前言:中文期刊网精心挑选了生物信息学研究方法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
生物信息学研究方法范文1
2l世纪是生命科学的世纪,人类及模式生物基因组计划的全面实施,使分子 生物 学数据 以爆炸性速度增长。面对基因组学、蛋白质组学、基因芯片、分子进化等大量的生物信息,在计算机科学、网络技术以及生物分析技术的相互作用和渗透下,诞生了一门崭新的学科――生物信息学 (Bioinforma-tics)。当前,生物信息学教学还处于起步阶段,对于生物信息学实践课还没有完善的教学模式和有效的教学方法,如何在医学院校进行生物信息学实践课教学还有待进一步探索。
1医学生物信息学的主要研究内容
1.1 疾病基因的发现与鉴定
据相关研究表明,约有6000种以上的人类疾患与特异基因的改变有关,这些关键性基因或其产物的结构功能异常,可以直接或间接地导致疾病的发生。目前,使用基因组信息学的方法通过超大规模计算是发现新基因的重要手段。例如:通过构建肿瘤 cDNA文库,我们可以揭示肿瘤发生的分子水平变化,寻找靶基因。
1.2药物设计与新药研发
生物信息技术为药物研究、设计提供了崭新的研究思路和手段。生物信息药物设计常用的方法有:(1)三维结构搜寻,寻找符合特定性质和三维结构的分子,从而发现合适的药物分子。(2)分子对接,建立大量化合物的三维结构数据库,依次搜索小分子配体使其与受体 的活性位点结合,通过优化使得配体与受体的形状和相互作用最佳匹配。(3)全新药物设计,利用计算机自动设计出与受体活性部位的几何形状和化学性质相匹配的结构新颖的药物分子。
生物信息学方法为药物研制提供了更多的、潜在的靶标,大大减少药物研发的成本,提高研发的质量和效率。
1.3流行病学研究中的应用
将流行病学的遗传和非遗传性的研究与生物信息学结合起来,会对疾病的机理、个体对某种疾病的易感性和疾病在群体中的分布有更明确的认识,对疾病的预防和治疗有极大的指导意义。
2 医学生物信息学教学存在的问题
2.1缺乏实践课教材
目前,?没有专门针对医学院校学生的生物信息学实践课教材。而国内各大高校使用的生物信息学教材多为国外教材的影印版或者中文翻译版本,这些教材一般内容宽泛,需要学生具有较高的相关基础知识,并且偏重介绍生物信息学的理论和方法,对实践环节的指导较少。
2.2缺乏有效的教学方法。
很多院校开设生物信息学实践课仅是以验证理论课所讲授的内容为目的,缺乏针对学生特点的教学设计,讲授内容单调,忽视了对学生分析问题能力的培养。
2.3学生实践课学习基础存在差异
生物信息学实践课的授课内容需要学生使用计算机在网络环境下完成,这需要学生具有较强的计算机操作技能和网络运用能力。不同学生在计算机的操作技 能和网络使用能力上存在较大的差异。另外,常用的数据库和软件基本上都是英文版本,这需要学生具有一定的英文素养,学生英文水平的差异也会影响他们对实践课学习的效果。
3 医学生物信息学实施方法和对策
3.1建立具有模块化的教学大纲
根据医学生物信息学课程的特点,对授课内容进行调整,建立模块化的教学大纲,例如:导论模块、数据库及使用模块、基因组信息学及其分析方法模块、蛋白质组生物信息学模块、代谢和药物生物信息学及系统生物学模块等,使学生清楚每个模块的特点和作用,提高学生的学习兴趣,激发学生的学习热情。
3.2强化实验教学
生物信息学的学习是运用生物、医学、数学、以及计算机科学等诸多学科知识进行分析、判断推理、综合的实践过程,强化实验教学显得尤为重要。
3.3结合多媒体技术与双语教学
教学过程中可以打开相关软件和网站进行演示,使抽象的生物信息学知识以具体的、动态的形式展现出来, 从而加深学生对课程的掌握程度。此外,生物信息学涉及到的数据库、网站、应用软件多为英文界面,所以双语授课显得尤为重要,教师可借助多媒体,对课程进行中英整合讲解。
3.4结合科研实例进行教学
教师可以结合现阶段的科研背景和具体的研究方向,结合实例进行教学,可以让学生真正掌握利用生物信息学方法解决生物学问题的思路,并培养和提高学生的科学思维能力。
生物信息学研究方法范文2
关键词:生物信息学;双语教学;改革及实践
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)46-0125-02
生物信息学是生物学、计算机科学及应用数学等学科相互交叉而形成的一门新兴学科。它以DNA和蛋白质为研究对象,通过对生物学实验数据的获取、加工、存储、检索与分析,进而达到揭示实验数据所蕴含的生物学意义的目的[1]。基于“加强基础、拓宽专业、强化能力、提高素质”的人才培养指导思想,河南科技大学生物科学及生物技术本科专业开设了《生物信息学》课程,以便让学生理解并掌握生物信息学领域的基本概念和基本理论,具备初步的生物信息学分析技能和实践操作能力,从而适应今后工作和学习的需要。
生物信息学的研究对象为各种分子生物学数据,是在全世界各个实验室中产生的,然后再提交到相应的数据库中[2]。目前,这些大型分子生物学数据库在存储、检索和可视化上,都是英文界面;《生物信息学》课程中讲授的生物信息学软件也均以英文为界面[3]。由于生物信息学学科的前沿性和交叉性,使得《生物信息学》课程的教学有其特殊性,其中一点就是适宜于开展较高水平的双语教学。通过双语教学,可使学生尽快掌握以英文为界面的生物信息学网络资源及相关生物信息学分析软件的使用,提高本科生生物信息学基本的分析技能,继而培养其创新能力。根据《生物信息学》的课程特点,我们开展了双语教学的改革和实践,获得了较好的教学效果。
一、激发学生学习兴趣
《生物信息学》课程涉及的知识点较多,在线生物信息学分析平台均为英文界面,多数学生因而存在一定的畏难情绪。因此,在授课的过程中,首先引导学生加强生物信息学基本分析方法及专业英语的学习。学生通过浏览英文网站,英文阅读能力得到了很大提高;同时也开拓了视野,提升了知识面。总之,通过激发学生的学习兴趣,帮助学生逐步建立起学习的兴趣和自信心,为开展《生物信息学》双语教学打下了坚实的基础。
二、选用英文原版教材
目前,适宜于本科生《生物信息学》双语教学的英文原版教材较为欠缺[4]。其原因有两点:一方面,部分《生物信息学》原版英文教材非常昂贵,因成本原因不适宜于本科生选用;另一方面,通俗易懂、适合入门的《生物信息学》英文教材又少之又少。项目组最终筛选到了一本适宜于我校生物科学和生物技术专业本科生选用的英文原版教材《Bioinformatics For Dummies》,该教材浅显易懂,实践操作性强,适宜于生物信息学初学者选用;另一方面,打印或复印该教材的成本较低,学生易于接受。
三、更新优化教学内容
基于英文原版教材《Bioinformatics For Dummies》,适当更新并优化了教学内容,重点传授了应用性较强的生物信息学实践分析技能。如核酸及蛋白序列数据库的查询、核酸及蛋白序列的相似性搜索、序列比对、分子系统进化树构建、蛋白物理特性及3D结构的预测等分析技能。另外还讲授了离线单机版生物信息学软件如DNAMAN 6.0、Primer Premier 5.0、MEGA 5.0的使用方法。
四、适当讲解理论算法
在注重传授生物信息学实践分析技能的同时,适当讲解生物信息学理论算法。由于生物信息学涉及的算法多数都较为枯燥,在授课过程中侧重于分析方法的讲解和应用。如在讲授Needleman-Wunsch全局比对和Smith-Waterman局部比对及分子系统发育树构建UPGMA(Unweighted pair group method with arithmetic mean,非加权算术平均组队法)等算法时,在多媒体教学的基础上,结合互动式“提问”及“板书”等方法辅助学生理解算法的基本原理及分析方法;同时布置课后计算题作业,要求学生独立完成后上交,从而促进学生巩固基本理论和基本知识[5]。
五、采用双语多媒体授课
为了更好地执行《生物信息学》课程的双语教学任务,我们首先制定了《生物信息学》课程双语教学计划。即选用英文教材,制作英文PPT教学课件,采用中英文相结合的授课方式。随着学生生物信息学分析能力及专业英语水平的不断提高,逐步在授课过程中由少到多地加大英文授课的比例。项目组已于2014-2015学年第2学期成功应用英汉双语完成了《生物信息学》课程的双语教学任务,教学效果良好。
六、实时演示在线分析过程
我校基于网络安全的考虑,在教室内仅能登陆校园网而不能登陆外网。在以往的《生物信息学》教学过程中,只能采用网页抓图的静态教学方式,造成学生对生物信息学分析方法的体验不够强烈。为了达到更好的教学效果,项目组购置了能够接收无线网络信号的设备,在教室内可实时在线进行生物信息学分析,在讲解数据库查询、BLAST分析、Bankit序列提交、蛋白质结构域分析、蛋白质物理特性及3D结构预测等内容时,学生得到了更加直观的实践体验,加深了对生物信息学分析方法的印象,从而更加容易掌握这些实践操作。
七、网络教学资源建设
由于受学时的限制,《生物信息学》课堂教学的内容非常有限。为了让学生更好地利用生物信息学丰富的网络资源,我们基于学校开发的网络教学综合平台,构建了《生物信息学》课程网络平台。平台不仅提供双语多媒体课件、教学视频、作业及相关要求等教学资料;还提供了Primer Premier、DNASTAR、DNAMAN、MEGA、BioEdit软件安装程序和使用手册、生物信息学英文文献及常用的在线生物信息学分析工具的链接等内容。
八、科研与教学相长
在生物信息学课程的双语教学过程中,我们坚持教学和科研互动,实现科研与教学相长。一方面,主讲教师将科研中积累到的涉及到生物信息学的研究成果应用于《生物信息学》教学过程中,丰富了教学内容。如在讲授Bankit在线序列提交序列时,我们以提交至国际核酸序列数据库GenBank的芍药(Paeonia lactiflora)乙烯受体ETR1(JX406435)、ETR2(KP265307)、ERS1(KP265307)、EIN4(KP265308)基因序列为例;在讲授基因外显子和内含子结构预测时,以芍药ACO(KJ719260)和ACS(KP265309)基因组DNA序列为例;在讲授Primer Premier软件时,以芍药ACO基因为例,分别设计用于半定量RT-PCR、CDS扩增及原核表达载体构建所需的PCR引物。通过把科研思路带入教学中,从而有效培养了学生的科研能力及创新能力。另一方面,教学实践也有利于教师全面了解生物信息学和相关学科的最新进展,不断为科研提供新思路。
九、考试方式改革
《生物信息学》课程教学的目的是提高学生利用信息技术解决生物学问题的能力。因此,考试主要考查学生综合利用所学知识分析问题和解决问题的能力。项目组对考试方式进行了改革,改闭卷考试为大作业。要求学生一人一题,综合应用所学的生物信息学分析技能对所研究的核酸及其编码的蛋白序列进行序列查询、序列同源性搜索,PCR引物的设计,分子系统进化树的构建,蛋白的物理性质及3D结构预测等分析,占考核成绩的70%。采用这种考试方式,一方面促使学生在学习过程中不必花大量工夫去死记硬背,而把重点放在了基本理论、基本知识的巩固及实践操作技能的提高上,有效地提高了学生的实践操作能力和创新能力;另一方面,也促使教师在教学过程中,注重从能力培养的角度进行教学课堂设计,提升教学质量和水平。
参考文献:
[1]贺林.解码生命――人类基因组计划和后基因组计划[M].北京:科学出版社,2000
[2]周到,黄敏.生物信息学双语教学探讨[J].科教文汇旬刊,2013,(231):48-49.
[3]戴凌燕,姜述君,高亚梅.《生物信息学》课程教学方法探索与实践[J].生物信息学,2009,7(4):311-313.
生物信息学研究方法范文3
關键词:生物信息学;教学方法;医学本科生
中图分类号:G642.0文献标志码:A文章编号:1674-9324(2017)51-0146-03
生物信息学是20世纪80年代末随着人类基因组计划的启动而兴起的一门新的交叉学科[1-2]。它包含了生物信息的获取、处理、储存、分发、分析和解释等在内的所有方面;综合运用数学、计算机科学和生物学的各种工具,来阐明和理解大量数据所包含的生物学意义。目前,生物信息学在医学领域中已广泛应用于基础医学、临床医学及药学等多个学科。特别在科学研究工作中,生物信息学的作用逐步显现,越来越受到重视。近期,精准医疗概念的提出与相应模式的推进,进一步强化了运用生物信息学工具的要求。精准医疗是将临床信息、患者表型与基因蛋白谱进行整合,从而为患者量身制定精准诊断、预后及治疗策略。因此在高通量测序产生数以万计的庞大组学数据中,只有依托生物信息学技术,才能探寻基因突变、药物靶向等隐含遗传学奥秘的精确位点,进而提供可靠的个性化治疗方案。可见,生物信息学是精准医疗的核心内容之一。当前,大多数医学院校均已开设研究生生物信息学课程,但尚未将生物信息学正式列入本科生培养方案,以选修课形式开设生物信息学课程的院校也极为鲜见。医学本科生是祖国医学的未来,是临床一线最直接的储备军,面对飞速发展的生物技术和以几何级数增长的生物大数据,如果现阶段的医学本科生还不能学会如何利用和解读这些资源,这将大大阻碍临床医学的发展。综上,一方面医学领域对生物信息学方面存在旺盛的需求,另一方面大多数院校均未正式开设本科生生物信息学课程,造成生物信息学人才极度紧缺。针对这一现状,笔者近年来围绕在研的各项科研课题,选拔学有余力的优秀学生,在学校开展的各项大学生科研能力训练、创新创业项目支持下,吸收本科生进入实验室,对医学类本科生的生物信息学教学实践方面做了一些尝试,培养了一些初步掌握生物信息学知识与方法的本科学生。在此对教学过程中的感想和体会做一简要总结,并对本科生生物信息学的教学模式进行了探讨。
一、在医学本科生中开展生物信息学的教学实践
(一)尊重学生的教育主体地位,实施因材施教
由于生物信息学涵盖了计算机科学、统计学、分子生物学和分子遗传学等诸多学科相关知识,所以一般情况下生物信息学科研实践的开展要迟于上述各门课程。在开展的过程中,要充分考虑学生的自身条件,进行分组施教。因为不同学生对相关背景知识的掌握不同,会导致他们接受相关教学内容的快慢程度不一样,因此要针对不同层次的学生开设不同等级的实践内容。此外,根据学生将来从事的工作类型导致的对生物信息学的需求不同,可有针对性地分成科研组和临床组。如有些学生将来可能主要从事科研工作,因此希望掌握较多的生物信息学知识,包括各种计算机语言的使用、编程、复杂统计软件的使用等等,这类学生学习热情比较高涨。
(二)构建多学科教师组成的教学团队,实现知识的互补与整合
由于生物信息学是一门新兴的交叉学科,需要计算机学、统计学、医学生物化学、医学遗传学等相关学科的共同发展来支撑。此外,生物信息学专业知识较为前沿,而且涉及的医学研究领域较多。再加上目前生物信息学的专业教师缺少,这就限制了学科的发展。因此,在教学过程中应该合理组建教学团队,授课教师需要来自不同的专业,了解本专业最新的知识,教师之间相互学习沟通,将不同学科的相关知识整合起来[3],并需持续补充和学习生物信息学前沿知识,在授课内容上还要体现教师自身优势。这样不但可以在知识结构上互补,还可以满足不同专业学生的需求。
(三)围绕教师在研科研课题和学术会议,追踪医学研究前沿
生物信息学是一门快速发展的学科。近年来计算机技术、生物技术以及医学技术及医疗模式都在快速更新。因此医学生生物信息学实践教学不能拘泥于原有教材。在进行基础和共性的知识教学时要利用教材。而对于前沿的知识,教师一方面要结合在研的各项科研课题引入知识点,另一方面可带学生参加一些与生物信息学相关的学术会议,让他们开阔眼界,增长见识,激发科研灵感。
(四)调动学生主观能动性,激发其学习潜能
由于学生专业背景知识掌握程度差异较大,以及学生自身兴趣不同,传统的大班教学较难达到一致性的教学效果。因此,在教学过程中可以采取不同的分组方式以满足学生不同的需求。由于现阶段生物信息人才非常缺乏,因此在教学过程中,对于个别基础较强的学生,教师可以有针对性地对他们进行一些更深层次的培养,充分挖掘学生的潜力,利用课余时间,合理安排一些“实战”性任务,通过实践锻炼,提升他们的专业科研素质,为当代生物信息学的发展培养特色人才。如我校2009级临床专业熊同学、2010级药学专业本科生熊同学,都对生物信息学兴趣非常浓厚,在科研实践中表现得十分出色,充分利用课余和寒暑假时间,在老师的精心指导下,用perl语言成功编写出分析组学数据的一系列程序。在研究生面试时,他们扎实的生物信息学功底获得导师的青睐,并成功读取/保送了国内知名大学的研究生。
二、医学本科生生物信息学教学方法、教学模式的探讨
(一)PBL教学法在案例教学中的应用
PBL(Problem-BasedLearning)教学法[4],也称作问题式学习。生物信息学是一门操作性和实验性很强的学科,要利用互联网、计算机和各种生物信息学数据处理软件来解决实际问题。目前,生物信息学已成为生命科学研究领域的重要工具。在实际训练中应以问题为导向,针对每个知识点尽量从实际的应用案例出发,引导学生自主探究、合作学习、进行交流。注重培养学生的实际操作能力和解决问题的能力,使学生能在解决问题的过程中学会各种技能,如统计方法、计算机语言和软件的基本使用、编程技巧及数据库的运用等。随着生物信息学技术的快速发展,整合不同生物技术产生的数据将有利于人们发现疾病致病相关位点和药物作用靶点。在本实验室开展的PBL教学实践中,我们以代谢性疾病作为主要研究方向,对糖尿病、高胆固醇血症及肝癌等展开了疾病相关基因/位点的全基因组筛查。
(二)在教學过程中发挥优秀学生的引领作用,以点带面
由于生物信息学在医学研究中的重要性逐渐凸现,因此要求参加科研实践培训的学生人数逐年增多。而目前生物信息学专业的老师相对缺乏,为了解决这一矛盾,我们在实践教学和科研中摸索出一种新的方法,即以“导师-学生双向选择制”遴选学生进入老师课题组后,以优秀学生为中心,采用以点及面式训练。与以往的老师带学生做试验的传统模式不同,在培训中教师除作为指导老师外,还要善于在众多的学生中发现优秀的人才,并对这些有天分的学生进行精细培养,然后以这些人才为中心点,进行放大,即由一个优秀的学生指导几个后参加培训的学生,在这几个学生中再选出优秀的学生作为下一轮的指导“老师”,这种以点带面的特色实践教学模式不但能节约大量教学资源,而且将最大限度地挖掘学生的科研潜力,有利于培养学生的科研创新素质。
(三)以大学生的各类科研训练、创新创业项目为载体开展教学活动
目前,科技创新已成为发达国家保持持久竞争力的“法宝”。中国早在若干年前就确立了“科技兴国”的战略目标。大学生是祖国的未来,大学生科研创新能力的培养是21世纪高校人才培养的核心内容。国内外众多高校都开展了多种形式的大学生创新训练计划。因此,将生物信息学科研训练与学校开展的各类科研创新训练计划(如大学生“挑战杯”、“创新学分”或“大学生创新性实验计划”等)相结合,将更加有效地利用各种资源,全面锻炼学生的科研创新能力,例如,文献的检索与阅读,各种组学数据的收集、处理和分析,程序的编写,实验设计和操作,科研项目书的撰写,科研论文的书写等。
(四)同步开展科技文书的写作训练,总结成果保持学生的热情
疾病的发生发展与特异基因的改变密切相关,鉴定与疾病相关的基因是医学科研工作的重要内容之一。在科研实践训练中,学生利用生物信息学方法,通过分析处理感兴趣的数据(如基因组、转录组、单核苷酸多态性、全基因组关联分析等),可挖掘出一些与疾病相关的内在信息,或再通过实验对分析结果加以验证。教师可鼓励学生将这些阶段性的成果进行发表,这对学生来说是一种能力上的认可,可以增加学生的科研信心,激发他们的科研热情和动力。此外还要鼓励学生积极申请学校乃至全国性的大学生“挑战杯”等竞赛。培养学生的创新和挑战激情,以便激励他们在科研之路上能再创新高。如我校2012级本科生王同学,从大学一年级开始就进入实验室学习生物信息学分析数据,勤奋钻研,已分别于2013和2014年发表了2篇核心文章,并已成功申请到我校大学生“挑战杯”项目,在我校大学生作品“挑战杯”竞赛中获得二等奖。这些成果极大地鼓舞了同学们的科研热情。
三、本科生生物信息学科研实践中存在的问题
随着生物信息学在医学领域的广泛应用,越来越多的学生意识到这门学科的重要性,都积极参与实践练习。而生物信息学实践离不开计算机这一硬件设备,同时由于生物数据量庞大,这就要求较高的计算机的配置。此外,现阶段生物信息学专业教师比较缺乏,在一定程度上也会影响教学实践的开展。因此,对医学本科生开展生物信息学实践训练尚需相关资源的配套和完善。
四、结语
本文主要探讨了对医学本科生开展生物信息学科研实践过程中的一些感想和体会,并在多年教学实践基础上,总结出一种以科研为核心、学生为主体、训练项目为载体的科研实训教学模式。当前虽然一些医学院校已经开设了生物信息学课程,但是在教学内容、教学方法和教学模式上还有很多不足,尚有待进一步的摸索和改进[5-6]。此外,我们要加大硬件设施的投入,并不断加强师资队伍建设,积极参与教学改革,整合各种教学力量,从而提高生物信息学教学质量。
致谢:感谢南昌大学医学实验教学中心汪雁老师生前对本科生生物信息学教学方面的贡献!
参考文献:
[1]Shachak A,Ophir R,Rubin E.Applying instructional design theories to bioinformatics education in microarray analysis and Primer design workshops[J].Cell Biol Educ,2005,4(3):199-206.
[2]Boyle JA.Bioinformatics in undergraduate education:practical examples[J].Biochem Mol Biol Educ,2004,32(4):236-238.
[3]樊代明.整合医学纵论[J].医学争鸣,2014,5(5):1-13.
[4]祝鸿程,刘浩,王迎伟,等.基础医学课程PBL教学应用的新思路[J].基础医学与临床,2011,31(12):1410-1412.
[5]冉景盛,姚启伦.生物信息学创新教学模式初探[J].生物学通报,2009,44(1):46-48.
生物信息学研究方法范文4
关键词: 生物信息学 农业研究领域 应用
“生物信息学”是英文单词“bioinformatics”的中文译名,其概念是1956年在美国田纳西州gatlinburg召开的“生物学中的信息理论”讨论会上首次被提出的[1],由美国学者lim在1991年发表的文章中首次使用。生物信息学自产生以来,大致经历了前基因组时代、基因组时代和后基因组时代三个发展阶段[2]。2003年4月14日,美国人类基因组研究项目首席科学家collins f博士在华盛顿隆重宣布人类基因组计划(human genome project,hgp)的所有目标全部实现[3]。这标志着后基因组时代(post genome era,pge)的来临,是生命科学史中又一个里程碑。生物信息学作为21世纪生物技术的核心,已经成为现代生命科学研究中重要的组成部分。研究基因、蛋白质和生命,其研究成果必将深刻地影响农业。本文重点阐述生物信息学在农业模式植物、种质资源优化、农药的设计开发、作物遗传育种、生态环境改善等方面的最新研究进展。
1.生物信息学在农业模式植物研究领域中的应用
1997年5月美国启动国家植物基因组计划(npgi),旨在绘出包括玉米、大豆、小麦、大麦、高粱、水稻、棉花、西红柿和松树等十多种具有经济价值的关键植物的基因图谱。国家植物基因组计划是与人类基因组工程(hgp)并行的庞大工程[4]。近年来,通过各国科学家的通力合作,植物基因组研究取得了重大进展,拟南芥、水稻等模式植物已完成了全基因组测序。人们可以使用生物信息学的方法系统地研究这些重要农作物的基因表达、蛋白质互作、蛋白质和核酸的定位、代谢物及其调节网络等,从而从分子水平上了解细胞的结构和功能[5]。目前已经建立的农作物生物信息学数据库研究平台有植物转录本(ta)集合数据库tigr、植物核酸序列数据库plantgdb、研究玉米遗传学和基因组学的mazegdb数据库、研究草类和水稻的gramene数据库、研究马铃薯的pomamo数据库,等等。
2.生物信息学在种质资源保存研究领域中的应用
种质资源是农业生产的重要资源,它包括许多农艺性状(如抗病、产量、品质、环境适应性基因等)的等位基因。植物种质资源库是指以植物种质资源为保护对象的保存设施。至1996年,全世界已建成了1300余座植物种质资源库,在我国也已建成30多座作物种质资源库。种质入库保存类型也从单一的种子形式,发展到营养器官、细胞和组织,甚至dna片段等多种形式。保护的物种也从有性繁殖植物扩展到无性繁殖植物及顽拗型种子植物等[6]。近年来,人们越来越多地应用各种分子标记来鉴定种质资源。例如微卫星、aflp、ssap、rbip和snp等。由于对种质资源进行分子标记产生了大量的数据,因此需要建立生物信息学数据库和采用分析工具来实现对这些数据的查询、统计和计算机分析等[7]。
3.生物信息学在农药设计开发研究领域中的应用
传统的药物研制主要是从大量的天然产物、合成化合物,以及矿物中进行筛选,得到一个可供临床使用的药物要耗费大量的时间与金钱。生物信息学在药物研发中的意义在于找到病理过程中关键性的分子靶标、阐明其结构和功能关系,从而指导设计能激活或阻断生物大分子发挥其生物功能的治疗性药物,使药物研发之路从过去的偶然和盲目中找到正确的研发方向。生物信息学为药物研发提供了新的手段[8,9],导致了药物研发模式的改变[10]。目前,生物信息学促进农药研制已有许多成功的例子。itzstein等设计出两种具有与唾液酸酶结合化合物:4-氨基-neu5ac2en和4-胍基-neu5ac2en。其中,后者是前者与唾液酸酶的结合活性的250倍[11]。目前,这两种新药已经进入临床试验阶段。tang sy等学者研制出新一代抗aids药物saquinavir[12]。pungpo等已经设计出几种新型高效的抗hiv-1型药物[13]。杨华铮等人设计合成了十多类数百个除草化合物,经生物活性测定,部分化合物的活性已超过商品化光合作用抑制剂的水平[14]。
现代农药的研发已离不开生物信息技术的参与,随着生物信息学技术的进一步完善和发展,将会大大降低药物研发的成本,提高研发的质量和效率。
4.生物学信息学在作物遗传育种研究领域中的应用
随着主要农作物遗传图谱精确度的提高,以及特定性状相关分子基础的进一步阐明,人们可以利用生物信息学的方法,先从模式生物
中寻找可能的相关基因,然后在作物中找到相应的基因及其位点。农作物的遗传学和分子生物学的研究积累了大量的基因序列、分子标记、图谱和功能方面的数据,可通过建立生物信息学数据库来整合这些数据,从而比较和分析来自不同基因组的基因序列、功能和遗传图谱位置[15]。在此基础上,育种学家就可以应用计算机模型来提出预测假设,从多种复杂的等位基因组合中建立自己所需要的表型,然后从大量遗传标记中筛选到理想的组合,从而培育出新的优良农作物品种。
5.生物信息学在生态环境平衡研究领域中的应用
在生态系统中,基因流从根本上影响能量流和物质流的循环和运转,是生态平衡稳定的根本因素。生物信息学在环境领域主要应用在控制环境污染方面,主要通过数学与计算机的运用构建遗传工程特效菌株,以降解目标基因及其目标污染物为切入点,通过降解污染物的分子遗传物质核酸 dna,以及生物大分子蛋白质酶,达到催化目标污染物的降解,从而维护空气[16]、水源、土地等生态环境的安全。
美国农业研究中心(ars) 的农药特性信息数据库(ppd) 提供 334 种正在广泛使用的杀虫剂信息,涉及它们在环境中转运和降解途径的16种最重要的物化特性。日本丰桥技术大学(toyohashi university of technology) 多环芳烃危险性有机污染物的物化特性、色谱、紫外光谱的谱线图。美国环保局综合风险信息系统数据库(iris) 涉及 600种化学污染物,列出了污染物的毒性与风险评价参数,以及分子遗传毒性参数[17]。除此之外,生物信息学在生物防治[18]中也起到了重要的作用。网络的普及,情报、信息等学科的资源共享,势必会创造出一个环境微生物技术信息的高速发展趋势。
6.生物信息学在食品安全研究领域中的应用
食品在加工制作和存储过程中各种细菌数量发生变化,传统检测方法是进行生化鉴定,但所需时间较长,不能满足检验检疫部门的要求,运用生物信息学方法获得各种致病菌的核酸序列,并对这些序列进行比对,筛选出用于检测的引物和探针,进而运用pcr法[19]、rt-pcr法、荧光rt-pcr法、多重pcr[20]和多重荧光定量pcr等技术,可快速准确地检测出细菌及病毒。此外,对电阻抗、放射测量、elisa法、生物传感器、基因芯片等[21-25]技术也是未来食品病毒检测的发展方向。
转基因食品检测是通过设计特异性的引物对食品样品的dna提取物进行扩增,从而判断样品中是否含有外源性基因片段[26]。通过对转基因农产品数据库信息的及时更新,可准确了解各国新出现和新批准的转基因农产品,便于查找其插入的外源基因片段,以便及时对检验方法进行修改。目前由于某些通过食品传播的病毒具有变异特性,以及检测方法的不完善等因素影响,生物信息学在食品领域的应用还比较有限,但随着食品安全检测数据库的不断完善,相信相关的生物信息学技术将在食品领域发挥越来越重要的作用。
生物信息学广泛用于农业科学研究的各个领域,但是仅有信息资源是不够的,选出符合自己需求的生物信息就需要情报部门,以及信息中介服务机构提供相关服务,通过出版物、信息共享平台、数字图书馆、电子论坛等信息媒介的帮助,科研工作者可快速有效地找到符合需要的信息。目前我国生物信息学发展还很不均衡,与国际前沿有一定差距,这需要从事信息和科研的工作者们不断交流,使得生物信息学能够更好地为我国农业持续健康发展发挥作用。
参考文献:
[1]yockey hp,platzman rp,quastler h.symposium on information.theory in biology.pergamon press,new york,london,1958.
[2]郑国清,张瑞玲.生物信息学的形成与发展[j].河南农业科学,2002,(11):4-7.
[3]骆建新,郑崛村,马用信等.人类基因组计划与后基因组时代.中国生物工程杂志,2003,23,(11):87-94.
[4]曹学军.基因研究的又一壮举——美国国家植物基因组计划[j].国外科技动态,2001,1:24-25.
[5]michael b.genomics and plantcells:application ofgenomics strategies to arabidopsis cellbiology[j].philostransr soc lond b bio sci,2002,357(1422):731-736.
[6]卢新雄.植物种质资源库的设计与建设要求[j].植物学通报,2006,23,(1):119-125.
[7]guy d,noel
e,mike a.using bioinformatics to analyse germplasm collections [j].springer netherlands,2004:39-54.
[8]郑衍,王非.药物生物信息学,化学化工出版社,2004.1:214-215.
[9]俞庆森,邱建卫,胡艾希.药物设计.化学化工出版社,2005.1:160-164.
[10]austen m,dohrmann c.phenotype—first screening for the identification of novel drug targets.drug discov today,2005,10,(4):275-282.
[11]arun agrawal,ashwini chhatre.state involvement and forest cogovernance:evidence from the indianhmi alayas.stcomp international developmen.t sep 2007:67-86.
[12]tang sy.institutionsand collective action:self-governance in irrigation [m].san francisco,ca:icspress,1999.
[13]pungpo p,saparpakorn p,wolschann p,et a.l computer-aided moleculardesign of highly potenthiv-1 rt inhibitors:3d qsar and moleculardocking studies of efavirenz derivatives[j].sar qsar environres,2006,17,(4):353-370.
[14]杨华铮,刘华银,邹小毛等.计算机辅助设计与合成除草剂的研究[j].计算机与应用化学,1999,16,(5):400.
[15]vassilev d,leunissen j,atanassov a.application of bioinformatics in plant breeding[j].biotechnology & biotechnological equipment,2005,3:139-152.
[16]王春华,谢小保,曾海燕等.深圳市空气微生物污染状况监测分析[j].微生物学杂志,2008,28,(4):93-97.
[17]程树培,严峻,郝春博等.环境生物技术信息学进展[j].环境污染治理技术与设备,2002,3,(11):92-94.
[18]史应武,娄恺,李春.植物内生菌在生物防治中的应用[j].微生物学杂志,2009,29,(6):61-64.
[19]赵玉玲,张天生,张巧艳.pcr 法快速检测肉食品污染沙门菌的实验研究[j].微生物学杂志,2010,30,(3):103-105.
[20]徐义刚,崔丽春,李苏龙等.多重pcr方法快速检测4种主要致腹泻性大肠埃希菌[j].微生物学杂志,2010,30,(3) :25-29.
[21]索标,汪月霞,艾志录.食源性致病菌多重分子生物学检测技术研究进展[j].微生物学杂志,2010,30,(6):71-75
[22]朱晓娥,袁耿彪.基因芯片技术在基因突变诊断中的应用及其前景[j].重庆医学,2010,(22):3128-3131.
[23]陈彦闯,辛明秀.用于分析微生物种类组成的微生物生态学研究方法[j].微生物学杂志,2009,29,(4):79-83.
[24]王大勇,方振东,谢朝新等.食源性致病菌快速检测技术研究进展[j].微生物学杂志,2009,29,(5):67-72.
[25]苏晨曦,潘迎捷,赵勇等.疏水网格滤膜技术检测食源性致病菌的研究进展[j].微生物学杂志,2010,30,(6):76-81.
生物信息学研究方法范文5
生物信息学教学模式探索任务引领生物信息学是用数理和信息科学的观点、理论和方法研究生命现象、组织和分析呈现指数增长的生物医学数据的一门学科,它是生物医学、数学、信息科学以及计算机科学等诸多学科的崭新交叉学科。生物信息学几乎是今后所有生物(医药)研究开发所必需的工具。
21世纪是生物科学的世纪。近年,我国生物技术公司对生物信息学人员的相关需求也迅速增加,浙江理工大学生命科学学院生物技术专业在进行了行业调研并进行专业课程体系构建研究后,于2006年定位和开设了生物信息学课程。该门课程经过8年多的建设后,对教学团队的建设、课程目标的设定、教学内容及教学教法的选择等方面进行了卓有成效的探索,这些探索所形成的结论,可为即将开设或正在进行该课程教学改革的学校提供可借鉴的经验。
一、生物信息学的课程特点
诺贝尔奖获得者W.Gilbert1991年提出了这样一个观点:传统生物学解决问题的方式是实验的,而现在,基于全部基因都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的,是一个科学家先从理论推测出发设定研究目标,然后再回到实验中去追踪或验证这些理论假设。而生物信息学研究正是从英特网上源源不断地采集数据,进行分析、归类与重组,发现新线索、新现象和新规律,用以指导实验工作设计,是一条既快又省的研究路线。它对于找寻一个研究项目的突破口是非常重要的,选定合适的研究出发点,可避免许多不必要的重复,最大程度节约研究资源,使研究成果最大化。鉴于该门技术对生物科学的理论、实践要求以及对信息技术掌握的要求,生物信息学课程与其他课程的教学有很大不同。
1.在课程目标定位中,提高学生对相关网络资源的使用能力是该门课程的重要目标之一。学生必需使用强大的搜索功能实现数据储存、检索和分析,学校在教学资源配置上必需向此倾斜。
2.该门课程学科交叉性强,所涉及的生物及计算机等学科的相关知识更新都很快,导致其理论和实践内容不断推陈出新,这使得在教学内容选择上要紧跟这些更新,不断进行调整。
3.课程教学实践性强,同时涉及生物技术专业实践和计算机应用技术的实践,这需要教师在授课过程中根据学生的学习规律合理安排实践项目,发挥好这两种技术的协同作用。
二、生物信息学课程教学模式探索
1.教学目标与其所培养学生的核心技能
合理的课程目标与定位是决定课程建设成败和教学效果的基础,其主要依据是人才培养需求与授课对象的实际情况。经过对该门课程教学对象的研究发现,在生物专业课程体系下培养的本科生,其前导课程主要集中在生物领域,通常没有系统的学习过计算机、信息技术、编程等知识。对信息检索、模型建立、软件的识别及应用的能力相当薄弱。因此,本门课程将提高学生的信息技术能力也作为一个重要的课程目标。学生在本门课程中将学习与生物技术相关的各种数据库和软件的使用。当然,对学生信息技术能力的要求也定位在能使用、会使用就行,不需要将学生掌握生物数据库构建和软件开发作为课程教学的目标。
在课程目标的设定过程中,应牢记高校对文化的传承的功能,要使学生了解生物信息学发展的历程。在生物信息学学科发展过程中所涌现出来的著名学者,众所周知的震撼人心、启迪心灵的奇闻秩事,能使学生对这门课程产生浓厚的兴趣,甚至更深刻地领会这门课程的含义。
熟练掌握生物数据库的检索和使用是生物信息学课程教学的首要目标。到目前为止,生物学数据库总数已达500个以上,在DNA序列方面有GenBank、EMBL和DDBJ等;在蛋白质一级结构方面有UniProt、SWISS-PROT、PIR和MIPS等;在蛋白质和其他生物大分子的结构方面有PDB等;在蛋白质结构分类方面有SCOP和CATH等。各数据库均通过Internet提供多种形式的数据检索服务。例如,NCBI-GenBank数据库就提供Retrieve(Email),Entrez(Web集成信息检索)及Query(Email集成检索)等多种方式的检索服务。这类检索服务是生物数据库所能提供的多种服务中最基本的信息共享和应用服务,也是生物专业学生和科研工作者经常使用的。在教学过程中需通过设计检索任务来完成对这些数据库使用方法的学习,如通过生物数据库检索家蚕profilin基因的相关信息。
增强学生使用生物信息处理软件的能力,是生物信息学课程教学的重要目标。在世界各地,科学家每天都要通过序列比对软件进行成千上万次的序列比对。学生需要通过课程的学习熟练掌握各种生物信息处理软件,有时还有必要进行一些简单程序的设计,进而掌握发现新线索、查找新规律的工具。例如,目前,借助于生物信息手段的蛋白质预测是提供蛋白质结构及功能信息的重要方法,对这种预测方法的学习将使学生更多更快地了解蛋白质的信息,加深对生物技术科学的理解和运用。除了生物数据库和生物软件使用学习外,还要着重体现生物学文献调研和阅读、论文撰写等基本能力的训练,如EndNote文献管理软件的使用。
2.教学内容选择和教学顺序的组织
生物信息学的课程教学内容的选择,要紧随生物信息学的发展方向,涵盖最前沿知识和最先进技术领域。与此同时,教学内容的选择还应充分考虑学生基础和对该门课程的需求。生物信息学选课学生通常有两类,一类是具有较为扎实的生物学基础的学生,他们学习目的非常明确,其学习重点在于提高对生物信息实验所得结果的分析解释和验证能力。另一类是生物学基础相对较弱的学生,这些学生主要是为了了解生物信息学发展前沿、掌握检索能力以及初步的分析技能,对分析、处理、预测结果的验证涉及不多。无论哪种学生,都比较欠缺信息技术方面的知识,因此,这类知识在前面部分介绍。而后面部分则随学生的类型有所改变,我们根据授课学生的分类选择不同的授课内容和授课重点,尝试据此来划分教学组织的各个阶段,在每个教学节点精心设置任务(如表1所示)。
与其他课程的教学一样,生物信息学课程的教学需遵守学生对知识的掌握规律,其内容的选择与安排应按照循序渐进的原则。从第一阶段到第二阶段,教学内容“由易到难”。随着教学过程的深入,课程内容更侧重于对生物信息学某一专业领域的引导,此时授课教师的指导更加重要,这类领域往往与开课院系专业的优势研究领域和导师研究方向相结合。
3.课程教学方法的改革
生物信息学是一门涉及知识面深刻而广泛,学生独立自学的难度很大的交叉科学。依据建构主义教学理论的特点,这类难度大、技术性和实践性强的课程要特别重视以学生为教学主体的教学方法,应尝试从任务引领入手,将生物信息学的一些重要学习内容逐步展现出来。
在生物信息学教学中,教学内容侧重于任务引领,设定与学生生活相贴近的、接合学科发展前沿的引领任务。例如,可以从高水平杂志(Nature、Science)上根据任务引领的关键词搜索综述,根据综述总结出该任务发展脉络,提炼教学任务,将较为抽象的计算机算法、生物学基础知识融于任务中,使学生有积极参与的意愿。及时将任务相关工具提供给学生,或是提前引导学生自己查询工具,使学生有完成任务的基础。
学生在每个节点都非常清晰地知道下个节点的主题,并在完成教师的任务过程中,构建局部知识框架,形成自己的见解。教师需在课堂上和课堂以外及时掌握学生对各个节点知识的掌握情况,找到学生的最近发展区,针对重点、难点解惑,提高教学效果。这样可以使选择的教学任务吸引学生、引领学科前沿,还能在教学过程与学生的互动中有效地实现教学相长。
4.重视切合课程设计的教材编写
生物信息学不同于其他学科,其很多内容和知识节点更新很快,很多最新成果必须教师根据生物信息学发展前沿及时整理和总结,其教学内容设置着重于保证教学内容的先进性和前沿性。教材的更新和修订周期较短,几乎每学期均需要重新修订。
2001年,教育部在[2001]4号文件中明确要求直属高校的“本科教育要创造条件使用英语等外语进行公共课和专业课教学”,在信息技术、生物科学、管理、金融、法律等专业力争在3年内使外语讲授的课程达到所开课程的5%~10%,尤其强调了生物科学更要先行一步。现实情况也使英文自编教材的编写刻不容缓,现在,绝大部分前沿生物数据信息(最主要的核酸和蛋白质)数据库均为全英文操作界面,操作者只有熟练掌握生物信息学英文术语才能自如地使用该系统,才能更有效的进行生物信息学的学习和研究工作。在英文自编教材编写时,理论部分的参考书我们精心应选定了具有非常严谨理论体系和反应了最前沿生物信息技术的《BIOINFORMATICS:Databases,Tools, and Algorithms》。编写时需要特别注意应依据教学设计来设定来序化任务,突出不同教学阶段的教学重点,使学生学习过程是个循序渐进的过程。我校采用的自编教材根据教学阶段共设置五个引领任务:
(1)Pubmed检索profilin基因研究进展;
(2)家蚕profilin基因结构分析与PCR扩增引物的设计;
(3)家蚕profilin基因同源序列的获取与进化树的构建;
(4)家蚕profilin蛋白二级和三级结构的模拟;
(5)家蚕profilin蛋白理化性质和功能位点的分析.
5.合理配置网络资源和多媒体教学资源
首先,学会利用互联网、计算机、数据库和应用软件进行生物信息分析的基本方法和技能本身就是生物信息学教学重点。以往普通的多媒体教室已难以提供一个交互式的网络化、信息化的教学环境,如果想上好生物信息学这门课程,网络资源和多媒体教学资源的应用,将贯穿于整个生物信息学课程(从任务下发及申领、任务控制及执行、任务完成结果检验与反馈)的整个教与学的过程。而我们通过极域电子教室和学校4A网络教学平台结合,较好的实现了生物信息学交互式的网络化、信息化的教学环境。
课前,教师通过网络平台将任务教学内容、任务序列、工具等传递给学生,学生通过登陆互联网络,利用网络资源和软件尝试完成预习任务。此处可以设置学情反馈点,教师通过网络论坛等形式掌握学生预习情况。授课过程中,教师利用教师机客户端的文件分发系统将任务教学内容、任务序列、工具等发送到学生桌面,再通过广播教学多媒体技术为学生形象的讲解任务内容以及完成方法。每位学生在教师的监督下在互联网上执行任务。教师在监控学生完成任务过程中,不断的得到学生任务进程的反馈,对于任务中学生出现共性问题,利用网络、广播教学或演示等形式及时解决。课下,学生同样可通过学校4A网络教学平台将任务报告、作业、问题和意见等反馈给教师,教师在平台上批改任务报告后将成绩和评语发送给学生,让学生及时了解自己的学习情况,师生还可以通过平台中的网络论坛进行问题讨论等。网络环境下的生物信息学任务引领式教学,不仅能提高学生的学习兴趣,还能创造更为有效的师生互动信息教学环境。
三、结束语
经过多年的生物信息学教学实践发现,如果想建设好生物信息学课程,我们需要设定非常清晰的教学目标,理清课程需要培养学生的核心技能;结合行业发展的技术前沿精心选择教学内容,合理序化教学顺序;要依据建构教学理论,重视以学生为教学主体的教学方法,尝试从任务引领入手引领学生学习,提高学生的学习兴趣;要重视切合课程设计的教材编写,理论部分引自精选英文参考书,设计教材结构应切合任务引领的教学方法;合理配置网络资源和多媒体教学资源,加强学生互动,为成功地实现“反转课堂”提供保障。
参考文献:
[1]张林,柴惠.现代教学手段在生物信息学教学中的应用[J].新课程研究,2011,219(4):156-158.
[2]柴惠,赵虹,张婷.高等院校生物信息学双语教学课程建设之我见[J].中国高等医学教育,2010,(4):83-84.
[3]Gilbert,W.Towards a paradigm shift in biology[J].Nature,1991,(349):99.
[4]刘伟,张纪阳.“生物信息学”课程中研讨式教学实践[J].中国电力教育,2012,(23):60-61.
[5]范丙友,贾小平,胥华伟.生物信息学课程教学改革与探索[J].大学教育,2013,(16):61-62.
生物信息学研究方法范文6
关键词:生物信息学;课堂研讨;案例分析
作者简介:刘伟(1979-),女,辽宁铁岭人,国防科技大学机电工程与自动化学院,讲师;张纪阳(1979-),男,湖南泌阳人,国防科技大学机电工程与自动化学院,讲师。(湖南?长沙?410073)
中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)23-0060-02
21世纪是生命科学的世纪,生物技术飞速发展,生物学数据大量积累。而生物信息学正是在这种大背景下蓬勃兴起的交叉型学科,旨在用信息学方法解决生物学问题。为了培养复合型人才,大力发展交叉学科,国防科技大学(以下简称“我校”)近年来面向全校理工科研究生开设了“生物信息学”选修课程。
“生物信息学”作为新兴的交叉学科,具有融合性、发展性和开放性的特点。[1]融合性是指生物信息学涉及的生物、计算机、数学等多个学科的交叉与融合。从20世纪90年代到现在,该学科发展非常迅速,研究热点发生了数次改变。开放性是指该学科存在大量有待探索和研究的新问题。这些特点一方面为课堂教学提供了大量的主题和素材,一方面也对授课方式提出了较高的要求。经过认真分析,选定研讨式教学作为该课程的主要授课方式。研讨式教学即研究讨论式教学,是将研究与讨论贯穿于教学的全过程。[2]在教师的具体指导下,充分发挥学生的主体作用,通过自我学习、自我教育、自我提高来获取知识和强化能力培养。[3]通过确立教学目标,精心设计和组织教学内容,在实践中贯彻研讨式教学理念和方法,在生物信息学课程中对研讨式教学模式进行了理论探索和实践创新。
一、教学目标的确立
合理的课程目标与定位是决定课程建设成败和教学效果的基础,其主要依据是人才培养需求和授课对象的实际情况。首先,教学对象是研究生,已具备一定的自主学习和创新思维的能力。教师不仅要传授知识,而且要讲解基本的研究方法,让学生具备独立思考问题、分析问题和解决问题的能力。其次,作为军校学生,以后从事的工作可能涉及很多学科方向,展现如何针对一门新的学科方向进行研究的整体思路显得很有意义。最后,考虑到学生不同的知识背景,对于各部分内容的理解程度不同,必须兼顾不同的专业方向,让每个学生都能有所收获。因此,确立教学目标为:介绍生物信息学的基本概念和方法,通过案例分析展现科学研究的基本方法和实践过程。
二、教学内容的设计和组织
1.教学内容的总体设计
确定了教学目标之后,需要对课程的教学内容进行总体设计。参考国内外多所高校的相关课程设置,如北京大学的“生物信息学导论”、中科大的“生物信息学”、中科院的“生物信息学与系统生物学”和MIT的“Bioinformatics and Proteomics”等,发现这些课程主要是针对生物专业的学生开设,侧重于方法学介绍。而我校学生大部分是工科背景,对于统计和机器学习方法有一定基础,重点是了解相关的生物学问题,并应用已有的工科知识去分析和解决这些问题。同时,随着生物信息学的快速发展,研究领域不断扩大,有必要展现该学科的最新进展。
因此,课程内容总体设计上以生物学问题为主线,结合最新的研究成果,对各种计算方法的应用过程进行深入和细致的讲解。在介绍生物信息学的研究现状和生物学基础知识之后,分多个专题详述生物信息学最新的研究进展,各专题在内容上相互衔接,由浅入深,以便学生理解和接受。以问题为导向的课程设计对于启发学生思考,积极参与课堂研讨具有重要作用。
进一步,为了突出部分重点专题及其分析方法,采用案例分析课的形式,针对一些重要问题进行深入探讨。鼓励学生应用所学知识,结合自身的专业背景,通过积极地思考和讨论提出相应的解决方案。案例选择为教师有一定研究基础的开放性问题,一方面介绍已有的研究成果,一方面结合教师的研究体会,通过积极讨论拓展新的研究思路。案例分析课有助于学生更多地参与课堂研讨,对于知识的综合应用和科学研究过程产生切身体会。
2.教学内容的组织
研讨式教学的关键是调动学生的积极性,鼓励学生踊跃地参与课堂讨论,提出自己的观点。通过集中备课,学习和吸取老教师的成功经验,总结调动学生积极性的基本要素,对授课内容进行了认真的组织和编排。
(1)重点突出,详略得当。由于生物信息学涵盖内容非常丰富,有必要对课程内容进行取舍,在保证知识面的基础上,突出授课的重点。减少或删除重要性较低的部分,采用图片和动画等形式对重要的知识点加以强调,以深化学生的理解。只有学生对重点内容理解透彻,才能激发出浓厚的学习兴趣,积极参与课堂研讨,碰撞出智慧的火花。
(2)新颖有趣,实例丰富。在课程内容上应充分体现知识性和趣味性,以丰富的实例展现生物信息学中基本的概念和方法。学生往往关注与日常生活休戚相关的内容,期望能用所学知识解释常见现象,因此实例选择应贴近生活体验。课件中准备了大量的实例,例如,在讲完构建进化树之后,举例说明为什么人类的祖先是从非洲走出来的;在生物代谢一章,通过卖火柴的小女孩的故事阐释生物代谢过程的高效性;在蛋白质结构部分,讨论为什么湿着头发睡觉,头发容易变翘。通过实例分析,增加学生对于所学知识的理解和参与课堂研讨的积极性。