纳米技术的知识范例6篇

前言:中文期刊网精心挑选了纳米技术的知识范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

纳米技术的知识

纳米技术的知识范文1

关键词 甲氧基喜树碱;聚乳酸;纳米粒子;体外释放

中图分类号 TQ463 文献标识码 A 文章编号 1007-5739(2015)08-0173-01

Abstract The nanoparticles contained MeOCPT prepared with the method emulsion and solvent evaporation.The MeOCPT nanoparticles had a circular structure,with a smooth surface,uniform size,and its particle size distributed between 100 nm and 300 nm.The drug-loading rate and entrapment efficiency of MeOCPT nanoparticles were(3.10±1.19)% and(83.57±3.45)%.MeOCPT nanoparticles released slowly and lastingly in vitro whose cumulative release rate was nearly 60%,which could release the drugs slowly and reduce the toxicity of drugs.

Key words Methoxycamptothecin;polylactic acid;nanoparticles;in vitro drug release

10-甲氧基喜树碱(10-methoxycamptothecin,MeOCPT),是从喜树的果实中分离得到的喜树碱天然衍生物之一[1],具有明显的抗肿瘤活性[2],但是由于MeOCPT的毒性较大,且难溶于水和一般的有机溶剂,限制了其临床应用[3]。该研究制备了一种基于聚乳酸包裹MeOCPT的纳米粒子[4],致使其有效发挥MeOCPT的抗癌活性,减少其毒副作用,增加生物利用度[5]。

1 材料与方法

1.1 供试仪器与药剂

10-甲氧基喜树碱(由实验室自主合成,纯度99%),聚乙烯醇(美国Sigma公司),聚乳酸(山东省医疗器械研究所),二甲基亚砜、乙腈、甲醇为色谱纯,其他试剂为分析纯。高效液相色谱系统(Waters,USA);Thermo C18色谱柱(250 mm×4.6 mm×5 μm);超声波细胞粉碎机(Scientz ⅡD,宁波新芝生物科技股份有限公司);透射电子显微镜(H-7650,日本日立公司);高速低温离心机(J-25,美国Beckman Coulter公司)。

1.2 MeOCPT纳米粒子的制备

准确称取PLA 250 mg和MeOCPT 5 mg完全溶解于25 mL氯仿中。将溶液倾注入40 mL 5% PVA/1%六偏磷酸钠混合溶液中,超声乳化1 min(超声功率72 W),得到泡沫均匀细腻的乳白色液体,将其倾注入50 mL 2%异丙醇溶液中,待氯仿挥发完全后,将获得溶液离心、水洗3次(离心转速1 500 r/min),弃去上清液,去离子水将沉淀溶解后冻干,得到MeOCPT纳米粒子。

1.3 HPLC法测定MeOCPT纳米粒子的包封率和载药量

1.3.1 HPLC色谱条件。高效液相色谱系统(Waters,USA);Thermo C18色谱柱(250 mm×4.6 mm×5 μm);荧光检测器激发波长(Ex)380 nm,检测波长(Em)515 nm,进样体积20 μL;流动相A:乙腈/水(5/95,v/v);流动相B:乙腈;洗脱梯度为0~12 min(B:20%~60%)、12~15 min(B:60%~90%)、15~19 min(B:20%~90%)、19~25min(B:20%)。

1.3.2 MeOCPT甲醇标准曲线的配制。精确称取MeOCPT 10 mg,用10 mL DMSO溶解,得到1 mg/mL MeOCPT溶液,用甲醇稀释为5、10、20、40、80、160 ng/mL标准溶液。

1.3.3 样品配制。称取5 mg MeOCPT纳米粒子溶解于DMSO,定容至10 mL,稀释100倍备用。

1.3.4 计算包封率与载药量。计算公式如下:

包封率(%)=(CVW3 /W1 W2)×100

载药量(%)=(CV/W1)×100

式中,C―样品溶液浓度(ng/mL),V―样品溶液体积(mL),W1―纳米粒子质量(mg),W2―投药量(mg),W3―纳米粒子总质量(mg)。

1.4 MeOCPT纳米粒子的体外释放特性研究

煮沸处理过的透析袋中加入1 mL MeOCPT纳米液,扎紧,投入25 mL PBS释放介质中,37 ℃体外培养,定时取样2 mL,并补充等体积释放介质。高效液相色谱仪检测各时间点药物质量浓度,再计算累计释放率。体外释放累计释放率计算公式如下:

2 结果与分析

2.1 透射电子显微镜观察纳米粒子

通过透射电子显微镜观察(图1),载MeOCPT纳米粒子表面光滑,呈圆球状结构,粒径在200 nm左右。与未装载药物的纳米粒子相比,其形态稳定,无明显的变化,无明显的MeOCPT残留。

2.2 MeOCPT纳米粒子粒度的测定

采用静态光散射法测定了空白纳米粒子和载MeOCPT纳米粒子的粒度分别为(216.8±14.9)nm和(227.1±41.9)nm。与空白纳米粒子相比,载MeOCPT纳米粒子的粒径大小变化不明显,但两者粒度的分布范围均在100~300 nm之间,适用于静脉注射。

2.3 HPLC法测定MeOCPT纳米粒子的包封率和载药量

在给定色谱条件下,MeOCPT峰型良好,其保留时间为10.52 min。以MeOCPT系列标准溶液的浓度为横坐标(X),每个浓度对应的荧光检测峰面积为纵坐标(Y)绘制检测标准曲线,得到的线性方程为Y=1 160.7X+1.501 5(r2=0.999 5),根据标准曲线计算出MeOCPT浓度,最终通过公式求得包封率和载药量分别为(83.57±3.45)%、(3.10±1.19)%。

2.4 MeOCPT纳米粒子全外释放特性

根据MeoCPT体外释放曲线可以看出(图2),MeOCPT纳米粒子与游离的MeOCPT累计释放率均在60%左右,纳米粒子的累计释放率明显偏低。这一试验结果充分表明这种载MeOCPT纳米粒子具有明显的降低毒性和持续释放的特性。

3 结论

该研究成功地制备MeOCPT纳米粒子缓释制剂,并且达到了预期的药物缓慢释放及降低毒性的结果。

4 参考文献

[1] LIU Zhen-fengWANG Guo-lin,DONG Meng-jie,et al.Simple automated radiosynthesis of 10-[11C]methoxy-20(S)-camptothecin and biodistri-bution in normal mice[J].Appl Radiat Isot,2012,70(10):2516-2524.

