物信息学能够更好地为我国农业持续健康发展发挥作用。

参考文献:

[1]yockey hp,platzman rp,quastler h.symposium on information.theory in biology.pergamon press,new york,london,1958.

[2]郑国清,张瑞玲.生物信息学的形成与发展[j].河南农业科学,2002,(11):4-7.

[3]骆建新,郑崛村,马用信等.人类基因组计划与后基因组时代.中国生物工程杂志,2003,23,(11):87-94.

[4]曹学军.基因研究的又一壮举——美国国家植物基因组计划[j].国外科技动态,2001,1:24-25.

[5]michael b.genomics and plantcells:application ofgenomics strategies to arabidopsis cellbiology[j].philostransr soc lond b bio sci,2002,357(1422):731-736.

[6]卢新雄.植物种质资源库的设计与建设要求[j].植物学通报,2006,23,(1):119-125.

[7]guy d,noel e,mik

e a.using bioinformatics to analyse germplasm collections [j].springer netherlands,2004:39-54.

[8]郑衍,王非.药物生物信息学,化学化工出版社,2004.1:214-215.

[9]俞庆森,邱建卫,胡艾希.药物设计.化学化工出版社,2005.1:160-164.

[10]austen m,dohrmann c.phenotype—first screening for the identification of novel drug targets.drug discov today,2005,10,(4):275-282.

[11]arun agrawal,ashwini chhatre.state involvement and forest cogovernance:evidence from the indianhmi alayas.stcomp international developmen.t sep 2007:67-86.

[12]tang sy.institutionsand collective action:self-governance in irrigation [m].san francisco,ca:icspress,1999.

[13]pungpo p,saparpakorn p,wolschann p,et a.l computer-aided moleculardesign of highly potenthiv-1 rt inhibitors:3d qsar and moleculardocking studies of efavirenz derivatives[j].sar qsar environres,2006,17,(4):353-370.

[14]杨华铮,刘华银,邹小毛等.计算机辅助设计与合成除草剂的研究[j].计算机与应用化学,1999,16,(5):400.

[15]vassilev d,leunissen j,atanassov a.application of bioinformatics in plant breeding[j].biotechnology & biotechnological equipment,2005,3:139-152.

[16]王春华,谢小保,曾海燕等.深圳市空气微生物污染状况监测分析[j].微生物学杂志,2008,28,(4):93-97.

[17]程树培,严峻,郝春博等.环境生物技术信息学进展[j].环境污染治理技术与设备,2002,3,(11):92-94.

[18]史应武,娄恺,李春.植物内生菌在生物防治中的应用[j].微生物学杂志,2009,29,(6):61-64.

[19]赵玉玲,张天生,张巧艳.pcr 法快速检测肉食品污染沙门菌的实验研究[j].微生物学杂志,2010,30,(3):103-105.

[20]徐义刚,崔丽春,李苏龙等.多重pcr方法快速检测4种主要致腹泻性大肠埃希菌[j].微生物学杂志,2010,30,(3) :25-29.

[21]索标,汪月霞,艾志录.食源性致病菌多重分子生物学检测技术研究进展[j].微生物学杂志,2010,30,(6):71-75

[22]朱晓娥,袁耿彪.基因芯片技术在基因突变诊断中的应用及其前景[j].重庆医学,2010,(22):3128-3131.

[23]陈彦闯,辛明秀.用于分析微生物种类组成的微生物生态学研究方法[j].微生物学杂志,2009,29,(4):79-83.

[24]王大勇,方振东,谢朝新等.食源性致病菌快速检测技术研究进展[j].微生物学杂志,2009,29,(5):67-72.

[25]苏晨曦,潘迎捷,赵勇等.疏水网格滤膜技术检测食源性致病菌的研究进展[j].微生物学杂志,2010,30,(6):76-81.

