前言:中文期刊网精心挑选了计算机视觉的原理范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
计算机视觉的原理范文1
关键词:计算机辅助教学;视觉媒介;综合技能;教学形式
中图分类号:G64文献标识码:A文章编号:1005-5312(2012)11-0215-01
视觉传达设计是通过视觉媒介表现并传达给观众的设计,其领域与其他领域不断相互交叉,高校纷纷加大对艺术类专业的投入。在众多院校中,在课程设置方面也是各有特色,但是有一点是相同的,即计算机辅助课程归纳到各个学校的教学计划之中的,且成为该专业的骨干课程。
一、视觉传达专业计算机辅助设计类课程的设置现状
视觉传达设计是指利用视觉符号来传递各种信息的设计。总的来说,视觉传达专业计算机辅助设计类课程主要分为以下几类:平面设计软件类(Photoshop、Coreldraw、Illustrator、Indesign)、二维动画软件类(Flash)以及影视后期制作软件类课程(Aftereffect、Premire)。Photoshop作为一款图像处理和绘图软件成为该专业学生必须掌握的工具,其强大的作用及功能几乎渗透到视觉类专业的所有科目。Coreldraw、Illustrator软件作为必须掌握的矢量软件,在制作插图、标志、书籍装帧、版式设计、VI设计、包装设计等主干课程中发挥到不可忽视的作用。二者作为基础性软件,容易学习和上手,是学生入门的好软件。Flash软件可以用于二维动画和多媒体创作。Aftereffect是目前世界上最广泛的视频合成软件之一,广泛用于数字电视,视频的后期制作,在PC系统上可以完成较好的合成效果。
二、视觉传达专业计算机辅助设计类课程的设置现状
独立院校教育以市场需要为导向,着重在于培养学生的动手能力。因此,计算机辅助课程相对于其它课程来说实践课时较多,以强化学生运用软件的能力。计算机辅助设计类课程要求学生利用日益增多的各类设计素材库,对图像进行处理,变化出更为丰富的视觉语言。如今软件升级换代十分迅速,这要求学生及教师能不断的更新知识,在学习的过程中,要学会质疑和尝试,触类旁通去学习和寻找不同的操作方法。
三、视觉传达专业计算机辅助设计类课程的教学方法
(一)案例式教学法
学会工具的简单用法,最容易达到。通过了解功能、界面、菜单、面板以及工具的基本使用方法,就大致了解。学生除了在课堂上消化和吸收教学案例以外,学会举一反三,大量的课外钻研也有必要的。
(二)项目式教学法
项目式教学法是通过进行一个完整的“项目”工作而进行的实践教学活动的培训方法。在教学实践中,拿实际项目里的课题研究作为项目,它能为学生日后进入工作岗位积累实践经验,这种过程对学生的学习能力有着极大的提高。
四、 视觉传达专业计算机辅助设计类课程存在的误区
在教学方面:有的教师侧重于工具的教授,然后辅以大量的图例去启发学生。有的教师则完全把软件课变成单独的软件培训班的模式,一味的填鸭式教学,不去培养学生的创新能力。这些情况只会使学生的软件学习能力停留在很低的层次。
在学习方面:学生不动脑筋,不愿意去探讨原理和基础工具运用,只是默默地跟着范例,至于为什么会,不去探究。另外有些同学不善于做笔记,不勤加练习,今天会明天忘,所以说软件的学习过程也是个需要潜心修炼的过程。
五、视觉传达专业计算机辅助设计类课程的有效进行
(一)针对性的设置课程
学校在开展计算机辅助设计类课程的初期,可以尝试着去要求学生对常规软件(例如Photoshop、Coreldraw、Illustrator等),达到创新的运用程度。其它的软件,学生可以根据自身的学习情况和接受能力进行多样性的选修。同时也可以在这三类基础软件上加大课时的投入,以巩固学习成果。
(二)教学与实践相结合
学校与相关单位紧密协作,定期到单位参观实习此外加大投入让学生能参与到国内外的各项比赛中,以赛代练。
(三)加强师资培训,提高教师业务水平
计算机视觉的原理范文2
【关键词】Opencv;计算机视觉技术;系统;研究
随着计算机技术的快速发展,计算机设备逐渐被应用到社会生活的各个方面,尤其是在当前计算机视觉技术和图像处理技术快速发展的时期,各个科技领域中的计算机视觉技术已经逐渐成熟。计算机视觉技术主要是利用计算机智能化来替代人眼,即对于客观存在的三维立体化世界的理解和识别,整个实现过程均是以计算机技术作为基础。随着计算机视觉技术的不断发展,现今其已逐渐成为了一门神经生理学、计算机工程、信号学、物理学、应用数学等综合性学科。计算机视觉技术系统其在高性能计算机基础之上来实现对大量数据的获取,并且通过智能算法来对获取数据进行处理,从而完成对数据集成。
一、视频中运动物体检测原理