[2] JOSEPH F P,LEONARD B S.The camptothecins[J].New drug classes,2003(361):2235-2242.

[3] 蔡俊超,冯大为,殷孟光,等.dl-10-羟基喜树碱及dl-10-甲氧基喜树碱的全合成[J].化学学报,1981,39(2):171-176.

纳米技术的知识范文2

既然,这一项新兴技术让世界各国站在同一起跑线上,我们完全可以利用我国扎实的基础教育在中学阶段开发和实践纳米课程,争取能培养更多学生对于科学的兴趣,提高学生的科学素养,并为高校输送一些愿意在科学道路上继续埋头苦干的学子.

本文笔者主要想和大家一起讨论在高中阶段开展纳米课程的一点思考,选择高中生这个群体,是因为他们已经在初中阶段学过了物理、生物、化学的一些基础知识,这样对于接受纳米知识做好了一些科学准备.幸运的是,笔者所在的学校十分重视实验室的建设,装备了纳米实验室,也为笔者进一步开发课程资源提供了近水楼台的条件.

我们可以在高中阶段对学生开发哪些纳米课程资源呢?能在中学装备纳米实验室的学校不多,高校的课程对于高中生又太难,在实践中我们只能摸着石头过河,我们相信将来随着纳米技术的普及,会有更多的学校开设这样的课程,这里我们只能是抛砖引玉,提一些自己粗浅的想法.

1 了解纳米和纳米技术

1.1 让学生知道纳米究竟是什么东西?

纳米(nm)实际上是一种计量单位,从宏观的角度上看1米等于100万微米,而1微米等于1000纳米;从微观上看,纳米是描述原子、分子等尺寸及其距离,1纳米仅等于十亿分之一米,人的一根头发丝的直径相当于6万个纳米.纳米小得可爱,却威力无比,它可以对材料性质产生影响,并发生变化,使材料呈现出极强的活跃性.科学家们说,纳米这个“小东西”将给人类生活带来的震憾会比被视为迄今为止影响现代生活方式最为重要的计算机技术更深刻、更广泛、更持久.

1.2 让学生知道纳米技术应用广泛

在汽车行业,纳米技术的应用十分广阔.特别是纳米技术的集成,可以使这个传统产业产生新的亮点,拥有更清洁的能源、更好的安全性能,更强的马力等等.这些方面已经引起一些大公司的关注,预计在近期内可形成约10亿美元的市场.

在建材行业,纳米技术的全面应用,将使这个传统产业发生翻天覆地的一场革命,绿色家具、环保洁具、绿色装修、清洁能源等等,将彻底改变人类的生活.

在纺织行业,纳米技术的应用将给人类提供更加舒适的着装,提供更优良品质的功能纤维,甚至可以应用到国防技术上,从而引发纺织面料的又一次革命,提高我国纺织品的附加值和我国纺织业的整体实力水平,同时大大提高我国纤维产业在国际市场的竞争力,把我国从纺织大国变成真正的纺织强国.

在机械行业,纳米技术的应用,将解决该行业的一些难题,加速产品的升级换代,提升我国机械工业的水平,从而促进我国的加工制造业飞速发展,承担起世界加工厂的重任.

在改造传统工业部门的同时,纳米经济也在促进着新兴经济部门的不断发展和创新.下面让我们具体的来看一下纳米技术对新兴经济的作用.

在电子信息产业,纳米技术的应用将为电子信息产业的发展克服以强场效应、量子隧穿效应等为代表的物理限制,制造出基于量子效应的新型纳米器件和制备技术.这将是对信息产业和其它相关产业的一场深刻的革命.这些技术的突破将全面地改变人类的生存方式.正如美国《新技术周刊》指出,纳米技术在电子信息产业中的应用,将成为21世纪经济增长的一个主要发动机,其作用可使微电子学在20世纪后半叶对世界的影响相形见绌.

纳米技术将在生物医学、药学、人类健康等生命科学领域有重大应用.在纳米生物材料、微细加工、光学显示、生物信息和分子生物学等技术积累的基础上,发展生物芯片技术,形成新型生物分子识别的专家系统、临床疾病检测系统、药物筛选系统和生物工业活性监测系统等实用化技术,具有重要的社会与经济前景.

纳米技术在环保产业上的应用,将使处理“三废”的手段更有效率,使人类居住的环境得到很大程度的改善.我国为实现可持续发展战略,对新型纳米环境材料及技术也提出了新的迫切需求.

2 了解我们身边的纳米材料和纳米技术的应用

这样的例子举不胜举,完全可以让学生通过网络自己搜寻,然后再相互沟通和交流.

比如:日本的8 mm摄像机的生产,抗菌除臭冰箱、洗衣机、高性能彩打墨粉等,都是采用的纳米技术,如果在分散的纳米分子材料上经过特殊处理,再运用到纤维物体上,那么衣服就可以不粘油、不粘水,由于纳米分子非常非常小,它不会影响纤维物体的透气性和清洗效果.

又如:纳米技术用在医学上,专家们把磁性纳米复合高分子微粒用于细胞分离,或者把非常细小磁性纳米微粒,放入一种液体中,然后让病人喝下后,对人身体的病灶部位进行治疗,并且通过操纵,可使纳米微粒在人的身体病灶部位聚集进行有目标的治疗,在不破坏正常细胞的情况下,可以把癌细胞等分离出来,也可以制成靶向药物控释纳米微粒载体(俗称“生物导弹”),用于治疗脑栓塞等疾病,同时也可用纳米技术生产出纳米探针(微型机器人)深入体内治疗疾病或清理体内垃圾等.如果在火箭燃料中加入不到1%的纳米铝粉,就可将燃烧能力提高一倍,纳米技术如果应用在陶瓷上,可使陶瓷具有超塑性,大大增强了陶瓷的韧性,不怕摔,不怕碎,陶瓷坚固无比.另外,戴上涂有纳米涂料的眼镜,在寒冷的冬季,人们从室外进入室内,就能避免眼镜上蒙上一层水气.令科学家高兴的是,纳米钛与树脂化合后生成的多种全新涂料,具有多种同类产品无法相比的优越性,在海水中浸泡10年不损,并具有神奇的自我修复能力和自洁性,纳米钛还作为唯一对人植物神经、味觉没有任何影响的金属,其用途广泛.

3 利用扫描隧道显微镜TSTM看微观世界并制作简单的纳米材料

3.1 了解扫描隧道显微镜的原理,学会操作扫描隧道显微镜

扫描隧道显微镜Scanning Tunneling Microscope缩写为STM.它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率.此外,扫描隧道显微镜在低温下可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具.

STM使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广泛的应用前景,被国际科学界公认为20世纪80年代世界十大科技成就之一.

扫描隧道显微镜的工作原理简单得出乎意料.就如同一根唱针扫过一张唱片,一根探针慢慢地通过要被分析的材料(针尖极为尖锐,仅仅由一个原子组成).一个小小的电荷被放置在探针上,一股电流从探针流出,通过整个材料,到底层表面.当探针通过单个的原子,流过探针的电流量便有所不同,这些变化被记录下来.电流在流过一个原子的时候有涨有落,如此便极其细致地探出它的轮廓.在许多的流通后,通过绘出电流量的波动,人们可以得到组成一个网格结构的单个原子的美丽图片.

操作扫描隧道显微镜是个精细活儿,学生需要在教师指导下分步骤反复训练才能逐渐熟练起来.制作一个良好的针尖是实验成功的关键,而针尖的材料是铂金,为了让这个价格昂贵的实验耗材以后少损失,教师特别需要指导学生在实验初学好此基本功,这就如同学武功的人一定要练好马步一样.同时,学生还需要学会操作软件,记录数据和图像,因此学生需要具备一定的操作电脑的能力.

3.2 学会制作纳米材料

比如Fe纳米材料的制备方法可以分为两种:

(1)物理制备方法

具体又包含气相法、惰性气体蒸发、原位加压制备法、磁控溅射法与等离子体法等.

(2)化学制备方法

具体又包含水热法、溶胶-凝胶法、喷雾干燥法、微乳法等.

我们可以与学生用其中一两种方法尝试制作Fe纳米材料并[HJ1.73mm]研究其性质,这需要学生具备一定的物理、化学知识功底.

4 了解假纳米和纳米技术的风险

4.1 纳米打假

纳米技术并非高不可攀,但也决非人人都能“纳”一把,因此,我们要提前做好纳米技术的打假工作,为纳米技术的发展创造良好的空间.现在只要留心大城市的市场上,打着“纳米家用电器”、“纳米防辐射衣服”、“纳米防紫外线化妆品”、“纳米太阳伞”等新奇广告招牌随处可见,就如同“绿色食品”、“基因食品”、“数字电视”等一样,“前卫”商品堂而皇之地摆在商场的柜台上,纳米技术的用途相当广泛这点不错,但还没有到广泛地应用阶段,因此,一些企业借纳米造势,趁老百姓对纳米技术的内涵还不太清楚,或把一点点皮毛的加工谎称为纳米技术,甚至置纳米材料不会释放微波这一普通常识不顾,声称自己产品能释放保健微波来欺骗消费者.

学生既然在学校学习了相应的纳米知识,应该去更多地影响身边的人,帮助大家识别真假纳米,这其实也是学生学以致用的过程,在这过程中,学生会更多地查找资料,思考讨论,更进一步提高了科学研究的能力.

4.2 纳米技术的负面效应

北京大学化学与分子工程学院刘元方院士说,随着纳米科技的迅猛发展,各种性能优异的纳米材料已经从实验室走出来,成为触手可及的商品,但除了产品功能,这些新型材料对生态环境的影响远远没有被我们了解.

目前需要解决的问题是,原来没有毒性的化学物质到了纳米尺度后是否对环境安全带来新的风险.目前有关尺度、形貌对毒性的影响,纳米材料与其他物质相互作用,外界环境如温场、光场、pH值对暴露在环境中的纳米粒子可能带来的安全风险等方面的研究甚少,基本处于空白状态.因此,需要着手建立纳米尺度有毒化学物质的数据库,进一步明确划分纳米尺度有毒化学物质的范围,以利于重点防范这些物质在生产和应用过程中对环境安全造成的危害.

同时,在纳米改性升级产品中,对纳米材料存在引起环境安全风险的研究,也才刚刚引起人们的注意.其中最值得注意的是化工产品,如农药、化肥、杀虫剂,因为这些产品与农业关系密切.纳米材料改性后产品功能升级,提高了使用效率,但是无机纳米粒子和有机修饰的纳米粒子,以及纳米尺度的有机金属离子的络合物却直接暴露在空气、水和土壤中,它们给环境安全带来的潜在风险应引起高度重视.

纳米技术的知识范文3

1纳米医药发展前景分析

纳米医药是最近才出现的一个多学科交叉的领域。虽然目前已经进入市场的纳米医药产品不多,而且这一高风险高回报的领域还并没有充分确立,但是,利用纳米技术的药释系统、诊断方法和药物研发方法正在使药物的版图发生革命性变化,尤其是靶向特异性药释系统很有可能解决许多医学问题。尽管人们对纳米医药的预测是十分鼓舞人心的,但是纳米医药研发也面临着巨大的挑战,主要包括:①成本高。②在没有相关的安全指南出台前,很难得到公众的信任。③能得到的风险投资相对较少。④人们对纳米材料与活细胞之间关系(如生物相容性问题和纳米材料的毒性)了解较少。⑤大型制药公司不愿意向纳米医药投资。⑥生产缺少质量控制,重复性差等。⑦专利局(如美国专利与商标局)和药物审批部门(如FDA)管理措施混乱和滞后。⑧媒体对纳米材料尤其是纳米医药负面影响(尤其是环境、健康和安全性)的关注。为了在政策上适应并促进纳米医药的发展,各国政府也采取了各种措施,希望解决上述问题。各国专利局都在不断改进对纳米医药相关专利的审查,各国政府管理部门也正在制定纳米药物的相关安全指南,以便适应纳米医药产品的发展需求。下面将对美国纳米医药审查体系进行详细介绍和分析。

2纳米医药专利发展现状

在过去十年中纳米医药领域的研究文献和专利申请都迅速增长。欧洲专利局的一项调查显示,向欧洲专利局提交的纳米医药专利已经由1993年的220件上升到了2903年的2000件。根据欧洲专利局的统计结果,在纳米医药专利申请方面,美国一直处于全球领先的地位,从1993—2003年间,其专利申请约占全球总申请量的54%,随后依次是德国占12%,日本占5%,法国和英国均占3%。我国目前只有清华大学材料系研究的纳米人工骨在美国获得了专利。从全球纳米医药专利申请所涉及的领域来看,药释放系统专利最多,约占全球纳米医药专利申请总数的59%,接下来依次是体外诊断方法、成像技术和生物材料专利,分别占14%,13%,8%,药物、治疗和活性移植物方面的专利相对较少,各占3%左右。无论是研究人员、生意人还是专利从业者都意识到纳米医药专利的重要性,都在努力获得尽可能广泛的纳米高分子材料的专利保护。市场上的纳米医药产品相对缺乏也推动了纳米医药专利工作的发展。制药公司认为获得专利是证明自己实力、吸引风险投资的最佳途径。有一些公司认为如果他们不去抢先申请尽可能多的专利,就很可能会因为被别人抢先申请而使自己处于被动地位。同样,研究人员为了提高学术地位也感到申请专利的必要。大多数发明者发现在纳米医药专利出现的早期,PTO对纳米医药专利的管理是比较混乱的,但这正是对有价值的上游技术获得广泛专利保护的绝佳时期。在今后的几十年中,纳米医药将会不断的走向成熟并获得突破性的成果,专利将会给公司带来大量的实施许可费并成为公司交易和合并的杠杆。

3纳米药释系统专利的申请

3.1纳米药释系统专利开发的优势和方法

纳米医药对药释系统已经产生了重大影响,制药公司目前已经意识到药释系统的研究是他们研发过程中必不可少的一部分。根据来自《NanoMar-kets))的一份市场报告的测算,到2012年,纳米技术将使药释系统产生48亿美元的收入。该报告还指出,到2009年全球药释产品和服务市场的收入将超过670亿美元。另外一份来自《NanotechnologyLawBusiness))的市场报告也指出纳米技术能使药释系统市场的销售额从2005年的12.5亿美元增至2010生国堑堑苤查!!塑生塑!!鲞箜!!塑年的52.5亿美元,2015年会增至140亿美元。固体纳米微粒是尺度在1—1000nm的颗粒,能用于药释系统。由于它具有能将各种药物基团运送到身体不同位点,并延长药物作用的性质,因此在药释系统研究中具有重要作用。纳米颗粒的大小和表面性质决定了它在体内的活性。纳米颗粒的物理性质也决定了它在体内能够达到大颗粒所不能达到的地方。另外,粒子大小也影响药物在体内各部位的分布。粒子变小,它的表面积就会呈指数增加,溶解速率和饱和度都大大增加,从而改变在体内的性质。在某些情况下,纳米颗粒药物还能够帮助降低血浆药物浓度峰值,也能防止血浆药物浓度降低至有效治疗浓度之下。目前美国的专利法允许对老药的新剂型申请专利,纳米技术就能够为已经存在的化合物提供新的剂型。这些新剂型能够获得FDA和PTO的批准。只要老药的纳米剂型能够满足专利性的要求,就能申请专利。在美国,创新性的药释系统本身也可以申请专利。创新性的药释系统能够帮助制药公司对已经专利过期或即将过期的化合物设计出新剂型。这种策略能够拖延或打击非专利药对过期专利药的冲击,尤其是当改进剂型的药物优于原专利药时。实际上,这种策略也延长了原专利药物的生命周期,通常也被称为“常绿化”策略。

3.2纳米药释系统专利的审批和申请

3.2.1纳米药释系统新药的审批应当指出的是,把已有药物改造为纳米药物通常会导致产生创新性的新化学实体(NCE),因为纳米药物与原药物的药代动力学数据是完全不同,换句话说,就是不具有生物等效性,因此纳米制药公司并不能通过缩短的新药申请(ANDA)来通过FDA的审批。

3.2.2纳米药释系统专利的专利性审查标准我们现在还很难判断,纳米颗粒专利是否也将会面临电子商务和生物技术曾经面临的专利障碍。电子商务与生物技术专利最初是被认为不具有专利性的。无论如何,基于纳米颗粒的药物剂型和其他纳米发明一样,只要满足专利性的要求就可以申请专利。在美国,大小本身并不是专利性的标准,某个装置或方法如果只在大小上发生了改变,并不能使其具有专利性。事实上,法条中已经明确规定:如果仅对某种物质、装置的大小加以限定并不足以使其与现有技术相区别而具有专利性。美国联邦巡回法院(CAFC)也认为:如果权利要求中描述的发明仅大小上与现有技术相区别,而在作用上与现有技术没区别,那么,这项发明就不具有新颖性。也就是说,具有纳米级量纲的物质也必须具有新的功能才具有专利性。此外,产品发明者还必须能够证明他们的发明对于本领域普通技术人员来说,不是显而易见的。

3.2.3纳米药释系统专利申请中的困难——证明具有非显而易见性嵋。对已有药物的新剂型申请专利,最大的困难就是证明该项发明的非显而易见性。FrO常认为,新的药物剂型不过是药物的优化,因此,并不具有可专利性。如果剂型中改变的只不过是成分,并且新增的成分曾经被用在其他的剂型中,产生能够预期的作用,这种观点当然是很有道理的。专利申请者要想说服审查员所申请的剂型不具有显而易见性,就必须证明该剂型具有意想不到的优点或改进。例如,降低毒性、增加生物利用度或改变生物利用度、改变药物稳定性、溶解度或活性。这就需要在专利申请中递交相关的试验数据,其中还包括与申请的剂型最接近的现有技术中的剂型的试验数据。这样,专利申请者就能够证明自己的发明具有创新性。由于纳米微粒药物的现有技术还不是很成熟,纳米微粒的性质也常常是很难预测的,因此证明纳米药物与传统药物相比具有意想不到的优点,从而获得专利授权是相对容易的。然而,随着纳米药物现有技术的不断增加,这种专利申请的趋势终将会改变,也将会有越来越多的有关纳米技术的专利、法律问题显现出来。

4美国纳米医药专利体系存在的问题

4.1纳米技术的定义不准确纳米技术面临的一个问题是专家们对纳米技术的定义见仁见智。纳米技术是个概括性用语,它被用于定义产品、过程和特征,并覆盖了物理、化学和生命科学。美国国家纳米技术计划(NNI)中采用的纳米技术的定义是被引用最广泛的一种定义:“1~100nm尺寸问的物体,其中能有重大应用的独特现象的了解与操纵。”然而,一些专家反对给纳米技术限定如此严格的定义,他们认为应该强调数值范围的连续性而不是纳米到微米的界限。很显然,NNI的定义排除许多微米级的方法和材料,而许多纳米科学家都把微米量纲也纳入了纳米技术的范畴。实际上,许多政府机构都面临如何选用纳米技术的定义的问题。例如,FDA、PTO都采用了小于100nm的定义,也就是NNI的定义。这种定义就带来了许多麻烦,这不仅给纳米专利统计工作带来了困难,同时也给正确评估纳米技术的科学、法律、环生垦堑垫盘查!!塑生笙!!鲞篁!!塑境、管理和伦理学问题带来了麻烦。由于纳米技术需要许多技术的集合,每项技术又都有不同的特征和应用。小于100nm的大小可能对于纳米成像公司来说非常重要,因为量子效应直接依赖于粒子的大小。但是,这种大小的界限对于制药公司可能并不十分重要,因为从成分、剂型和有效性的角度来说,大于100nm的尺度也许才能获得某些理想的性质(如提高生物利用度、降低毒性、减少剂量、增强溶解度等)。有些专家指出,纳米技术并不是什么新的概念,因为许多生物分子都与纳米物质具有相似的大小。例如,肽分子的大小与量子相当(<10nm),一些病毒与用于药释系统的纳米微粒的大小类似(<100nrfl)。因此,大多数分子药物和生物技术都可以纳入到纳米技术的分类中。因此,一些研究者建议纳米技术的定义中对纳米微粒的定义不应仅仅局限于大小本身。欧洲科学基金会对医药领域的纳米技术作出了如下的定义:“采用分子手段和知识用于诊断、预防和治疗疾病,改善人们健康的科学和技术。”这种定义没有局限于分子的大小,而是强调了对纳米材料的可控性操作是否能够带来医疗效果的改进。对于这个问题,也有学者提出,在纳米医药领域,不应该采用NNI的有关大小的限制,而应该把纳米技术应被称为“微型技术”更加合适,这样才能把纳米技术和显微技术都包括在内。

4.2纳米技术的定义不准确导致专利分类产生偏差2004年11月,PTO公布了一个纳米技术的初步分类(被称为第977类),并且还正在不断补充977类下面的小类。2006年,12月,PTO把大约4500项专利申请纳入了第977类中。然而,这个数字实际上只是很粗略的估算,低于实际的纳米技术专利申请数量。这主要是因为FrO借用了NNI的非常狭窄的定义用于专利分类,就导致了专利分类系统产生偏差,尤其是对纳米医药和生物纳米技术有关的发明进行分类时,偏差就更加明显。另外,这种分类标准既不能很好地体现纳米医药发明特有的特征,也很难体现出纳米医药所包含的跨学科特征。PTO利用这种具有明显偏离的分类系统筛选出的几千项专利并没有达到当初建立977分类的目的,而当初的目的是:统计纳米技术领域的专利申请数量和授权数量、方便专利审查员和专利人进行纳米技术专利的检索。

4.3在纳米医药领域的现有技术检索中存在的问题和挑战

4.3.1审查员的检索资源和水平有限在纳米医药领域的检索中也存在着各种各样的问题。例如,一些专家认为PTO缺乏有效检索纳米医药现有技术的自动检索工具。另外,他们的数据库可能存在数据遗漏的问题。虽然,纳米医药专利的申请已经有显著增加,但是大多数的现有技术都被发表在杂志或书中。网站中的信息和公开的专利文献只是作为辅助的信息。而很多非专利文献,专利审查员是很难获得的,一方面是由于PTO并没有订购相关的商业数据库,另外一方面有些审查员在检索方面还不是非常专业。结果,专利审查员很可能会漏掉一些现有技术。这个问题可能并不仅仅是纳米医药专利审查中存在的问题,在其他技术领域的专利审查中也很常见。

4.3.2检索词难以确定由于目前广泛使用的纳米技术的定义常常相互重叠,就使对纳米技术相关专利的检索比其他技术领域的检索更加复杂。不同的检索词可能指的是相同的纳米材料和结构。例如,“nanofibers”、“fibrils”和“nanotubes”都可以代表多层碳纳米管,“singleshellnanocylinders”,“bucky—tubes”,“nanowires”and“nanotubes”都可以代表单层碳纳米管,因此要想精确作出纳米技术的专利地图是非常困难的。

4.3.3有些文献存在“假象”事实上,有些发明者在专利或出版物常常会把自己的发明撰写得十分隐蔽,以使自己潜在的竞争对手不会注意到他们的技术。另一方面,有一些具有商业头脑的发明者或发明的受让人,会把带有纳米的词汇加纳入到他们的专利或出版物中,以便获得较强的市场竞争力。因此,要在现有技术中找到真正的纳米技术,不但需要在检索专利和商业数据库时巧妙地选择关键词和专利分类代码,还要经过纳米技术专家的筛选,才能检索到最全面、最可靠的现有技术。十几年来,许多国家的专利局都面临着接受大量纳米医药相关专利申请的问题,PTO也不例外。随着纳米医药专利申请量的增多,其授权量也在不断猛增。但是由于PTO没能很好地解决审查工作质量低、专利授权量失控性猛涨以及职业道德降低的问题,将会对越来越紧迫的纳米医药的专利问题带来严重影响。归纳起来,PTO目前正面临的问题有:①审查员由于所能接触到的现有技术和检索水平有限,不能保证对每项纳米医药专利申请进行充分审查,做一】556一生垦堑堑苤查!!塑生笪!!鲞箜!!塑出授权决策依据的信息也往往有限。②审查员缺乏。③资金缺乏。④审查员的薪水只与审查数量挂钩,而不考虑审查质量,所以,审查质量低。⑤除了聘请过少数专家开展有关纳米医药讲座外,几乎没有聘请过外部的法律和技术专家。⑥Fro并不要求其审查员具有很高的学历。⑦没有专门针对纳米医药专利审查的培训教程和审查指南。

纳米技术的知识范文4

纳米技术被誉为21世纪的科学,现已成为世界各国研究的热点领域。它的迅猛发展将在世界范围内引发一场包括生命科学、信息技术、生态环境技术、能源技术在内的几乎覆盖所有工业领域的大革命。

从纳米技术的发展来看,激光干涉纳米光刻技术、纳米加工、纳米测量技术,以及纳米制造等,都有着不可忽视的地位和作用。原子力显微镜(atomic force microscope,简称AFM)是纳米技术研究中最常用也是最基础的一个仪器。它是利用微悬臂感受和放大悬臂上探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率[1]。

随着人们对纳米技术的深入研究以及对AFM的不断开发,使原子力显微镜不仅仅具有检测的功能,还可以实现对样品的“推”、“拉”、“刻划”、“切割”、“搬运”等功能,增大了AFM的使用范围。其优势在于操作过程不受环境影响,既可以在大气环境下工作,也可以在液相下工作。这对人们在生物医学等方面的研究工作,带来了便利。

对于纳米技术的基础教学而言, AFM是学生们感知纳米量级,实现简单操作的最直接的方式之一。因此,本论文针对AFM的特点及纳米技术相关教学的知识点,将AFM工作原理及实际扫描、操作后得到的图片引入到课堂中进行辅助教学,取得了一定的效果,提升了学生们的学习兴趣。

一、AFM原理

AFM是将一个对微弱力极敏感的微悬臂的一端固定住,另一端装有一微小的纳米级针尖。当针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息[2]。也就是说,微悬臂的形变是对样品-针尖相互作用的直接反映。

AFM研究对象可以是有机固体、聚合物以及生物大分子等,其可以在空气或者液体下对样品直接进行成像或操作,分辨率很高。因此,AFM被广泛应用于纳米测量及纳米加工等技术中。

二、AFM教学实例

针对纳米测量所涉及的两个重要领域:纳米长度测量和纳米级的表面轮廓测量。列举了AFM扫描的利用多光束激光干涉光刻制备单晶硅形貌图。

观测者不但可以直接看到被测样品的表面形貌,还可以通过AFM二维图像形成相应的三维像,从而获得样品表面结构的深度,大小以及长度等重要信息参数,如图2所示。

针对纳米操作技术所涉及到的对样品的“推”、“拉”及“刻划”等操作,列举了相关原理图及AFM的扫描图像。

通过AFM对原子的操作及样品形貌的扫描,可以让学生更为直观地了解AFM以及纳米技术的相关概念及原理。同时,清晰的扫描图像可以进一步促进学生对纳米技术相关教学课程内容的理解和认识。

纳米技术的知识范文5

关键词:纳米;集成电路;新工艺;发展趋势

中图分类号:TN47 文献标识码:A 文章编号:1674-7712 (2013) 20-0000-01

自从摩尔提出了集成电路的发展预测,他认为单位面积上的晶体管在24个月都将在数量上翻番,经过微纳电子技术的不断发展,使得摩尔的预测逐渐实现,而且随着微纳电子产业的发展,使得摩尔的预测正在受到非常强大的挑战,因为随着新的科学技术的不断发展,新材料和新结构的不断创新促使当前的发展逐渐显示出其有效性,由于产业的不断发展和思索,使得人们逐渐从晶体管的使用上认识到其体积还能缩小,所以根据当前的晶体管理论,当特征距离小到10纳米的时候会不可避免的发生电子漂移,此时会无法控制电子的进出,从而导致了晶体管的实效。随着新材料和新工艺的崛起使得在设计和制造出集成电路的时候,会逐渐的淡化摩尔定律,那么则会对市场的冲击带来深远的影响,尤其是在互联网时代,纳米材料的使用可以更加有效的满足目前现状的要求,同时还能够成为具有高度关注的全球集成电路产业。

一、纳米技术在集成电路大生产工艺中的现状

随着当前的经济的不断发展,纳米技术在运用上变得越来越广泛,而且其功能的优越性也使得其应用更加的符合当前的发展现状。当前所使用的摩尔定律的不断延伸,基本上是依赖于新材料和新工艺进行突破,同时在发展的过程中如果不能够找到合适的替代品,那么摩尔定律则会实效,因此可以从新材料和新工艺的发展现状来检验出摩尔定律是否得到有效的延伸。目前所采用的应硅工艺、小型沟道材料技术、小尺寸工艺、高K金属栅工艺、超低K工艺、450mm硅片以及光刻技术等均在被大量的使用。虽然纳米技术在当前的工艺中使用非常广泛,但是却仍然存在着很多的问题,因此在采用纳米技术的时候要解决相应的纳米

技艺所面临的难题。另外纳米技术在存储器中的应用也非常普遍,无论是相变阻器还是磁变阻器,其高速的运转造成了在成本的需求上需要更多,运用纳米技术可以在芯片中更好的运用。采用纳米技术可以使得所制出芯片存储器更加小,可以使得更加小的芯片拥有更大的驱动能力,从体积的角度不断缩小,而从功能的角度则是不断的扩大。

二、纳米集成电路发展趋势概述

随着我国社会经济的高速发展,加上社会需求的增大,我国对于微纳电子技术和微纳电子产业的重视力度越来越大,特别是最近几年建立了和集成电路技术相关的重大科技项目和研发项目,为我国的纳米集成电路的发展奠定了良好的基础。为了能够尽快的达到世界先进水平,能够掌握自主知识产权技术和设计,本文从集成电路发展的规律上分析,主要认为需要从两个角度来进行发展和研究:一是对维纳电子基础的前沿性研究要进一步的重视和加强,二是根据集成电路发展的规律和特点,充分认识产业支撑对于集成电力发展的重要性,国家应大力的发展和优化产业链条和产业技术。对于前者,特别是对于二代(五年)后的集成电力产业发展方向要进行着重的分析和研究,分析和研究的具体内容有新型器件的结构研究、新材料的研究、新技术的研究等。目前我国的很多的项目研究都局限在某一设备、某一技术或某一项工艺,在对这些内容进行研究时,有的研究人员对基础问题的研究不重视,所以缺乏自身的核心技术,造成了后续发展动力不足的现象,除此之外,在研究中要充分的认识工艺集成技术的重要性,还要着重的突出集成性,因为工艺参数或某器件的性能再优良,无法集成,这就对集成电路的发展毫无意义;对于后者,产业支撑对于集成电路来说具有重要的影响,产业技术中的产前技术尤为重要,其中的工艺集成、成本控制、质量控制等都是产业技术中的重点,这些方面需要企业发挥出创新的主体作用,除了对产业技术中的基本工艺进行研究外,主要还要对国内外的市场进行研究和考察,根据市场的发展走向来开展具有市场特色的产业工艺技术研发。对于集成电路发展来说,技术和产业规模是重点,所以扩大产业规模、产业渠道、加大投资、优化链条、创新技术等内容是未来发展重点。

三、总结语

随着微电子科学在集成电路上的应用逐渐升级,使得传统的集成电路正在不断的发生着本质上的革新,但是依靠着科学技术的发展逐渐构建起新的集成电路技艺,无论是从物理角度分析还是从经济的角度进行分析,采用纳米技术可以更好的为集成电路的发展创新带来发展的机遇,同时还能够有效的促进当前科学技术发展的环境下对于纳米技术进行深层次的研究,为相关纳米集成电路大生产工艺的生产者提供有建设性的借鉴。

参考文献:

[1]吴汉明,吴关平,吴金刚.纳米集成电路大生产中新工艺技术现状及发展趋势[J].中国科学:信息科学,2012,12:1509-1528.

[2]彭祎帆,袁波,曹向群.光刻机技术现状及发展趋势[J].光学仪器,2010,04:80-85.

纳米技术的知识范文6

目前,我国制造业已有较好基础,并已成为世界制造大国,工业增加值居世界第四位,约为美国的1/4、日本的1/2,与德国接近。产量居世界第—的有80多种产品。然而,我国制造的多是高消耗、低附加值产品,大量产品处于技术链和价值链的低端。在代表制造业发展方向和技术水平的装备制造业,我国的落后状况尤其明显,大多数装备生产企业没有核心技术和自主知识产权。同时,我国制造业劳动生产率水平偏低,许多部门的劳动生产率仅及美国、日本和德国的1/10,甚至低于马来西亚和印度尼西亚。这一差距,尤其明显地表现在资本密集型和知识密集型产业上。在此条件—卜,我国制造业不能继续在技术链低端延伸,不能依靠高消耗获得更多低附加值产品,必须用科学发展观指导制造业运行,转变制造业增长方式。

二、转变制造业增长方式必须发展现代制造技术

产品技术链,没有一个固化的定式,但总是由低端向高端发展。近年,它正伴随着现代制造技术的进步不断向高端延伸。目前,制造业技术链高端几乎被现代技术垄断,处于技术链高端的产品几乎都是由现代技术制造出来的。所以,要转变我国制造业增长方式,必须抓紧发展现代制造技术,通过现代技术促使制造业及其产品向技术链高端延伸,以便降低技术链低端产品的比重,相应提高技术链高端产品的比重。

在知识经济时代到来之际,微电子技术、光电子技术、生物技术、高分子化学工程技术、新型材料技术、原子能利用技术、航空航天技术和海洋开发工程技术等高新技术迅猛发展。以计算机广泛应用为基础的自动化技术和信息技术,与高新技术及传统制造方法结合起来,便产生了现代制造技术。

现代制造技术,保留和继承了传统制造技术的产品创新要求,如增加现有产品的功能,扩大现行产品的效用:增多现有产品的品种、款式和规格:缩小原产品的体积,减轻原产品的重量:简化产品结构,使产品零部件标准化、系列化、通用化:提高现有产品的功效,使之节能省耗等。但是,现代制造技术,在制造范畴的内涵与外延、制造工艺、制造系统和制造模式等方面,与传统制造技术均有重人差别。

在现代制造技术视野中,制造不是单纯把原料加工为成品的生产过程,它包括产品从构思设计到最终退出市场的整个生命周期,涉及产品的构思、构思方案筛选、确定产品概念、效益分析、设计制造和鉴定样品、市场试销、正式投产,以及产品的售前和售后服务等环节。

在现代制造技术视野中,制造不是单纯使用机械加工方法的生产过程,它除了机械加工方法外,还运用光电子加工方法、电子束加工方法、离子束加I:方法、硅微加工方法、电化学加工方法等,往往形成光、机、电一体化的工艺流程和加工系统。

三、发展现代制造技术的重点方向

现代制造技术正在朝着自动化、智能化、柔性化、集成化、精密化、微型化、清洁化、艺术化、个性化、高效化方向发展。为了转变制造业增长方式,促使制造业向技术链高端延伸,我国宜着重发展以下现代制造技术。

(一)以纳米技术为基础的微型系统制造技术

“纳米”是英文nan。meter的译名,是一种度量单位,是十亿分之一米,约相当于45个原子串起来那么长。纳米技术,表现为在纳米尺度(0.1nm到100nm之间)内研究物质的相互作用和运动规律,以及把它应用于实际的技术。其基本含义是在纳米尺寸范围认识和改造自然,通过直接操作和安排原子、分子创造新的物质。纳米技术以混沌物理、量子力学、介观物理、分子生物学等现代科学为理论基础,以计算机技术、微电子和扫描隧道显微镜技术、核分析技术等现代技术为操作手段,是现代科学与现代技术相结合的产物。

纳米技术主要包括:纳米材料学(nanomaterials)、纳米动力学(nanodynamics)、纳内米电子学(nanoclectronics)、纳米生物学(nanobi010gy)和纳米药物学(nan。pharmics)。就制造技术角度来说,它主要含有纳米设计技术、纳米加工技术、纳米装配技术、纳米测量技术、纳米材料技术、纳米机械技术等。以纳米技术为基础,在纳米尺度上把机械技术与电子技术有机融合起来,便产生了微型系统制造技术。

自从硅微型压力传感器,作为第一个微型系统制造产品问世以来,相继研制成功微型齿轮、微型齿轮泵、微型气动涡轮及联接件、硅微型静电电机、微型加速度计等一系列这方面的产品。美国航空航天局运用微型系统制造技术,推出的一款微型卫星,其体积只相当于一枚25美分的硬币。

微型系统制造技术,对制造业的发展产生了巨大影响,已在航天航空、国防安全、医疗、生物等领域崭露头角,并在不断扩大应用范围。

(二)以电子束和离子束等加工为特色的超精密加工技术

超精密加工技术,一般表现为被加工对象的尺寸和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术。

这项技术包括超精密切削、超精密磨削、研磨和抛光、超精密微细加工等内容,主要用于超精密光学零件、超精密异形零件、超精密偶件和微机电产品等加工。

电广束、离子束、激光束等加工技术,通常出现在超精密微细加上领域,用来制造为集成电路配套的微小型传感器、执行器等新兴微机电产品,以及硅光刻技术和其他微细加工技术的生产设备、检测设备等。20世纪80年代以来,超精密加工技术,在超精密加工机床等设备、超精密加工刀具与加工工艺、超精密加工测量和控制,以及超精密加工所需要的恒温、隔热、洁净之类环境控制等方面,取得了一系列突破性进展。超精密加工技术投资大、风险高,但增值额和回报率也高得惊人。近来,发达国家把它作为提升国力的尖端技术竞相发展,前景非常好。

(三)以节约资源和保护环境为前提的省耗绿色制造技术

制造业在创造社会财富的同时,产生出大量废液、废气、固体废弃物等污染,会直接影响人类的生存环境,不利于社会的可持续发展。所以,需要探索符合环保要求的节能、省耗、少污染的生产方法,即绿色制造技术。绿色制造技术,立足于尽量减少制造业对环境带来的负面影响,促进产品制造与生存环境的协调发展,在提高企业效益的同时增进社会福祉。

这项技术的核心内容是,产品设计上,尽量提高可拆卸性、可回收性和可再制造性:生产工艺和设备选用上,尽量做到低物耗、低能耗、少废弃物、少污染。这项技术的其他内容,还包括绿色制造数据库和知识库、绿色制造过程建模、绿色制造集成技术、绿色制造评价方法等。