生物信息学的研究意义范文5

关键词:生物信息学 创新实践能力 教学改革

中图分类号:G642.0 文献标识码:A 文章编号:1674-098X(2014)10(c)-0143-02

2013年三位美国科学家以“为复杂化学体系设计了多尺度模型”而获得了诺贝尔化学奖,从此生物信息学(Bioinformatics)真正走到了自然科学的前台,成为未来发展的重要方向和热点。生物信息学是以生物学为核心和灵魂,以数学和计算机为基本工具的一门交叉学科,综合运用数学、计算机科学和生物学的各种工具,获取、处理、存储、分发、分析和解释生物信息,进而揭示大量数据所蕴含的生物学意义。生物信息学已经成为生物医学、农学、遗传学、细胞生物学、分子生物学等学科发展的强大推动力量,目前已经成为高等院校生命科学相关专业学生必须掌握的主要专业课程。要实现中华民族伟大复兴的中国梦,离不开科学技术的创新驱动,创新人才的培养自然成为高等院校的主要责任,高等院校教师需要根据培养学生创新实践能力的要求不断的开展教学改革。鉴于生物信息学的重要作用,最近几年各高等院校都相继开设了生物信息学课程,但是由于生物信息学是一门广泛的交叉学科,需要学生具有较扎实的多学科基础知识,且生物信息学自身发展迅速,新概念、新算法、新数据库等层出不穷,需要教师不断跟进,因此生物信息学的教学与其他学科显示出明显的不同,旧的教学方法不能适应生物信息学课程的发展。生物信息学教学改革的内容应该着重于提高学生的创新实践能力。该文将生物信息学教学改革中总结的经验,从教学理念、教学方法、教学内容和考试改革等方面,对在生物信息学课程的教学中如何培养学生创新实践能力进行了讨论。

1 教学理念上强调学生的实践能力和自主创新思维的培养

生物信息学是一门实践性非常强的学科,同时具有多学科交叉的特点。对于非生物信息学专业的生命科学相关专业学生,主要课堂目标是熟练应用各种软件、数据库解决实际的生物学问题,而不是研究新算法、开发新程序。非生物信息学专业的学生一般具有较好的生物学基础,对于核酸、蛋白质等相关知识已经较为熟悉,在教学中不必过多重复,而对于生物信息学中的数学模型,程序原理等内容具有较大的学习障碍,经过我们的教学发现,学生对于这些内容的不理解并不会显著影响其应用软件的实践能力。因此,对于非生物信息学专业的生物信息学本科课程,应当简化复杂难懂的理论知识,注重培养学生的实践能力,使学生可以应用生物信息学工具对生物数据进行分析,解决实际问题,在使用生物信息学工具解决实际问题的时候对生物信息学产生兴趣,增强创新实践能力。

2 采用启蒙式、研讨式、运用式等生动形象的教学方法

为了强调学生的实践动手能力,采用启蒙式、研讨式、运用式等生动形象的教学方法。(1)将授课地点定在计算机网络教室,接驳互联网的计算机安装有课堂管理系统,实时演示教师的操作。教师在授课过程中结合具体实例边讲解边示范操作,学生边听课边练习。(2)对课件增加图片、视频、音频等多媒体素材,使抽象的、静态的生物信息学知识以具体的、动态的形式演示,提高学生的学习兴趣,加深学生对知识的掌握程度。例如在讲解蛋白质三维结构相关知识时,教师需准备好各种蛋白质的三维结构素材,并使用(同时教会学生使用)专业蛋白质三维结构看图软件进行演示操作,这样可以显著提高学生的实际操作兴趣。(3)进行课程录像,记录课堂上老师的讲课现场和计算机操作屏幕的录像,将视频放到网络教学平台上,供学生课后观看,降低生物信息学学习难度。(4)进行随堂在线操作练习,以教师和学生分别自设题目的方式开展创新实践练习,促进学生创新性思维方式,注重提高理论用于实践的综合能力,同时更有效地提高学生计算机应用能力。(5)采用双语授课,提高学生专业英语能力。生物信息学的实际操作离不开数据库和软件,而目前国际上通用的生物信息学在线数据库和常用软件的界面都是英文,因此学生必须能看懂生物信息学相关概念的英文说法。我们采用双语授课,对课程中的关键信息再使用中文重点讲解一遍。教学中发现大多数学生对英文授课及英文软件有惧怕和惰性心理,对此我们采用循序渐进多次重复的方式帮助学生克服最初的惧怕建立信心,在英语授课前一周,教师将多媒体课件通过网络教学平台发送给学生,并列出来关键名词,供学生提前预习,减少课堂上直接听英文的难度,在数据库和软件中,安排学生多次使用同一个软件,同一个数据库,对常用的词语进行重点说明,从而减小学习压力,增强学习信心。本方法增强了学生主动学习生物信息学自主能力,同时提高了学生英文听、说、读、写等能力。(6)发挥网络教学的优势,教师可根据教学内容从网上下载教学辅助资料,充分利用网络的现有资源,并通过网络教学平台为学生提供教学资源,将制作的教学课件、教学大纲、教学录像、参考文献、思考题、自测题等上传到教学平台上,使学生随时随地在教学平台里面进行下载教学课件、回答问题、提出问题,老师或者同学可以对所提问题进行网上解答、探讨。教师还可以通过网上论坛、聊天室、QQ、E-mail等对学生学习和生活进行指导和关心,可以及时了解掌握学生的学习情况,有利于教师不断调整教学方案,达到更好的教学效果。