对于视频中的运动物体检测主要分为两中方法,其一为宏观检测法;其二为微观检测法。宏观检测法是对获得的整幅图像进行检测,而微观检测法则是对所需要的区域进行图像检测。视觉技术在检测运动物体的时候,首先对图像进行采集,并对采集的信息数据进行预处理,将图像进行分割,然后分别提取运动物体的影象,从而实现参数的更新。图像采集过程中采用背景差分法,实现对背景图像的提取,其通过一定算法采用人为手段获取没有背景的图像。另外在进行运动物体检测的时候还可以采用帧间差分法,其主要是实时获取帧图,然后实现一帧一帧图像比值的比较,从而获取具有差值的图像。运动物体进行检测的时候需连续获取帧图,将这些帧图组合起来,其实就是物体的运动轨迹,然后同分割技术就能勾勒出物体的轮廓。随着计算机视觉技术的不断深入研究,发现此两种方法单独使用仍然存在的一些缺点,于是研究人员将二种检测方法进行融合,形成一种综合检测方法。综合检测法将两者检测方法的优势进行了融合,并将其灵活的应用到了生产和生活之中,取得了十分不错的效用。
二、基于Opencv的计算机视觉技术探究
(一)基于Opencv的运动物体检测
运动物体在进行检测的时候,基于Opencv的检测原理主要为:根据物体某项特定信息,例如,颜色、轮廓、性状等,在复杂背景中利用这些特定的信息将物体分离出来。整个图像的分离过程首先是进行视频流捕捉,然后是进行视频的格式转换,再将图像进行预处理,从而提取前景物体,减少环境因素对图像处理的误差,最后根据物体特征提取,并完成对运动物体的跟踪。从图像中提取所需的目标物体,其实质就是对整个屋里轮廓进行检测和分割,根据每个图像的帧差异来进行提取。
(二)基于Opencv图像预处理
视觉技术应用于复杂的环境之中,由于存在着光照的变化,其场景中所出现的环境因素对视频采集设备性能影响很大。环境因素会使得获取的图像信息的质量降低,并且在图像中无法避免的存在着噪点,这对于运动物体的检测和图像采集会造成很大的影响。当获取视频帧图像之后需对其数据进行预处理,通常有平滑度滤波处理、图像填充、图像背景更新等。
1.平滑度滤波处理
由于在进行视频图像采集的时候存在着噪点,那么我们就需要对其进行噪点处理,以求减小噪声。滤波平滑度滤波处理,其具有线性和非线性两种方式,其中线性方式进行处理器运算简单、运算速度快,但是在进行处理之后的图像都会呈现不清晰的情况。而非线性方式尽心给处理之后,虽然能够很好的减小噪点,确保信号的局部特点,但是其运算的速度会较慢。
2.图像填充
对于帧图像进行处理,通常采用检测边缘填充法或者是腐蚀膨胀法来完成,其中填充法是指当检测出目标物体之后,利用边缘检测方法来对物体进行辨识,然后利用形态学的漫水填充法进行填充。图像的腐蚀膨胀则主要是由于摄像机的性能等问题造成的。
3.实时背景更新
在进行图像差分之前,需要对背景图样进行确定,并且需要对其进行初始化处理。以方便以后在进行检测时候能够对实时背景图进行差分计算,只有这样,才能够获得极佳的前景效果。在进行图像差分时,首先需要根据指定法来确定第一帧背景的图像,并将其指定为第一张背景图片,然后在检测过程中根据算法对背景实施更新。整个图像在进行更新时,其主要的流程为:判断并读取图像是否为第一帧;将Opencv处理的图像转化为单通道灰度值;将实时采集的图像进行高斯平滑度处理,去除噪点;最后使用形态学滤波处理噪点。
(三)提取前景运动物体图像
检测运动物体的时候,只有在检测流程中确保精确度,才能够获取满意的前景跟踪效果。此过程中主要分为两个步骤,第一步为二值化图像之后进行分割;第二步,图像分析前处理,进行充分填充,确保前景图的完整性。其中,前景图的提取主要分为下面几个步骤:首先对前景图像和背景图像进行差分,然后对差分的图像进行二值化,再对背景中的前景图像边缘进行检测,根据轮廓进行填充图像。由于摄像头存在于不同的场景和环境之中,不论是室外或者是室内随着场景的变化都会对图像的采集产生影响。那么在前景图中提取目标就需要在检测系统中采用有效手段来完成背景实时更新。
阀值二值化分割法可以对检测的物体进行前景和背景差图分割,从而使目标物体能够分离出图像,且阀值分割先要确定每个像素的点是否处于灰度范围值之内。将图像中的像素灰度与确定的阀值进行比较,其结果解释所有像素点分为2类,一类像素的灰度小于阀值,另外一类就是大于阀值。阀值二值化分割时,确定分割的阀值T,然后分割图像。选取合适的阀值进行分割,可以有效的减少光照因素影响,常用的动态阀值主要有直方图来法与最大类方差法这另种分割方法。
三、计算机视觉三维技术
计算机视觉技术的核心为分割问题、运动分析、3D立体场景重构等,立体视觉主要是从多幅图像的参照中获取目标物体的三维几何信息。计算机视觉所模拟出的3D立体画面只需要摄像机从不同的角度同一时间针进行图像捕获,将2D信息进行3D重构,进而将计算机程序重建于真实的三维场景之中,以恢复物体的真实空间信息。
(一)视觉系统
视觉系统捕获图像的过程,实则可以看成为对大量信息进行处理过程,整个系统处理可以分为三个层次,其一,理论层次;其二,描述层次;其三,实现层次。在摄像机视觉系统之中,输入的是2D图像,但是输出为3D信息,而这就可以实现对图像的位置、距离等信息的如实描述。视觉系统分为三个进阶层次,第一阶段为基础框架;第二阶段为2.5D表达;第三阶段为三维阶段。在第二阶段中实现的2.5D表达,其原理是将不完整的3D图像信息进行表达,即以一个点为坐标,从此点看去某一些物体的部分被遮挡。第三阶段的三维阶段,则是人眼观察之后可以从不同的角度来观察物体的整体框架,从而实现了将2.5D图像信息的叠加重合运算,进一步处理之后得到了3D图像。
(二)双目视觉
人们从不同角度观看同一时间内的同一物体的时候,可以利用算法测量物体间的距离。此法被称为双目立体感觉,其依据的原理是视觉差原理,利用两台摄像机或者一台摄像机,对两幅不同的图像进行不同角度观察,并且对其观察的数据进行对比分析。实现双目立体视觉与平面视觉图像获取,其主要的步骤为:
(1)图像获取
从两台不同的摄像机,捕获帧图像,由于环境因素会造成图像差异困难。为了更好的跟踪目标、检测,当捕获图像之后,需要对图像进行预处理。
(2)摄像标定方式
获得真实坐标系中的场景点中的与平面成像点占比见的对应关系,借用三维立体空间中的三维坐标,标定之后确定摄像机的位置以及属性参数,并建立起成像的模型。
(3)特征提取方式
所谓的特征提取方式主要是为了提升检测、跟踪目标的准确性,需要对目标物体进行特征提取,从而实现对图像分割提取。
(4)深度计算
深度信息主要是根据几何光学原理,从三维世界进行客观分析,因为距离会产生不同的位置,会使得成像位置与两眼视网膜上有所不同。简单来说,客观景物的深度可以反映出双目的视觉差,而利用视觉差的信息结合三角原理进行计算,可呈现出深度的图像信息。
(三)摄像机模型
摄像机在标定过程中确定了其建立的基础为摄像机的模型,摄像机模型在标定过程中关系到三个不同坐标系的转换,分别为2D图像平面坐标系、摄像机自身坐标系以及真实的世界坐标系。摄像机在摄像的时候起本质是2D图像坐标转换,首先要定义摄像机的自身坐标系,将坐标系的原点设置为光心,X、Y、Z成立三维坐标系。其次则是建立平面的图像坐标系,用以透视模型表示,其原点也在广心的位置,称之为主点。实际应用中,物理的距离光心的位置d≠f焦距,而且会远远大于焦距,为了解决如此问题就提出了平面概念。在光轴z上设置一个虚拟的图像平面,然后在此位置于平面关于光心对称。接着,在设置的虚拟2D坐标系中,光轴和原点重合,并且摄像机与垂直平面的垂直方向相同,真实图像上的点影射到摄像机坐标系。
(四)3D重构算法
视频流的采集,主要是采用Kinect设备、彩色摄像头、红外发射摄像头、红外接收摄像头。使用微软提供API控制Kinect设备,在操作之前需调用NUI初始化函数,将函数的参数设置为用户信息深度图数据、彩色图数据、骨骼追踪图数据、深度图数据。上述的视频流的打开方式不同,既可以是一种打开方式,也可以是多种打开方式,尤其在进行Kinect传输数据处理的时候,需遵循三条步骤的运行管线。此三条管线分别为:第一条为处理彩色和深度数据,第二条为根据用索引添加颜色信息,并将其放入到深度图之中,第三条为骨骼追踪数据。
四、总结
随着计算技术的快速发展,视觉技术逐渐被广泛的应用于我们日常的研究之中。本文通过对视觉技术的相关问题进行分析,探究了图像处理、分割、前景提取、运动物体观测以及重构3D图等问题,为实现视觉技术更加深入研究做出了相应的贡献;为广大参与计算机视觉技术研究同仁提供一个研究的思路,为实现视觉技术的腾飞贡献薄力。
参考文献
[1]张海科.基于Opencv的人手识别与跟踪定位技术研究与实现[D].云南大学,2013.
计算机视觉的原理范文3
关键词 计算机视觉;立体匹配;研究情况
中图分类号:TP391 文献标识码:A 文章编号:1671-7597(2014)07-0001-01
随着科学技术的快速发展,计算机技术也得到了飞速的发展。将计算机技术应用于人类的视觉系统,并辅助人们观察到一些眼睛难以看到的东西,已经逐渐成为一门大家所热捧和追逐的技术。随着人们对视觉传感器技术越来越多的探索,人们也逐渐实现了古代时想拥有千里眼的梦想。目前,人们已经把视觉传感器技术和计算机技术良好的结合在一起,并把这些技术应用到食品、建筑、医药、电子、航天航空等众多领域当中。而该项技术的快速发展,也帮助人们解决了一些日常工作当中人类视觉存在盲区的问题,保证了人们工作过程的安全。视觉技术与IT技术的完美结合使得人们的生活变得更加便利,让人们亲身体会到了IT技术给人们生活带来的便捷。
1 双目立体视觉概述
双目立体视觉又称双目视觉技术,是目前计算机视觉应用领域的重要研究内容。双目立体视觉控制系统的组成因其采用的原理和应用功能的不同,组成也都各不相同。
双目立体视觉的实现原理是基于人眼的视网膜看物体的特性,从两个不同的方向来观看同一个物体的不同角度,从而实现清楚的了解到物体的图像的目的。双目立体视觉从不同的角度获得物体的投影信息,并根据匹配的结果,获取同一个物体不同偏差位置的信息。最后在依据三角测量技术,根据已经获得的这些偏差信息从而获得这些不同点对应的距离信息,并最终获得这些实际物体的具体坐标位置信息。
视差测距技术告诉我们,要清楚的观察到一个物体的全貌,需要两个观察物从不同的方向,或者固定一个观察物,移动另外一个观察物的方式,以达到拍摄同一个物体的目的。根据同一个物体在两个观察物当中的位置偏差,从而确定该物体的三维信息。一般来说,双目立体视觉的组成包括:图像获取设备、图像预处理设备、摄像机标定设备、立体匹配设备、根据二维信息实现三维重构设备等五个重要设备。
2 双目立体视觉技术的原理
立体画又可以称之为三维立体画,是一种人们可以从三维立体图中获取二维平面图信息的技术。三维立体图表面看似毫无规则,但是假如通过一些特殊的技术或者通过合理的观察手段和观察设备,就可以看到一组秩序井然的美妙图片。
三维立体图是一组重复的二维图片有序的堆积积累而成,因此可以呈现出立体效果。人体观察物体的原理大致如下:当人类通过左右眼观察所在的空间平面的时候,这些平面图都只是一些毫无秩序的图片。而当左右眼重新聚焦或者在观察画面的时候呈现一定的层次感,则人类的左右眼观察到的一组重复案在经过人体识别以后,这些画面之间将存在一定的距离差异,从而在脑中生成立体感。
双目立体视觉技术正是基于以上的原理,从两个不同的方向去观察物体,并获得目标图像的信息,并经过一定的处理获得三维重建的物体立体信息的技术。
双目立体视觉在计算机技术中实现三维重建的大致流程
如下。
1)摄像机定位,并通过单片机计算得到要获取图像信息需要的外部的参数的大概值,并根据这些参数值设定摄像机。
2)用设定参数的摄像机拍摄目标场景的画面,并采集这些画面的二维图的信息。
3)通过计算机技术实现双目匹配,并判定采集画面中的二维图像中的不同点之间的对应关系。
4)在第三步中若得到两组二维图像的关系是稠密的时候,则生成三维视差图。如果不是则进一步采集图片信息。
5)根据得到的视差图最终实现场景的三维图形的重建。
3 双目立体匹配技术的研究难点和未来的发展方向
尽管目前有很多学者都投身到双目立体匹配技术的研究和开发当中,直至目前为止也解决了很多关于视觉理论当中存在的很多缺陷问题。但是视觉问题是一个复杂且难以解决的问题,特别是在双目立体匹配问题方面更是困难重重。立体匹配技术的难点已经成为限制将双目技术应用到计算机技术当中的重要瓶颈。
立体匹配的主要手段就是找到计算机采集到两幅和多副图片的中像素的对应关系,然后根据这些像素关系判定并生成三维重建图。但是二维图像的匹配存在层层困难,主要体现在以下几个方面。
1)由于视角的问题或者观察物体存在遮挡问题,导致采集回来的图片信息存在盲点,这样子更难找到图片的匹配区域。
2)场景中的一些深度不连续的区域大都处在场景当中的边界位置,这些位置容易出现像素不高,边界不清晰等问题,这些问题也给图像匹配带了很多困扰。
3)场景当中的低纹理的图片匹配特征和匹配关系较少,而且该位置的每个像素点极为相似。假如只是通过简单的像素相似性检测的话,会检测到很多匹配结果,而这些匹配结果当中有一大部分是错误的。这样子的结果势必会导致最终的图像匹配正确率极为低下。
从以上的分析,我们可以看出立体匹配技术存在很多技术上的难点,这些都在很大程度上限制双目立体匹配技术在计算机当中的应用发展。如何才能设计出有效、准确、快速、通用性强的立体匹配算法将会是以后双目立体匹配计算发展的重要方向。也只有通过设计出一套行之有效的立体匹配算法才能使得双目立体匹配技术在计算机视觉当中得到广泛的应用。
4 结束语
人们通过眼睛可以感受到外界事物的存在,可以清楚的了解到事物的立体信息,分辨出观察物的广度和深度,以及物体的远近。因此人类视觉感知系统就是一个双目的立体感知系统。本文讲述的计算机中的双目立体匹配技术正是基于人眼视觉观察物体的原理,通过双目立体视觉原理,对计算机采集获得两幅二维图像的信息进行分析,并结合计算机的分析,最终获得同人类眼睛一样观察到物体三维表面信息的目的。双目立体匹配技术与计算机技术的完美结合帮助人们可以更加轻易的获得物体的信息。希望在不久的将来,可以将该项技术应用于人类的视网膜当中,以帮助一些视网膜存在问题的人们,让他们重新感受到光明,感受世间的温暖。
参考文献
[1]高文,陈熙霖.计算机视觉算法与系统原理[M].北京:清华大学出版社,2002.
[2]明祖衡.双目立体视觉测距算法研究[M].北京:北京理工大学,2008.
[3]刘昌,郭立,李敬文,刘俊,杨福荣,罗锋.一种优于SAD的匹配准则及其快速算法[J].电路与系统学报,2007,12(4):137-14.
[4]陈蛟.双目立体匹配的算法研究及其多核并行化[M].南京:南京邮电大学,2012.
计算机视觉的原理范文4
关键词:三目摄像机;标定;立体视觉;外部参数
一、绪论
1.1研究的背景及意义
计算机视觉是当今极为重要的学科之一,它在具有很强的挑战性的同时又拥有广泛的应用前景和实用价值。计算机视觉以视觉理论为中心,以图像处理、模式识别、计算机技术和生理学、心理学为基础,研究内容主要有两个方面:一是开发从输入图像数据自动构造场景描述的图像处理系统;二是理解人类视觉机理,用机器代替人去做人类难以达到或根本无法达到的工作[1]。
计算机视觉应用的广泛性体现在其不仅用于文字、指纹、面部、商标以及图像数据库、检测集成电路芯片、多媒体技术这些图像方面,还应用到机器人导航、工业检测和产品的自动装配、CT图像器官重建和遥感照片解释等空间物体的定位、识别以及重建上。现如今,计算机视觉已经应用到机器人、地理、医学、物理、化学、天文等各大的研究领域。
作为多个学科交叉与融合中心的计算机视觉,摄像机是其研究的重要工具,而摄像机标定又是计算机视觉研究的一个关键问题,故摄像机的标定越来越受到广泛的重视。摄像机标定是通过物体空间上的点与图像中的对应点的几何关系,来确定摄像机的内外参数的过程。标定结果是否准确影响着三维测量的精度和三维重建的结果,而且实时的标定更能满足自动导航机器视觉的需要[2]。
伴随着应用的发展,摄像机广泛地被应用于三维立体的测量、视觉检测、运动检测等领域。由此,对摄像机标定的精度要求也日益增加。摄像机标定结果的优劣影响了计算机视觉在各领域的应用。摄像机标定的准确与否,对能否提高计算机视觉在各领域测量的准确度有重要影响[3]。因此,研究摄像机标定方法具有重要的理论研究意义和实际应用价值。
1.2摄像机标定技术研究的发展及现状
摄像机有一个图像平面和提供三维空间到图像平面转换的镜头。由于镜头会产生畸变,不能把这个转化过程简单描述为投射变换。所以它表示的是畸变的模型,这些模型近似于真实数据,而其精确性则依靠于建立的模型及模型参数的准确性。
首先进行摄像机标定工作的是加拿大的Deville,他于1910年建立实验室,使用多个瞄准仪对他的“测量摄像机”(surveying camera)进行标定[4]。上个世纪三十年代后期,美国标准局发明了一种精确镜头,用来检测摄像机,同时将它用在摄像机标定上。四十年代后期,该项工作得到进一步加深,有了更多对高精度的需求和对易操作设备的需求。1955年,Carman出版了 《棋盘平面度的干涉测量和控制》,该书引起了社会各界对摄像机标定的关注。二战时期,随着飞机的大规模使用,航空摄影与制图兴起,为得到更加精确的测量结果,对摄像机镜头的校正要求也变得更高。五十到七十年代也是镜头校正技术发展最为迅速的时间段。在这期间,各种镜头像差的表达式逐步被提出并且得到普遍认同与采用,建立了很多的镜头像差的模型,D.C.Brown等人作出了比较大的贡献,他们导出了近焦距情况下给定位置处径向畸变表达式并证明了近焦距情况下测量出镜头两个位置的径向畸变就可以求出任何位置的径向畸变[5]。这些径向与切向像差表达式成为后来各摄像机的标定非线性模型的基础。这段时间里,研究的重点是如何校正镜头与用何种方法补偿镜头像差,这些研究对促进各性能镜头组的研制起到了重要作用。在1999年,张正友提出了一种简便的摄像机标定方法,该方法介于传统标定和自标定之间,操作方便灵活,能够得到不错的精度,满足了众多拥有桌面视觉系统的用户在摄像机标定方面的需求。
1.3本文的主要研究内容
本文的主要研究多个摄像机的标定问题。标定主要是对摄像机内外参的测量计算,利用这些参数对多个摄像机识别的物体尺寸进行衡量并建立起多摄像机系统的数字环境。
论文的内容包括:
第一章为绪论,介绍摄像机标定相关的研究背景、国内外研究现状。
第二章为摄像机标定理论基础:主要介绍标定的坐标系与待标定的参数。
第三章提出本文的多摄像机标定方法与实验过程。
第四章进行全文的总结。
二、摄像机标定方法研究
2.1摄像机标定原理
摄像机通过透镜将三维物体投影到--维图像平面上,这个成像变换的过程称为摄像机成像模型。摄像机成像模型有多种,最常用的为小孔成像模型。由于实际的摄像机镜头会发生一定的畸变,使得空间点所成的像不在线性模型描述的位置而会发生一定的偏移,为了能准确的标定摄像机参数,标定的过程中要考虑非线性畸变因子。
一般来说,得到标定结果后要对其精度进行评估,然而很难得到准确的摄像机标定参数真值作为参考,其中基于图像坐标和世界坐标的绝对和相对误差的评价方法应用广泛,本文将对这些方法的原理进行探讨。
2.2摄像机标定坐标系建立
首先定义了四个坐标系,如图1所示,图像坐标系的坐标原点为O0,列与行由坐标轴u和v表示;成像平面坐标系的原点是摄像机光轴与图像坐标系的交点0l,x、y 轴分别与u、v 轴平行;在摄像机坐标系中,坐标原点0c即为在摄像机的光心,Xc、Yc轴与x、y 轴平行,与图像平面垂直是摄像机光轴作为Zc轴,0c0l为摄像机焦距f;世界坐标系是假想的参考坐标系,可固定于场景中某物体上,用于描述摄像机的位置,由Xw,Yw,Zw轴组成。
图(1)
2.3摄像机外部参数构成
主动视觉传感器从在笛卡尔直角坐标系中的运动表现为相应的旋转矩阵和平移矩阵,故摄像机外部参数表现为旋转矩阵R和平移矩阵T,则摄像机坐标系与世界坐标系的转化关系可以表示成:
上式中(Xc,Yc,Zc)表示空间点在摄像机坐标系下的坐标,(Xw,Yw,Zw)表示空间点在世界坐标系下的坐标。根据靶标点在像空间坐标系和物方空间坐标系中的坐标,通过分解旋转矩阵线性计算像空间坐标系与物方空间坐标之间的转换参数,即外方位元素(摄站参数)[6]。
2.4各摄像机相对位置确定
三目摄像机拥有三个视觉传感器,而三个传感器之间的相对位置可通过已获得的外部参数进行确定。将三个摄像机坐标系设置为,Oci xci yci zci(i=1,2,3),由2.3中所介绍的内容可知,这三个摄像机坐标系与世界坐标系的关系为:
i=(1,2,3)
由此我们可以得到任意两个摄像机i,j的坐标系转换关系:
其中: = = i,j=1,2,3
三、摄像机标定实验过程及结果
3.1实验系统介绍
实验中被用来标定的是一个多摄像机系统,摄像机标定有关的基本参数、系统组成和开发环境如下:
(1)硬件环境
标定板、三目摄像机和图像采集卡等。
(2)软件环境
OpenCV开源视觉库,它仅由一系列C函数和少量C++类构成,为Python、MATLAB等语言提供了接口,在图像处理和计算机视觉方面实现了很多通用算法。
3.2实验过程
本系统以棋盘格模板作为标定模板。采用激光打印机打印棋盘格黑白方块间隔纸,方块边长为3cm,共6行9列,将打印纸固定在一块平板上,作为标定模板,如图(2)。安装三目摄像机系统,调节固定好个摄像机位置,如图(3)。手持标定板在三目摄像机前方各个位置拍摄5组共15张各姿态的照片,利用Canny算子进行像点灰度中心提取、同名像点匹配并解算出三个摄像机在标定板坐标系中的外部参数值。
3.3标定结果
摄像机1:
R= T=
摄像机2:
R= T=
摄像机3:
R= T=
四、总结
随着计算机技术的高速发展,计算机视觉成为当今热门的研究课题,受到了广泛关注。本文就如何在机器视觉的理论基础上对三目视觉系统进行标定进行了研究,讨论了计算机视觉理论知识,分析摄像机标定原理以及标定坐标系的建立。同时通过计算机视觉知识的分析讨论了基于三目视觉系统的摄像机标定技术,完成了三目视觉系统的外部参数标定实验。三目摄像机测量系统外部参数的标定能够解决测量作业现场、测量控制场建立难的问题,为快速地建立简单实用的控制场提供了方案,有一定的实用价值。
参考文献
[1] 荆丽秋.双目视觉系统标定与匹配的研究与实现[D].哈尔滨工程大学,2009.DOI:10.7666/d.y1489086.
[2] 马颂德.计算机视觉―计算理论与算法基础[M].北京:科学出版社,1998.
[3] 王荣一.摄像机标定及关键技术研究[D].哈尔滨理工大学,2011.DOI:10.7666/d.y2012483.
[4] Clarke T A,Fryer J G.The development of camera calibration methods andmodels.Photogrammetric Record,1998,16(91):51-66
[5] Brown D C.Decentering distortion of lenses.Photogrammetric Engineering,1 966,32(3):444-462.
[6] 范亚兵,黄桂平,高宝华等.三目立体工业摄影测量系统外部参数的快速标定[J].测绘工程,2012,21(5):48-52.DOI:10.3969/j.issn.1006-7949 .2012.05.013
计算机视觉的原理范文5
关键词 陶瓷设计,计算机视觉、触觉设计
1前 言
历经数十年发展,CAD/CAM技术已取得了巨大成功,并迎来了数字化设计、数字化制造的时代。NURBS曲线曲面(非均匀有理B样条)以其强大的形状表示能力和配套的计算、编辑算法,已成为事实上的产品表示标准。细分曲面、隐式曲面是近年曲面造型研究的热点,它们突破了NURBS在拓扑结构上的局限性,更容易表达某些复杂的形状。
在陶瓷设计领域,经常需要设计人体、动物等自然雕塑形体,现有的CAD系统可采用NURBS曲面、细分曲面、隐式曲面等来描述这些复杂对象[1],但如何能快速、精确地设计出来,目前尚无有效的数字化工具。人们认识、改变外在事物时,主要利用视觉与触觉的感官功能,通过手眼协调来设计出新的事物,设计师在设计新的对象时,也可如此操作。
近些年出现了一些价格较为便宜的触觉式设计系统,如FreeForm系统,它抽取了大型虚拟现实系统的单一触觉功能,可提供真实感的数字雕塑工具。但一般设计人员使用后的效果并不理想,虽可以在局部修修补补,但缺乏对整体形态的把握[2]。
本文提出了一套视觉与触觉相结合的数字设计系统,以数码相机和力感触觉系统为工具,快速实现复杂形体的数字建模。首先利用数码相机拍照,摄取参考对象的图像,通过一个专门设计的摄影测量与计算机视觉集成系统重构出参考对象的三维数字模型;然后将此模型输入到触觉设计系统,经局部的修正,得到新的设计模型。以下详述系统组成及原理,并给出设计实例予以验证。
2造型设计系统的组成
本文所提出的系统主要分为两个模块:视觉子系统与触觉子系统。其中触觉子系统是购置的,视觉子系统是独立开发的[3]。相机采用奥林巴斯CL5050,拍摄的照片经视觉反求系统处理后,得到VRML格式的三维模型,然后输入FreeForm触觉设计系统,进行再设计,最终输出改型设计后的数字模型。图1所示是视觉系统实物,图2是触觉系统的实物照片。
2.1 视觉系统[4]
本文提出的系统中,视觉系统为自主开发的,先讲述相关的主要原理。
本文采用的视觉系统结合了摄影测量法的高精度与计算机视觉法的灵活性。近年来由图片生成3D模型是一个热门的计算机视觉研究领域,并相应提出了诸多的研究方法,其核心问题包括:相机标定、对应点匹配及3D重构等;针对每个问题均有大量的研究算法,特别是相机标定技术几乎成为一个关键环节。
类似于测量系统控制网的概念,我们设计了一套控制特征点,相机直接根据控制特征点进行标定,可得到精度较高的相机内外参数。图3所示是控制点分布的实物图。
我们对控制点分布采取了特殊设计,使任意角度下拍照,均有10个(通常要求至少6个)以上特征点被摄取。对特征点,采用了高精度的专业摄影测量系统Aicon加以标定,其空间坐标保存于一个数据文件中,以备相机标定时采用。
有了高精度的相机参数,就可以利用成熟的计算机视觉方法重构3D模型。我们采用了遮挡轮廓法[1]及空间剥离法[2]这两种对环境要求较低、算法较为稳定的方法,处理标定过的图像,得到三维模型主要形态,可作为触觉设计的基础。
2.2 触觉系统
触觉子系统采用FreeForm触觉式虚拟设计系统,通常也亦称为3D Touch系统,采用了力回馈技术,手握触觉笔在空间旋转移动,屏幕里相应的雕刻刀便随之移动;当雕刻刀接触到模型时,会有力回馈到握笔的手上,让使用者感受到接触时的力量。在雕刻时可设定模型的软硬度,进而调整雕刻所需的力。常规的实物雕刻操作,在系统内均有对应的虚拟工具,无论是雕刻效果,还是虚拟雕刻过程中的感受,与实际雕刻几乎一样,提供了十分逼真的雕刻环境。
3陶瓷狗的造型设计
在陶瓷设计中,经常需要参考某种实物样品。本实验以图1中的玩具狗作为参考对象,借助视觉、触觉集成系统进行了两次造型、建模试验。视觉系统从不同角度摄取了10幅图片,由这10幅图片生成一个三维模型(见图4)。整个建模过程仅需十几分钟,方便快捷。输出的模型包含了参考对象的主要形态,稍加修整,即可得到新的改型设计。
以视觉系统的输出为骨架,在FreeForm系统中进行细部的修整与再设计,并可添加修饰色彩,得到新的设计结果,见图5。
在试验中,如果仅依靠触觉设计系统,即使熟练的操作人员,要设计出比例协调、结构合理的模型,也需要花费一天或数天时间。视觉系统的输入极大地简化了主体形态的构造,使不太熟练的设计人员也能利用触觉系统,很快设计出新的作品。
4总 结
本文提出了视觉、触觉相结合的方法,利用计算机视觉系统帮助设计人员观察、感知设计对象,并把结果以数字形式保存起来;触觉系统直接利用已有的观察结果,通过手眼协调完成最终设计。这种混合系统弥补了非专业人员所缺乏的空间形体洞察力及操纵力,使他们不用经过长期的专业训练,也可快速地设计出新的作品。本文给出的实例已验证了这一观点。
本文揭示了虚拟雕刻过程所忽略的视觉思维环节,并设计出计算机视觉系统来加以弥补,取得了良好的结果,这套视、触觉结合的设计系统可用于陶瓷产品的设计制造,可大幅度提高设计效率和设计质量。
参考文献
1 Potemesil M.Generating octree model of 3D objects from their silhouetttes in a sequence of
images[J].Computer Vision&Graphics Image Processing,1987,40(1):1~29
2 K.Kutulakos and S.Seitz. A theory of shape by space carving[J]. International Journal of Computer
Vision,2000, 38(3):199~218
计算机视觉的原理范文6
关键词:双目计算机视觉 深度信息 自适应 光照变化 视频监控
1、引 言
面对日益复杂的社会和政治环境,国家安全、社会安全、个人人生安全和财产安全等都面临着不同程度的威胁,都需要各种安全保护措施,在众多场所建立切实有效的安保措施,成为一个迫切的课题。本文提出了一种基于双目计算机视觉的自适应识别算法,将该算法应用于现有的监控系统,并赋予监控终端智能性,不仅使其脱离人而具有独立智能、自主判断的能力,而且使得视频监控系统在安防方面的作用大大提高。
在现有的背景建模方法中,大多对于背景象素点的亮度值,例如最小亮度值、最大亮度值和最大亮度差值[ 1 ] ,或是对颜色信息进行建模[ 2 ] 。对于背景的更新,一般使用自适应滤波器对像素的统计特性进行递归更新,为了考虑到噪声的影响,文献[ 3 ]提出了Kalman滤波器的方法,该文认为系统的最优信息可通过估计获得。考虑到环境的动态缓慢改变,文献[ 4 ]利用统计模型给背景建模,即由一个时域滤波器保留着一个序列均值和一个标准偏差,并通过滤波过程统计值随时间改变来反映环境的动态特性。另外有一些方法解决了光照渐变等影响[ 5~7 ] ,但计算较复杂。
2、双目计算机视觉深度算法
基于实际应用考虑,摄像头的数量关系着成本和计算量,所以选择支持双摄像头(双目视觉)的算法是最合适的。在支持双目视觉的算法中,Princeton NEC research institute 基于最大流算法(maximum2flow)的计算机视觉算法( Stereo2MF)在深度效果平滑性上做得较好[ 8, 9 ] ,适用于监控区域深度计算的应用背景。但原有算法所需的计算量和计算过程中的暂存数据量是较大的,虽然支持计算量的削减,但只是机械地在一块区域中选择中心点来进行计算,这样计算的结果会因选择的机械性,而出现大量的“伪点”,这些伪点错误地表现了该区域的平均深度信息。本文采用统计平均值选取计算点,通过距离因子的Gauss分布将块内其他点的值融合计算,从而使得计算出的值较准确的代表了这一块内的大致深度分布。
m, n分别是图像的长和宽所包含的像素点个数,M、N 表示像素点的横纵坐标, .d 是块内深度统计平均值, dM, N为计算点的深度值, q为距离因子, dB是计算所得的块深度代表值。图1为改进后双目视觉深度算法与原算法识别效果比较。由图1可以明显看出,修改后的算法效果在细节表现、平滑性、伪点减少上均有明显改善,而且深度计算精确度能够完全满足视频
图1 改进后双目视觉深度算法与原算法识别效果比较Fig. 1Effect comparison after algorithm modification
度计算精确度能够完全满足视频监控应用的需要。
3、自适应识别算法
对于一个固定的场景,场景各像素点的深度值是符合一个随机概率分布。以某一均值为基线,在其附近做不超过某一偏差的随机振荡,这种情况下的场景称之为背景。而场景环境往往是动态变化的,如环境自然光的缓变,灯光的突然熄灭或点亮,以及运动对象的出现、运动和消失等。如果能识别出场景中的动态变化,就能自适应的更新背景值,将光照的改变融合到背景值中。本文采取了用统计模型的方式给每个像素点建模,而以像素点变化的分布情况来确定光照突变引起的深度突变,并结合深度计算本身特性,解决光照缓变突变引起的误判问题,以及判别场景中对象的主次性。
3. 1 背景象素点的深度值建模
由于双目计算机视觉算法得到的深度值,已经是块融合的,可以根据精度要求,来加大块面积, 减少数据量。本文获得的数据量只有原像素点的( k, l分别是块的长和宽所包含的像素点个数) 。以统计的方法给每个像素点的深度值建模, 设为第u帧图像的某个像素点的深度值, 其中u代表第u帧图像, i, j分别代表像素点的横坐标和纵坐标。由一个时间滤波器来保持该像素点深度值的序列均值和时间偏差
其中,α是一个可调增益参数, 其与采样频率有关。通过滤波过程,来得到每个像素点的深度值基于时间的统计特性,由于这些统计特性反映了环境的动态特性,据此可以了解到是环境的光照发生了突变,还是有运动对象的运动。
3. 2 背景更新与场景识别
通过上述滤波过程,就可以将光照缓变融入到背景中去,实现背景的自适应更新。而对于光照突变,此时几乎所有的象素点的亮度值会同时增大或减小,但根据最大流算法的特性,同方向的变化对流量差不会引起太大变化, 而对深度计算结果只会引起较小的同方向变化。这种全局的等量变化, 可以认为是光照突变引起的。
其中, a、b和c是3个可调节系数,他们的取值可依据场景的情况及检测光照突变的速度与误差来进行选取。s, t分别是深度图像的长和宽所包含的像素点个数。Q是符合式( 9)的像素点个数。一旦检测到环境光照发生了突变, 就把背景点像素的深度序列均值,全部以当前帧像素点的深度值的测量
值代替,而j以0取代,从而实现背景的及时更新。
如果式(10)式(12)中任意一个不成立的话,则认为像素块深度值的变化并非由光照突变引起, 而是场景中有运动对象出现。
4、算法分析与实验
4. 1 算法复杂度
对于光照突变检测,若有突变的话,则会立即检测出来,当有运动对象出现时, 并且式( 10)式( 12)都接近满足时,处理会较慢,因为需要处理突变检测和运动对象两个过程。当b取25% s ×t时的处理速度与变化点比例关系如图2所示。
相对于一般的光强、灰度的识别检测算法,本算法的优势在于不仅可以利用深度特性更容易地检测到光照的渐变与突变, 而且可以判断出现的多个运动对象的主次性。
4. 2 算法误检率
由于光照直接对于像素点的光强、灰度等产生影响,所以深度算法的噪声容限更大,这样可降低了误检率,多组实验后得到的误检率对比图如图3所示。但是由于深度算法本身对于反光或者阴暗面会产生伪点,所以,某些时候由于光照突变中光源的位置变化而会误检为运动对象,为此算法还需进一步改进能判别伪点的出现, 除去它在光照突变检测中的影响。另外,公式中可调系数a, b, c的选取也会对不同场景产生影响。
笔者在实验室环境下做了不同光照角度、不同环境光强度、不同运动物体的多组实验,发现在反光面或是阴暗面较多的情况下,光照突变检测不是很灵敏,而且会出错,但是在增加系数a, c的值后, 误检率有所降低(如图3所示) 。
5、基于算法的监控系统
我们利用该算法实现了视频监控原型系统。计算机视觉算法对于摄像头的同步曝光要求很高,所以本系统终端用一块单独的MCU (micro control unit)控制同步曝光。核心算法用DSP处理。系统结构如图4所示。实际系统原型图如图5所示。