3 教学内容上增强课程应用性

生物信息学的课程内容很多,具有很强的跨专业性,由于课时和学生专业的限制,我们应选择性地进行授课,教学内容主要强调课程实践应用性。(1)要在课程的第一节课明确生物信息学在生物学中的作用,讲解几个有趣而又简单的生物信息学应用,提高学生的学习兴趣。(2)对于理论知识只讲解其中最为基础而不可缺少的,并结合实际操作使学生形象化、具体化。授课中穿插讲解有趣而简单的生物信息学应用实例,提高学生的学习兴趣。(3)增加实验课学时,增强学生动手操作实践能力。生物信息学主要是通过计算机软件完成对生物数据的分析,分析过程中易出现各种错误,需要在多次操作实践中不断总结经验才能熟悉。因此增加实验课学时会明显增加学生的实践能力。我们每一节课分为两部分,理论讲解和实验操作,在理论讲解完成后,马上开展实验操作,这样可以让学生理解软件中应用的原理,不会出现在实验课时理论与实验脱节的现象。(4)生物信息学发展迅速,需不断把握国际最新进展,更新知识库,使学生学到最新的技术,更好的应用到实践中。因此我们密切关注学科发展动态,掌握最新研究成果,每学期的教学随时进行知识更新,及时将国内外及教师的新知识、新成果作为教学内容的一部分传递给学生。同时我们使用双语授课,并保证授课内容紧跟生物信息学的前沿,保证学生学到的都是最新的知识,刺激学生探索与实践的欲望。

4 考试改革上促进学生实践能力和创新思维

考试改革的目的是强化实践教学,注重创新能力的培养;发挥教学中的积极性、主动性、创新性;在加强素质教育的基础上扩宽专业教育;培养“宽厚型、复合型、创新型、外向型”人才。考试可分为期末考试、平时练习和上机考试等三部分。期末考试使用传统的考试方式。平时练习为教学中的课堂练习题的评分。对于上机考试,我们引入无纸化考核,通过上机实践操作,重点考核学生在互联网环境下的随堂在线操作,随堂在线测试的内容主要是使用各种软件和数据库分析生物数据的操作实践,增强学生理论应用实践的综合能力。例如给出一个蛋白质的名称,让学生查询此蛋白质的序列、理化性质、翻译后修饰等信息,预测蛋白质二级结构,三维结构等操作。学生使用计算机在线完成指定的生物信息学分析内容,考查学生掌握实践操作的程度,促进学生注重提高理论用于实践的综合能力,同时更有效地提高学生计算机应用能力。这种考试模式可以显著的提高学生实践的积极性。

5 结语

总之,生物信息学教学需要培养学生自主创新学习的能力和在实践中自主创新获取知识的技能,使学生知识、能力、素质协调发展。为了提高学生创新性思维和实践操作能力,生物信息学教学改革应从以下几方面进行:在教学理念上,强调学生的实践动手能力、创新思维的培养;在教学方法上,采用启蒙式、研讨式、运用式等生动形象的教学方法;在教学内容上,增加实验学时,增强课程应用性,理论为实践服务;在考试改革上,采用多种考查考核方式促进学生实践能力、创新思维。在今后的教学工作中,我们将继续探索行之有效的教学方法、教学手段和教学模式,启发学生的创新实践意识,培养学生的创新思维和实践能力,以满足现代社会对创新型人才的需求。

参考文献

[1] 张纪阳,刘伟,谢红卫.生物信息学课程研究性教学的实践与思考[J].高等教育研究学报,2011(4):51-53.

[2] 张幸果,丁俊强,朱伟,等.关于如何提高生物信息学教学质量的探讨[J].江西农业学报,2010(3):194-195.

[3] 石生林,韩艳君,刘彦群,等.非专业研究生生物信息学课程教学中存在的问题及对策[J].生物信息学,2009(2):125-127.

生物信息学的研究意义范文6

摘要:为培养医学院校生物科学和生物技术专业学生的生物信息学基础知识的掌握和软件的应用能力,结合近年该课程的教育教学改革实践,不断探索科学完善的教学体系和教学模式。从教学内容、教学方式和实践能力培养等几个方面进行了探索与实践。使学生在生物大数据时代,具备初步的生物信息学分析技能和实践操作能力。

关键词:生物信息学;生物科学;生物技术;教学模式改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)26-0145-02

一、开设生物信息学课程的必要性

生物信息学学科发展迅速,不断与其他学科相互渗透,而医学院校生物科学和生物技术专业的学生主要从事生命科学相关的研发和技术,涉及生物、医药、食品、环境、农业等领域。掌握生物信息学这门工具,为今后走上工作岗位,提供新的研究手段和途径是十分必要的。因此,在医学院校部分专业(如生物科学,生物技术等)开设生物信息学必选课程具有重要意义。

二、目前存在的问题

1.教学内容陈旧和教学资源缺乏。我国高等院校开设生物信息学时间相对较晚,在教材选择中首先调研了其他院校和目前出版的教材内容情况。发现大部分生物信息学教材都包括生物大分子(核酸和蛋白质)的信息资源,基因组分析信息资源,数据库搜索软件,核酸序列分析和多序列比对等软件的核心内容,除了共性的章节外,不同的教材内容和重点各不相同。但是生物信息学发展迅速,除了基础内容外,大部分内容都在快速地更新,比如引物设计软件的使用等。而目前,生物信息学教学资源较匮乏,完善的生物信息学课程的教学大纲、教案、教学视频、多媒体课件和习题等教学资源稀少。

2.课程内容与教学课时不匹配,教学进程安排不够合理。首先,由于生物信息学是一门多学科交叉的综合性学科,生物信息学课程学习前需要理解和掌握一些生命科学相关知识背景,如基因组学、蛋白质组学、生物化学、分子生物学和遗传学等,深刻理解一些生物学基本概念,如基因序列、蛋白质序列、非编码区、启动子等,并初步了解一些重要的生物学数据库。因此,讲解透彻该门课程需要教师在课堂上花费一定的时间介绍相关背景知识。然而由于医学院校学生课程门类众多,客观条件决定无法为生物信息学安排足够多的课时。目前我校教学大纲规定的授课仅为20学时,学时少与教学内容多的矛盾就显得非常突出。教师需要在有限的教学时数下灌输大量内容,因此无法深入讲解每个章节的内容,增加了学生学习的难度,降低了教学质量。

其次,教学进程安排不够合理。以我校生物技术专业学生为例,本科二年级第一学期学习生物信息学课程。此阶段学生虽然学习了一年多的专业基础理论知识,但是专业基础知识较为薄弱,同时实验设计等相关实践较少,缺乏对实验细节的理解与实验设计的整体把握。而生物信息学课程是一门实践性学科,所以有必要在生物信息学课程的教学中渗透实验设计的理念,课程学习中灵活运用专业基础知识,达到学生的专业基础知识与生物信息学的知识与不脱节,从而激发学生学习热情。

3.教学模式单一,理论与实践教学脱节。对于医学院校生物科学和生物技术专业的学生,本课程培养的主要目标是:如何在现有数据库中查找想要的信息,如何通过在线程序或利用现有的分析软件,处理相关数据,解决生物学问题。学生需要通过亲身实践,才能熟练掌握生物信息学的数据库、分析方法、软件。但是很多医学院校教学条件有限,没有相应的计算机实训室,配套软件也相对匮乏,教师在授课过程中根据课件照本宣科,并不能结合具体实例边讲解边示范操作,同时,多数高校开设的生物信息学课程以理论教学为主,缺乏实践教学课时。然而,生物信息学的学习,如数据库的检索与使用、序列比对分析软件的应用、引物设计软件的应用等都需要学生在实践课中进行验证或操作,理论知识与实践环节脱节严重,从而影响了学生对课程的理解和掌握。

三、生物信息学教学模式改革探索

1.修改理论教学大纲,精选教学内容。由于生物信息学内容繁多,应针对不同专业特点精心挑选授课内容,在有限的课时中让学生学到最基本且重要的生物信息学理论知识。目前我们选用的是浙江大学出版社第一版的生物信息学,结合生物科学和生物技术两个专业的特点,本教学团队编写了教学大纲,对教材内容进行了更新和优化,将重点集中于应用性较强的生物信息学实践分析技能和离线单机版生物信息学软件的使用上,具体内容包括核酸及蛋白序列数据库、序列的相似性搜索、序列比对、系统进化树的构建以及蛋白质的结构与预测和引物设计等基本内容。同时考虑生物信息学学科的前沿性和交叉性,我们又增加了蛋白质组学和非编码RNA,基因芯片、qPCR、深度测序等操作原理及流程预测等内容。为了适应生物信息学快速发展的要求,扩大学生的知识面,推荐了包括DavidW .Mount编写的《Bioinformatics Sequence and Genome Analysis》和国家“十一五”规划教材李霞主编的生物信息学等几种不同类型的参考教材供同学课外阅读。

2.创新教学方式,推行灵活多样的教学模式。生物信息学的课程学习和软件使用与网络的使用紧密相关,一方面,为克服学生多,无法使每位学生实时进行电脑操作的弊端,我们利用能够接收无线网络信号的设备,实现上课时教室内有网络,这样在授课过程中就可以实时在线带领学生进行生物信息学分析,如稻菘獠檠、序列提交过程、蛋白质结构域分析、蛋白理化性质及结构预测等重要内容,通过实时演示连贯教学内容,让学生得到了更加直观的实践体验,加深了对各种分析方法的学习和理解[1]。另一方面,由于课程学时(仅20学时)的限制,学生们不可能完全依赖课堂时间很好的掌握该课程,除了采取集中授课方式之外,本团队利用搭建的“分子生物学”省级精品资源共享课程网络平台,开辟了“生物信息学”专栏,提供相关文献、相关分析软件及其使用步骤等信息;并聘请校内外相关领域专家开展专题讲座,组织相关领域青年教师开展专题研讨等形式,从而加深学生对课程内容的理解。

3.紧密联系科研,开展基于实践的问题式教学。针对生物信息学课程的特点,打破应试考核方式,本教学团队注重理论结合实践的问题式教学方式引导。一方面,各专业课程中增加实践教学课程比例,根据生命科学的发展,不断充实实践教学内容,增加综合性、设计性实验,从而将生物信息学技术渗入日常教学环节中;另一方面,面向全校招募相关领域青年教师,鼓励并指导学生参与青年教师科研项目,并积极申报国家级和省级大学生科研项目。目前创新性实验和探索性实验全面覆盖生物科学和生物技术专业全体学生,学生在解决科研问题时逐步学会运用生物信息学知识,如文献查阅、目的基因序列的获取、基因序列的分析方法等,提高了学生生物信息学知识和技术的实践能力和理论理解力。

四、结语

生物信息学是生命科学领域研究的重要的工具和载体[2],针对生物信息学课程的特点,医学院校生物信息课程的改革可进一步加强理论教学的系统性、规范性和针对性,提高学生对生物信息学知识的应用能力。在课程体系建设基础上,大胆尝试新的教学方法和手段,突出医学特色,培养适用于现代精准医疗的创新型生物学专业人才。

参考文献: