前言:中文期刊网精心挑选了继电保护的主要任务范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
继电保护的主要任务范文1
1山西天脊煤化工集团及电力系统简介
山西天脊煤化工集团股份有限公司(以下简称天脊集团)是20世纪80年代初建设的我国第一个以煤为原料生产高效复合肥的大型企业,经过30年的发展,公司的产能及产品种类已发生了很大的变化,现在合成氨产量已达年产45万吨,硝酸年产108万吨,硝铵年产40万吨,苯胺年产26万吨,目前已形成以硝酸磷肥为主,集有机化工、煤炭深加工、精细化工等为一体,多产品、跨地域的大型煤化工集团。天脊集团电力系统通过闫化线(14.83km)和潞化线(12.572km)两条110kV架空线路与山西长治电网相连接。总降压站设置3台主变压器,分别为1#主变40MVA、2#主变37.5MVA、3#主变37.5MVA,两台6KV热电联产发电机组(余热发电)分别为1#发电机16MW,2#发电机30MW。
2.1基本含义
继电保护是指当电力供应系统的某些设备和元件发生了故障时,自动将发生故障的设备从电力系统中切除,同时发出警报信号,将相关的故障控制在最小范围内,避免其他设备受到不良的影响[2]。因此,继电保护系统是电力供应系统的重要组成部分,它对于整个电力供应系统的安全与稳定发挥着不可或缺的重要作用,随着电力系统的日趋扩大和复杂,对继电保护系统的要求越来越高。
2.2主要任务
继电保护的主要任务大致可以归结为以下几点。首先,继电保护系统可以将发生故障的设备在最短的时间内从电力系统中切除,使其他的电力设备免受损害,从而保证没发生故障的电力系统能够正常运转。其次,继电保护装置还可以在电力系统发生故障时及时发出报警信号,以便迅速处理故障,尽快恢复供电。
3化工企业电气继电保护的装设原则-以天脊集团电力系统为例
天脊集团110kV系统及6kV系统正常运行方式为:总降110kV母线为单母分段并列运行,潞化线供电,闫化线热备;2#主变压器与1#发电机并列运行;3#主变压器与2#发电机并列运行;1#主变压器独立运行。6kV系统:01#变电所、02#变电所、22#变电所6kV母线为单母分段并列运行。01#变电所与02#变电所联络线热备(即621开关在运行状态,611开关热备状态)。04#变电所的运行方式为:1#主变通过601-6012开关带04#变II段负荷,01#变-04#变联络线带04#变I段负荷,6011开关在热备状态。其具体的电力系统主接线如图1所示。具体来说,天脊集团电力系统的110kV闫化线和潞化线线路采用西门子原装进口7SA610距离保护,110kV水I线和水II线采用西门子原装进口7SJ62距离保护,主变差动保护采用西门子原装进口7UT61,主变后备保护采用南京南瑞NSP772,主变非电量保护采用南京南瑞NSP10,6kV发电机差动保护采用西门子原装进口7UM62,6kV高压电动机保护采用南京南瑞NSP783,6kV变压器保护采用南京南瑞NSP784,6kV线路保护采用南京南瑞NSP788。
3.16kV/400V配电变压器保护装设原则
依照DL400-91《中华人民共和国行业标准继电保护和安全自动装置技术规程》的有关规定,首先,6kV/400V变压器容量在400kVA以上时,需要装设瓦斯保护;容量在400kVA以下时,不需装设瓦斯保护。其次,变压器容量在2000kVA以下时,装设电流速断保护;当速断保护灵敏度不够时,需要验证保护在主要运行方式下的灵敏度,如果仍然不满足要求,可考虑不设该段保护。第三,变压器应装设过电流保护,当过电流保护灵敏度不够时,改装低电压启动的过电流保护。第四,由于6kV侧系统中性点采用小电阻接地方式,故变压器应装设两段式零序过电流保护。最后,变压器容量在400kVA以上时,应装设过负荷保护。
3.26kV侧电动机保护装设原则
依照DL400-91《中华人民共和国行业标准继电保护和安全自动装置技术规程》的有关规定,首先,6kV电动机(包括同步电机和异步电机)应装设相间短路保护。容量在2000kW以下时,装设瞬时电流速断保护;容量在2000kW以上时,装设纵联差动保护。其次,6kV异步电动机装设过负荷保护;6kV同步电动机装设反应定子过负荷的失步保护。第三,同变压器保护一样,6kV电动机装设两段式零序过电流保护作为系统的接地保护。最后,根据运行经验,同步电动机需要装设低电压保护。
3.36kV侧线路保护装设原则
依照DL400-91《中华人民共和国行业标准继电保护和安全自动装置技术规程》的有关规定,首先,6kV侧线路为防止相间短路故障,装设延时电流速断保护。其次,6kV侧线路后备保护应装设过电流保护;当灵敏度不够时,改装低电压起动的过电流保护。最后,同变压器保护一样,6kV侧线路装设两段式零序过流保护作为系统的单相接地保护。
3.46kV侧母线及母联保护装设原则
依照DL400-91《中华人民共和国行业标准继电保护和安全自动装置技术规程》的有关规定,首先,6kV侧母线(01#、02#和04#变电所母线除外)的保护可利用上级线路的保护来实现。其次,母联断路器的保护应与母线及母线上的元件保护综合考虑。一般来说,如果母线装设了母线保护(包括用电源回路的保护实现的母线保护或专用母线保护方式),则无需另外装设母联断路器保护,可利用供电线路保护的第一段时限动作于母联断路器跳闸。第三,对于01#、02#和04#变电所母线,应装设延时电流速断保护和过电流保护,当过流保护灵敏度不够时,改装低电压起动的过电流保护;另外,为反应1#~4#主变压器低压侧电缆的单相接地故障,应装设两段式零序过流保护。最后,由于01#、02#变电所母线为双侧电源供电,为防止110kV侧母线短路时主变低压侧母线开关误动作,其延时速断保护需装设功率方向元件,方向为上级线路指向变电所母线。
4典型线路分支系统保护方案分析
6kV侧电网中,01#变、02#变、04#变I母、04#变II母为四个相对独立的系统。其中01#变和02#变为双电源供电(发电机和主变压器),线路级数最多为两级;04#变I母、04#变II母为单电源供电(主变压器),线路级数最多为三级。基于以上所述以及天脊集团所提供的资料中有关1#~4#主变压器高低压侧后备保护的定值,可拟定出如下三套线路保护方案。
4.1方案
对于04#变I母、04#变II母两个系统,主变压器低压侧I段保护的动作时限为0.8s,为实现下级线路与之相配合,若为三级线路,则第一级线路及其末端的母线开关I段保护动作时限定为0.5s,第二级线路及其末端的母线开关I段保护动作时限定为0.2s,第三级线路(编织袋厂母线馈出线)I段保护动作时限定为0s;若为两级线路,第一级线路I段保护动作时限定为0.5s,其末端的母线开关I段保护动作时限定为0.2s,同时一次动作值上也要与上级线路形成配合,第二级线路(母线馈出线)I段保护动作时限定为0s。对于01#、02#两个系统,主变压器低压侧I段保护的动作时限为1.0s,母联开关I段保护的动作时限为0.5s,故第一级线路及其末端的母线开关I段保护动作时限定为0.2s,第二级线路(母线馈出线)I段保护动作时限定为0s。此方案由于对线路和母线均实施了保护,提高了电网运行的安全性和可靠性。但由于系统线路级数多,为形成时限上的配合,整定中很难保证保护之间的时限级差,故方案中三级线路的首末端开关动作时限相同,最末级线路与次末级之间的时限级差仅为0.2s(0.2s在规定上不能成为一个独立级差),这无疑会增加保护误动的可能性,扩大停电范围。
4.2方案
考虑到三级线路中的编织袋厂I、II段母线所带设备不多,为了能使三级线路中的第一级线路首末端开关保护形成配合,故牺牲编织袋厂设备故障时上级线路保护的选择性,即第二级线路I段保护动作时限定为0s,线路末端的母线开关可不设保护;第一级线路I段保护动作时限定为0.5s,其末端的母线开关I段保护动作时限定为0.2s,同时一次动作值上也要与上级线路形成配合。其余的线路保护同方案I。显然,此方案实现了三级线路的首末端开关之间的保护配合,但这是以牺牲末级线路的选择性为代价的,这势必会造成保护误动,从而扩大停电范围。
4.3方案
由于6kV侧系统从01#、02#和04#母线以下均为单电源辐射状电网,规定中可以无需装设母线保护。因此,对于04#变I母、04#变II母两个系统,若为三级线路,则第一级线路I段保护动作时限定为0.5s,第二级线路I段保护动作时限定为0.2s,第三级线路(编织袋厂母线馈出线)I段保护动作时限定为0s;若为两级线路,第一级线路I段保护动作时限定为0.5s,第二级线路(母线馈出线)I段保护动作时限定为0s。对于01#、02#两个系统,第一级线路I段保护动作时限定为0.2s,第二级线路(母线馈出线)I段保护动作时限定为0s。相比较而言,由于未装设母线保护,此方案是最简单且经济的,但其问题就是降低了电网运行的安全性,若运行中母线发生故障,会破坏系统稳定,扩大事故范围。
5结语
继电保护的主要任务范文2
关键词 继电保护技术;配置与应用;发展方向
中图分类号 TM774 文献标识码 A 文章编号 1673-9671-(2012)062-0163-01
继电保护技术是维持电力系统平稳运行的一项核心技术。在电力系统运行过程中,电气元件一旦出现故障,将严重影响电力系统的正常运行,断电不可避免,这将对居民正常的生产生活造成非常严重的影响。继电保护系统以继电保护技术作为支撑能够在第一时间准确的判断出电气元件的故障所在地,并对电力元件的故障及时的做出反应,向值班人员做出示警,并且能够准确、迅速地将电力系统内部出现故障的电气元件与整个电力系统相隔离。保护电力系统内部不受故障的影响造成损失。同时对提高故障排除工作的效率,保障电力系统的正常运行发挥着积极的
作用。
1 电力系统中继电保护的配置与应用
1.1 继电保护装置的主要任务
继电保护对电力系统中发生的故障或异常情况进行检测,从而发出报警信号,或直接将故障部分隔离、切除的一种重要措施。继电保护装置主要任务就是:当供电系统正常运行时,能够安全 、完整地侦查整个线路的各种设备的运行情况,为值班人员提供了准确可靠的相关的运行依据;在供电系统因意外原因产生故障的时候,就要自动、迅速、并且是有选择地切断发生故障部分的电源,而要确保那些没有发生故障的部分能够继续正常运行;在整个系统出现不正常的工作运行状况的时候,它要能够准确、及时地发出相应的信号或警报,使值班人员能够得到通知,并且能够尽快做出相应的处理。
1.2 继电保护装置的最基本条件
1)要有很高的灵敏度。通常情况下是用灵敏系数来对保护装置的灵敏度进行衡量。在继电保护装置的工作范围之内,无论在何处发生短路、也不论短路点的性质如何,保护装置都要产生保护作用;但是如果在保护区之外区域发生了故障时,保护装置就不应该发生不正确的动作。
2)要有很高的可靠度。不能满足可靠性要求的保护装置,反而就会变成将事故扩大或者是造成故障的的直接根源。要想确保装置动作有很高的可靠度,就必须要确保保护装置的在设计原理、相关计算、以及安装调试方面都是非常准确的;在这同时还要求组成保护装置的各元件在质量方面高度可靠、在运行中维护要得当、而且系统在简化的同时要有效,这样就可以在很大程度上提高了保护装置的可靠度。
3)要有选择性。当整个供电系统部分区域发生理了故障时,继电保护装置要能够有选择地将发生故障的相应部分关闭。最首要的就是切断距离故障发生点最近的电器,进而可以保证整个系统中其它的没有发生故障部分能够继续正常运行。
4)反应速度要快。保护装置咋发生线路故障的时候要尽可能快地切断短路区域的故障。减轻短路电流对电气设备造成损坏程度一个很好的方法就是缩短切除故障的时间,加快整个系统电压的快速修复,也就有利的为电气设备自启动创造了条件,而起还提高了发电机并列运行相关的稳定性。
1.3 保护装置的应用
继电保护装置已经在工厂、企业的高压供电系统、 变电站等方面得到广泛的应用,主要是用它来进行高压供电系统线路以及电容器的保护等。高压供电系统在母线继电保护装置的相关应用,在那些不是并列运行的分段母线要装设电流速断保护,但这也只是在断路器合闸的一瞬间投入,合闸后就会自动解除。变电站继电保护装置的主要应用有:1)母联 保护:要同时安装限时电流速断 保护和过电流保护装置。2)电容器保护:对电容器的进行保护,主要包括过流保护、过压保护及失压保护、零序电压保护。3)线路保护:大多是采用二段式或者是三段式的电流保护,其中一段式多是电流速断保护,二段式为限时电流速断保护,三段式则为过电流保护。4)主变保护:主变保护也主要包括主保护和后备保护两部分。随着相关技术的高速发展,微机保护的装置也被渐渐地投入到使用,微机保护也展现出丰富多彩、各显神通的局面,然而基本的原理及目的都是基本相一致的。
2 继电保护技术的发展方向
2.1 智能化方向
随着时间的发展,人工智能技术已被广泛的应用于电力系统各个领域,也已开始了在继电保护领域相关应用的研究。可以看到的是,人工智能技术在继电保护领域一定会得到广泛的应用,用它来解决常规方法不能解决的问题。
2.2 一体化方向
保护装置在智能化的基础上,实际上就相当于一台多功能高性能的计算机,也就是整个电力系统上的一个智能终端。它就能够从网上获取电力系统运行和故障的相关的所有信息和数据。也能够将所获得的信息和数据传送给网络控制中心或任一个其他终端。就这样,每个微机保护装置不仅可以完成继电保护的相关功能,也可以在正常运行的情况下,就可以用它来完成测量、控制、数据通信的功能,也就是实现了保护、控制、测量、数据通信一体化。
2.3 自适应控制技术方向
自适应继电保护是一种能够根据电力系统运行方式和故障发生的状态变化而实时改变保护方向的新型继电保护。它具有改善系统的响应、增强可靠性和提高经济效益等方面的显著优点,在输电线路的各个领域内都有着广泛的应用前景。
2.4 变电站综合自动化技术方向
随着技术的发展,变电站正面临着一场技术创新。使继电保护和综合自动化的完美结合已成为可能,它集中体现在集成与资源共享、远程控制与信息共享。是以远终端单微机保护装置作为核心,将变电站的控制、信号、测量、计费等相关设备纳入到计算机系统,代替了传统的控制保护屏,就可以有效的降低变电站的占地面积和设备投资,也就提高了二次系统的可靠度。
2.5 网络化方向
作为信息和数据通信工具的计算机网络早已成了信息时代技术支柱,人类生产和生活的面貌发生了巨大的变化。它不仅给各个工业领域带来深刻的影响,而且还为各个工业领域提供了强有力的通信手段。截至目前,除了部分设施外,所有继电保护装置都仅限于反应保护安装处的电气量,而它的保护的作用也仅仅是切除发生故障元件,以减小事故的影响范围。这都是由于缺乏强有力的数据通信手段所导致的。网络化就是要使每个被保护的元器件都能够共享全系统的运行和故障信息和数据,各个单元与重合闸装置能够协调动作的进行这些信息和数据的的分析,确保整个系统的安全平稳运行。显而易见的是,要实现这种系统保护,首要条件就是要将整个系统的各主要设备的保护装置利用计算机网络加以联接起来,也就是实现微机保护装置的网络化。在现在条件下,这是完全可以实现的。而对于平常的非系统保护,实现保护装置的计算机联网也有很大的益处。继电保护装置能够收集到的信息愈多,就会对故障性质以及发生故障的位置的判断和故障距离的检测就会更加准确。对自适应保护原理进行研究已经过去了很长的时间,也取得了很好的效果,但是真正做到实现保护对系统的运行方式和故障状态的自适应,就必须要得到更多的系统运行和发生故障的信息,只有在实现保护的计算机网络化,才能够做到这一点。
2.6 计算机化方向
电力系统对微机保护的要求是越来越高的,在保护基本的功能外,还要能够容纳大量的故障信息和数据,高速的数据处理功能以及强大的通信能力。还要能够与其他保护、控制装置和调度进行联网来实现全系统数据、信息和网络资源共享能力、高级语言编程等相关方面。
3 结束语
继电保护装置向着微机化、计算机化方向发展是不可逆转的发展趋势。但是要如何能够更好地满足电力系统的要求,进一步提升继电保护的可靠度,取得更大的经济效益和社会效益,还需要更深入的研究。
参考文献
[1]乔泽慧,杨海云.电力系统继电保护技术[J].中国新技术新产品,2011,17.
[2]韩俊婆,张秋波.《电力系统继电保护技术[J].中国新技术新产品,2009,10.
[3]唐海浪.电力系统继电保护技术及其应用[J].科技创业月刊,2009,10.
[4]刘艳丽,张珩.供电系统的继电保护研究[J].中国电子商务,2010,9.
[5]王世平.试论继电保护[J].中国科技博览,2010,10.
[6]夏天.中国电力系统继电保护技术现状探析[J].商品与质量·前沿观察,2010,1.
继电保护的主要任务范文3
目前,我国电力系统的规模不断扩大,各类电气设备的数量也随之不断增多,由于系统覆盖范围较广、运行环境复杂多变,加之一些人为因素的影响,使得电气设备的故障问题频发,这对电力系统的安全、可靠运行造成了严重影响。继电保护装置是确保电力系统安全、稳定运行的重要设备,而装置自身的可靠性是其能否充分发挥出保护作用的关键之所在。为此,提高继电保护的可靠性就显得尤为重要。基于此点,本文就提高10kV供电系统继电保护可靠性进行浅谈。
关键词:供电系统;继电保护;可靠性;
中图分类号:U223 文献标识码: A
一、继电保护可靠性的重要性及引起继电保护可靠性降低的原因分析
(一)继电保护可靠性的重要性
10kV供电系统是整个电力系统中一个较为重要的组成部分,它的安全、可靠、稳定运行不仅直接关系到电力系统能否正常运行,而且还直接影响用户用电。所谓的继电保护实质上就是供电系统中用于对一次设备进行监测、保护及控制的自动装置,它的核心是继电器。在供电系统中,继电保护装置的主要任务是确保系统安全可靠运行,它能够掌握系统的实时运行状态,并且还能够及时发现系统中存在的问题,然后借助断路器将问题部分从整个系统中切除,以此来降低对系统安全供电的影响。继电保护装置还能在系统出现故障时,自动发出告警信号通知工作人员,这为故障的及时恢复提供了有利条件。以上种种充分说明了继电保护装置的存在有效确保了供电系统的安全运行。
(二)引起继电保护可靠性降低的主要原因
1.励磁涌流的影响。通常情况下,10kV供电系统的线路中都存在励磁涌流,而继电保护对线路的保护方式是电流的速断保护,简单来讲,就是按照最大的通过电流设定保护限值,若是当灵敏度大于1.2时,动作电流的取值就会变小,特别是一些较长的线路,动作电流会变得更小,这样一来就会引起开关重合闸的情况。当故障切除后,电压恢复的过程中,励磁涌流会急剧增大,此时铁芯当中的磁流通量峰值会高出额定电流数倍之多,从而严重影响了继电保护装置的可靠性。
2.运行环境的影响。在电力系统运行环境的周围空气中,一般都会存在大量的杂质和发电残留物,加之运行环境始终处于高温状态,这在一定程度上加快了继电保护装置的老化和腐朽速度,从而导致装置本身的性能急剧下降。此外,环境当中的一些有害物质还会造成电源插头被腐蚀,这样便可能引起继电器接触不良,保护功能也会随之丧失。
3.设备自身的质量问题。对于继电保护装置而言,因其本身属于较为精密的设备,从而决定了它的生产工艺属于技术性生产,因此,生产厂家有必要严格控制继电保护装置的生产质量。然而,在利益的驱动下,有些厂家在制造时偷工减料,致使装置的整体质量达不到标准要求,这些质量不合格装置一旦安装到电力系统当中,不但无法起到应有的保护作用,反而会成为引起各类故障。
4.误操作造成的装置可靠性降低。继电保护装置的安全可靠运行与电源的操作有着十分密切的关系,尤其是电容储能装置,一旦电解电容老化或是容量减少,当故障发生时便无法及时切除。
5.人为因素。安装人员在接线时没有按照设计要求进行,或是凭借自身的经验进行接线,从而导致接线不正确,这给装置的正常运行埋下了安全隐患。
二、提高10kV供电系统继电保护可靠性的有效途径
(一)严把设备质量关
目前,市面上的继电保护装置种类繁多,质量也参差不齐,为了确保装置的可靠性,必须选用质量合格的产品。为此,在购置继电保护装置时必须严把质量关,并对装置中各元器件的质量进行全面分析。应当多选用一些故障率低、使用寿命长的元器件,如电磁型继电器的转动部件应当具有良好的光洁度、晶体管中各主要器件的焊接质量应合理等等。通过严格控制装置自身的质量,能够从根本上提高继电保护的可靠性。
(二)改善继电保护装置的运行环境
通过对继电保护装置运行环境的改善,不但能够进一步提高装置动作的可靠性,而且还能延长装置的使用寿命。在继电保护装置日常运行时,应当保持继电保护室的密闭性,在条件允许的情况下,应在继电保护室内配置空调系统,以此来调节室温,尤其是在炎热的夏季,正常的室温能够使装置始终处于最佳的运行状态,这极大程度地提高了继电保护的可靠性。
(三)提高装置的设计质量
为了使继电保护装置在系统出现故障时能够有选择性地进行动作,避免拒动和误动作的情况发生,应当在保护装置设计和整定计算的过程中充分考虑元器件的合理配合,这有助于进一步提高继电保护装置的动作可靠性。此外,为防止供电系统二次事故的范围扩大,可在系统中较为重要的变电所内加装备自投装置。大量的实践表明,在10kV供电系统内加装该设备,可以在电源事故发生时,起到有效的控制作用,供电安全获得了有效保证。
(四)加大装置可靠性的管理力度
首先,供电企业应当加强组织制度建设,不断对管理网络进行完善,并将确保供电可靠性作为工作重点来抓,进一步加大可靠性管理力度,建立健全10kV供电系统继电保护可靠性管理体系,同时成立专项管理小组,确保工作落实到位。此外,还应定期组织召开可靠性指标分析会议,并对当前工作中存在的问题和不足进行认真分析,制定出可行的工作计划,以此来提高可靠性的管理水平;其次,应当认真贯彻新规程,并加强专业培训,做好评价指标的分析工作,不仅要对供电可靠性的相关指标进行分析,而且还要对故障原因和检修中存在的问题进行分析,为系统可靠性评估提供依据。
(五)认真做好继电保护装置的检验工作
目前,10kV供电系统基本实现了继电保护在线监测,为了进一步提高装置的安全运行水平,应当加强定期测试,可每半年对集成、微机和晶体管保护进行一次定期测试,具体项目包括如下内容:微机保护应当打印出详细的采样报告、定制报告等,并对报告进行综合分析后给出结论;晶体管保护则应当对电源和关键工作点电位进行测试,现场发现问题必须及时查明原因,并采取相应的措施加以解决处理,问题严重时应当上报给相关部门。
结论:
总而言之,随着我国电力系统的规模不断扩大,系统运行的安全性和稳定性愈发重要,这对继电保护也提出了更高的要求。为此,应当采取科学合理、行之有效的措施进一步提高继电保护的可靠性,这不仅有利于确保整个电力系统的安全运行,而且还有助于推动我国电力行业健康、稳定发展。
参考文献:
[1] 冼海炎. 分析10kV配电系统继电保护的装置构成[J]. 广东科技. 2009(18)
[2] 李凌宴,李海英. 浅论10kV供电系统的继电保护[J]. 民营科技. 2010(12)
[3] 陈雄. 对10kV电力系统继电保护的研究探讨[J]. 技术与市场. 2011(03)
继电保护的主要任务范文4
关键词:机电;运行
中图分类号:U224.4文献标识码:A文章编号:
引言:
近年来,国内各大电网由于继电保护拒动、误动引起的大面积停电事故时有发生,给国民经济与人民生活带来极大危害。对此,防止继电保护不正确动作,提高继电保护的运行可靠性,具有十分重要的意义。
1. 我国电力系统
继电保护技术的发展现状:继电保护技术是随着电力系统的发展而发展的,它与电力系统对运行可靠性要求的不断提高密切相关。熔断器就是最初出现的简单过电流保护,时至今日仍广泛应用于低压线路和用电设备。由于电力系统的发展,用电设备的功率、发电机的容量不断增大,发电厂、变电站和供电网的结线不断复杂化,电力系统中正常工作电流和短路电流都不断增大,熔断器已不能满足选择性和快速性的要求,于是出现了作用于专门的断流装置的过电流继电器。本世纪初随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。这个时期可认为是继电保护技术发展的开端。自本世纪初第一代机电型感应式过流继电器(1901年)在电力系统应用以来,继电保护已经经历了一个世纪的发展。在最初的二十多年里,各种新的继电保护原理相继出现,如差动保护(1908年)、电流方向保护(1910年)、距离保护(1923年)、高频保护(1927年),这些保护原理都是通过测量故障发生后的稳态工频量来检测故障的。尽管以后的研究工作不断发展和完善了电力系统的保护,但是这些保护的基本原理并没有变,至今仍然在电力系统继电保护领域中起主导作用。
2 .继电保护管理的重要性及任务
2.1重要性。继电保护工作作为电网工作中的一个重要组成部分,其工作责任大、技术性强、任务繁重。继电保护工作人员每天面对诸如电网结构、保护配置、设备投退、运行方式变化及故障情况等各种信息,对它们进行正确的分析、处理和统计,工作十分繁重,并且上下级局之间、局与各厂站之间存在着许多重复性数据录入及维护工作。为了减轻继电保护工作人员的工作强度,提高劳动生产率,开发继电保护信息管理系统已成为电网发展的一个必然要求。
2.2主要任务。电力系统继电保护管理系统的主要任务是对继电保护所涉及的数据、图形、表格、文件等进行输入、查询、修改、删除、浏览。由于管理对象层次多、结构复杂、涉及几乎所有一、二次设备参数、运行状态、统计分析、图档管理甚至人事信息等事务管理,各层保护专业分工较细,这使得数据库、表种类很多,利用管理系统可大大提高工作效率和数据使用的准确性。
3. 提高继电保护运行操作的准确性
运行人员在学习了保护原理及二次图纸后,应核对、熟悉现场二次回路端子、继电器、信号掉牌及压板。严格“两票”的执行,并履行保护安全措施票,按照继电保护运行规程操作。每次投入、退出,要严格按设备调度范围的划分,征得调度同意。为保证保护投退准确,在运行规程中编入各套保护的名称、压板、时限、保护所跳开关及压板使用说明。由于规定明确,执行严格,减少运行值班人员查阅保护图的时间,避免运行操作出差错。
(2)特殊情况下的保护操作,除了部分在规程中明确规定外,运行人员主要是通过培训学习来掌握的。要求不能以停直流电源代替停保护;有关PT的检修,应通知继保人员对有压监视3YJ接点短接与方向元件短接;用旁路开关带线路时,各保护定值调到与所带线路定值相同;相位比较式母差保护在母联开关带线路时,必须进行CT端子切换。特别要注意启动联跳其它开关的保护,及时将出口压板退出。常见的有:100MW发电机组单元式接线的高压厂变差动、重瓦联跳主机、主变开关保护;母线失灵跳主变、线路开关保护;线路过功率切机保护;主变零序一段跳母联开关保护;厂用备用分支过流跳各备用段保护等。
(3)发现继电保护运行中有异常或存在缺陷时,除了加强监视外,对能引起误动的保护退其出口压板,然后联系继保人员处理。如有下列异常情况,均应及时退出:
① 母差保护 在发出“母差交流断线”、“母差直流电压消失”信号时;母差不平衡电流不为零时;无专用旁路母线的母联开关串带线路操作及恢复倒闸操作中。
② 高频保护 当直流电源消失时;定期通道试验参数不符合要求时;装置故障或通道异常信号发出无法复归时;旁母带线路开关操作过程中。
③ 距离保护 当采用的PT退出运行或三相电压回路断线时;正常情况下助磁电流过大、过小时;负荷电流超过保护允许电流相应段时。
④ 微机保护 总告警灯亮,同时4个保护(高频、距离、零序、综重)之一告警灯亮时,退出相应保护;如果两个CPU故障,应退出该装置所有保护;告警插件所有信号灯不亮,如果电源指示灯熄灭,说明直流消失,应退出出口压板,在恢复直流电源后再投入;总告警灯及呼唤灯亮,且打印显示CPU×ERR信号,如CPU正常,说明保护与接口CPU间通讯回路异常,退出CPU巡检开关处理,若信号无法复归,说明CPU有致命缺陷,应退出保护出口压板并断开巡检开关处理。
⑤ 瓦斯保护 在变压器运行中加油、滤油或换硅胶时;潜油泵或冷油器(散热器)放油检修后投入时;需要打开呼吸系统的放气门或放油塞子,或清理吸湿器时;有载调压开关油路上有人工作时。
⑥ 重合闸 在线路开关事故跳闸次数超标时(一般110kV少油开关允许5次,220kV少油开关允许7次;LW系列110kV SF6开关65次,220kV SF6开关50次,否则,开关要大修);系统短路容量增加,断路器的开断能力满足不了一次重合要求时;无压检定的电压抽取装置故障或同期检定来自母线PT的二次电压不正常时;断路器的气压或油压降低到不允许重合闸运行的数值或已闭锁时。
4. 继电保护装置简介与维护
4.1 WSTJ-1微机式继电保护数字通讯接口装置
这是近几年兴起的一种较为先进的继电保护装置,这套装置采用传统数字通信5群中的64kbi/s数据接口,但是却利用了最先进的专业光缆通道传输多路继电保护的开关量信号。
装置中的继电保护接口可与相间距离和零序方向保护配合,实现闭锁式或允许式保护逻辑,构成方向比较纵联保护。该装置可与微机线路保护配合,构成各种闭锁式和允许式保护。
4.2 全数字继电保护测试装置全数字继电保护测试装置具有数字化、模块化、小型化、嵌入式人机界面等功能,主要技术特点为高压保护、测量装置等,满足IEC61850-9-1标准的数字量信号的情况下,从硬件结构和软件设计实现保护装置的全数字操作目标。整机采用两套DSP+CPLD分别作为信号发生和人机监控模块,其中主控DSP系统采用以太网模块和自定义的内部通信协议,通过模块间内部CAN通讯接口传输测试数据,而监控DSP系统赋予了整机人机交互和保护自检功能。该装置能够满足新型微机保护装置研发中对数字量继电保护测试数据的需要。
4.3 继电保护装置的维护
对新投运好和运作中的继电保护装置应按照《继电保护和电网安全自动装置检验条例》要求的项目进行检验;一般对10kV~35kV用户的继电保护装置,应该每两年进行一次检验,对供电可靠性较高的35kV及以上用户每年进行一次检验。(b)在交接班时应检查中央信号装置、闪光装置的完好情况,并检查直流系统的绝缘情况、电容储能装置的能量情况等。(c)对操作电源进行定期维护。(d)对继电器、端子排以及二次线将进行定期清扫、检查,此工作可以带电进行,也可以停电进行,但必须有两人在场,其中一人工作,一人监护;必须严格遵守《电业安全工作规程》中的有关要求,所用的工具应具备可靠绝缘手柄;清扫二次线上的尘土时,应由盘上部往下部进行;遇有活动的线头,应将其拧紧,以防止造成电流互感器二次回路开路,而危及人身安全。
5.结语
为了确保供电系统的正常运行,必须正确地设置继电保护装置并准确整定各项保护相关定值,从而保证系统的正常运行。文中只是略谈,希望能给同行带来参考。
参考文献:
[1]张志林. 试论电力系统继电保护技术及配置应用. 电力,2011.
继电保护的主要任务范文5
【关键词】微机继电保护;电力程;应用;发展
1.前言
随着社会经济的发展、科学技术的进步以及人们生活水平的不断提高,人们对电能的需求和依赖性越来越强,对安全稳定供电的要求也越来越高。电力系统的安全可靠运行对保证国民经济的稳定发展和人民生活水平的不断提高有着越来越重要的意义。电力系统一旦发生事故,将会给人们的生产和生活带来不可估量的巨大损失。
电气设备的保护技术是研究电力系统故障和危机安全运行的异常工况,以探讨其对策的反事故自动化措施。微机继电保护装置是电力系统密不可分的一部分,是保障电力设备和防止、限制电力系统大面积停电的最基本、最重要也是最有效的技术手段。
2.电力系统微机继电保护技术发展现状
相对于传统继电保护而言,微机保护具有运算速度快、功能灵活、可靠性高、维护调试工作量小等优点。微机保护在电力系统中的应用越来越多,电网中继电保护微机化率稳步增长。
3.微机继电保护与传统装置的对比分析
3.1 继电保护的任务是判断电力系统有关电气设备是否发生故障而决定是否发出跳闸命令,使发生故障的电气设备尽量迅速地与电力系统隔离。为此,首先要取得与被保护电气设备有关的信息,根据这些信息,按不同的原理,进行综合和逻辑判断,最后做出抉择,并付诸执行。所以,继电保护的基本结构大致上可以分为三部分:信息获取与初步加工;信息的综合、分析与逻辑加工、抉断;抉断结果的执行。
3.2 信息要通过电压、电流传送,有时还通过一些开关量传递。早期,在机电型继电器中,电流电压直接加到继电器的测量机构,变换成机械力,然后在机械力的层次上进行比较判别,中间并不需设置其他的变换、隔离等环节。随着电子技术的引入,通常使用所谓的电流变换器、电压变换器以及电抗变换器等等。在晶体管型继电保护、整流型继电保护以及集成电路型继电保护中都采用类似的变换环节,其间并没有本质的差别,这些环节,可以称为“信息预处理”环节。
由于计算机是数字电路,其工作电平比集成电路的工作电平还低,因此,计算机继电保护同样也需要设置信息预处理环节,需要隔离屏蔽、变换电平等等处理。
3.3 继电保护的主要任务是操作、控制与被保护电气设备有关断路器,使发生故障的电气设备迅速与电力系统分隔离开来,最大限度地减轻故障对电力系统的影响,减轻故障设备的损坏程度。这种操作是通过控制跳闸线圈实现的,也就是给线圈通入电流实现的。
3.4 计算机继电保护与传统继电保护的根本区别是在中间部分,即信息的综合、分析与逻辑加工、判断环节。区别主要是在于实现上述功能的手段不同。传统继电保护是靠模拟电路(或继电器元件)的构成来实现的,即用模拟电路实现各种电量的加、减、乘、除和延时与逻辑组合需求。而计算机保护,即数字式继电保护却是用数字技术进行数值(包括逻辑)运算来实现上述功能的。计算机上的数字和逻辑运算是通过软件进行的,即这些运算要通过预先按一定的规则(语言〉制定的计算程序进行的。这是与模拟式继电保护截然不同的工作模式。也就是说,计算机式继电保护是由“硬件”和“软件”两部分组成的,硬件是实现继电保护功能的基础,而继电保护原理是直接由软件,即由计算机程序实现的,程序的不同可以实现不同的原理,程序的好坏、正确与错误都直接影响继电保护性能的优劣、正确或错误。
4.微机继电保护装置的构成
微机保护就是指与数字式计算机(包括微型计算机)为基础而构成的机电保护。微机保护装置的基本构成分为硬件和软件。
4.1 硬件系统构成及其功能
微机保护装置硬件系统包含以下五个部分:
(1)数据采集单元即模拟量输入系统。
(2)数据处理单元即微机主系统。
(3)数字量输入/输出接口即开关量输入输出系统。
(4)通信接口。
(5)电源。
4.2 微机保护装置软件通常可分为监控程序和运行程序两部分。所谓监控程序包括对人机接口键盘命令处理及为插件调试、整定设置显示等配置的程序。所谓运行程序就是指保护装置在运行状态下所执行的程序。微机保护运行程软件一般可分为三个部分。
(1)主程序。包括自检、开放及等待中断等待。
(2)中断服务程序。
(3)故障处理程序。
5.微机继电保护装置特点
5.1 调试维护方便。在微机保护应用之前,整流型或晶体管型继电保护装置的调试工作量很大,原因是这类保护装置都是布线逻辑的,保护的功能完全依赖硬件来实现。微机保护则不同,除了硬件外,各种复杂的功能均由相应的软件(程序)来实现。
5.2 高可靠性。微机保护可对其硬件和软件连续自检,有极强的综合分析和判断能力。它能够自动检测出其自身硬件的异常,并配合多重化措施,可以有效地防止拒动;同时,软件也具有自检功能,对输入的数据进行校错和纠错,即自动地识别和排除干扰,因此可靠性很高。
5.3 易于获得附加功能。传统保护装置的功能单一,仅限于保护功能,而微机保护装置除了提供传统保护功能外,还可以提供一些附加功能。例如,保护动作时间和各部分的动作顺序记录,故障类型和相别及故障前后电压和电流的波形记录等。对于线路保护,还可以提供故障点的位置(测距),这将有助于运行部门对事故的分析和处理。
5.4 灵活性。由于微机保护的特性主要由软件决定,因此替换或改变软件就可以改变保护的特性和功能,且软件可实现自适应性,依靠运行状态自动改变整定值和特性,从而可灵活地适应电力系统运行方式的变化。
5.5 改善保护性能。由于微机的应用,可以采用一些新原理,解决一些传统保护难以解决的问题。例如,利用模糊识别原理判断振荡过程中的短路故障,对接地距离保护的允许过渡电阻的能力,大型变压器差动保护如何识别励磁涌流和内部故障,采用自适应原理改善保护的性能等。
5.6 简便化、网络化。微机保护装置本身消耗功率低,降低了对电流、电压互感器的要求,而正在研究的数字式电流、电压互感器更易于实现与微机保护的接口。同时,微机保护具有完善的网络通信能力,可适应无人或少人值守的自动化变电站。
6.微机继电保护事故处理的思路
当前,主要基于三种思路来考虑。
6.1 避免故障和错。误,包括选用高质量的元件和采用屏蔽隔离等以防干扰;故障自动检测,发现故障时及早报警或自动闭锁,不影响保护对象的正常工作;容错设计,使局部故障时不降低整套装置的性能,不中断保护装置的正常运行。!”#
6.2 抑制干扰。干扰就是指除有用信号以外的所有可能对装置的正常工作造成不利影响的内部或外部的电磁信号。干扰将造成微机保护装置的计算或逻辑错误,程序运行混乱,甚至元件的损坏等。由于微机保护装置的工作环境比较恶劣,在保护装置的周围往往存在许多复杂的电力设备和输电线路等。微机保护要有较强的抗干扰能力。微机保护往往从干扰的三个因素入手来提高自身的抗干扰能力:明确干扰源,切断耦合途径和降低装置本身对干扰的敏感度。
6.3 故障的自动检测。故障的自动检测就是当装置内有元件损坏时,系统能够及时发现并报警,以便能迅速采取措施予以修复。目前微机保护常用的检测方法按检测时机可分为即时检测和周期检测;按检测对象可分为元器件检测和成组功能检测。作为一种具有高可靠性要求的控制系统,人们采取了各种措施以提高微机保护系统的可靠性。
7.结束语
继电保护的主要任务范文6
关键词:电力变压器;电气试验;继电保护;常见故障;电力系统 文献标识码:A
中图分类号:TM41 文章编号:1009-2374(2016)32-0065-02 DOI:10.13535/ki.11-4406/n.2016.32.032
目前,我国人民对于电的需求量越来越大,保证电网的运行安全这一问题显得尤为重要。由于电网运行复杂,在这一过程中,要时刻保持变压器的运行稳定。变压器承担着输电、配电的任务,也是电网系统运行安全的基础保证,文章就变压器电气试验和继电保护的基本方法进行了阐述与分析。
1 电力变压器常见电气试验
电力变压器使用过程中会出现不同程度的故障,针对不同故障要进行对应的电气试验,检查出设备故障,并进行维修。其中常见的电气试验有绝缘测量、耐压试验、变比试验、瓦斯继电器试验,如果继电器故障难以处理,还要进行直流电阻试验。绝缘测量是所有试验的基础,通过变压器一次和二次之间对地电阻测量,可以确定简单的故障,也可以确保设备的绝缘强度,防止漏电和破损。当电压器存在相间电阻平衡问题时,采用直流电阻试验来测试其稳定性。继电器瓦斯试验较为复杂,但在大型变压器故障查找和检修中不可缺少,也要根据电力变压器的运行对其进行继电器保护。
2 变压器继电保护原理及原则
2.1 变压器继电保护基本原理
变压器继电保护主要靠继电保护装置来完成。其基本原理为,继电保护装置能够对受保护区域内的故障做出适当的反应,提示维修人员设备存在安全隐患。继电保护装置要能够正确地判断故障,不能误动或拒动。出现故障的变压器和未出现故障的变压器的电气量发生巨大变化,其中电流和电压是主要表现。发生故障后,继电保护装置显示,变压器系统的电流瞬间增大,变压器正常运行状态下,电流为额定电流。而故障发生后,很可能造成系统的短路,电流值迅速上升并且远远超过额定电流值,容易造成系统内部零件烧毁。与此同时,电压会降低,并且越接近短路点,电压值下降越多。与正常运行相比,故障下的变压器系统电流与电压之间的相位角增大。最后,故障状态下的系统会出现阻抗上的变化,也就是电压与电流的比值减少,无法维持设备的正常运行,从而造成电力系统停止工作。
2.2 变压器继电保护的原则
继电保护装置发挥保护功能要具有可靠性、选择性、灵敏性和速动性四个特点。可靠性是继电保护的最基本要求,要求在执行继电保护的过程中,正确判断和发现故障,并且要发出正确的预警信号。继电保护装置要满足设备运行的基本性能,不能误动或者拒动。当变压器出现短路后,还要求继电保护装置具有选择性,是指在发生故障后只对保护区范围内出口动作,帮助维修人员判断故障位置,减少资源浪费,不影响系统的整体工作性能。由于故障多在瞬间出现,因此判断故障也要具有灵敏性和快速性,从性能上继电保护装置应具有高度的灵敏性,一旦设备存在故障隐患,就将提供预警报告,并将故障可能范围降到最低,使工厂可以实现预防先于维修,提高设备的运行效率。继电保护装置整体规程与灵敏度的计算方式不同,前者是在最大运行方式下进行计算的,而后者是在最小运行方式下进行计算的。灵敏度高的继电保护装置要能够对短路点进行正确判断。也就是说,无论是在最大运行模式,还是在最小运行模式下,继电保护系统都要保持可靠的运作性能。要求继电保护装置可以识别变压器内部轻微匝间故障,确保保护范围。同时,继电保护装置的动作要快,要在第一时间做出判断,以便于维修人员能够及时发现变压器故障,减少运行损失。继电保护装置的故障判定范围包括电厂设备的母线电压小于有效值、大型发电机或者大容量发电机内部故障、对人体安全造成影响的干扰信号,若单指变压器的话,还包括电压器内部的线路短路、匝间短路和接地短路现象。另外,针对故障的电流不平衡和差动电流现象,均应做出准确的判断,从而确保变压器的运行稳定,促进电厂的正常运行。
2.3 电力变压器继电保护方案设计
针对当下电力企业的发展,变压器继电保护方案主要从以下方面入手,分别为瓦斯保护、差动保护和过电流保护。企业应从变压器的原理,运行中所需的技术支持入手,以保持变压器正常的工作状态为前提,进行设计、维持和继电保护处理。继电保护装置的主要任务就是对障碍部位进行预警和切除,信号的传达要准确,根据我国对变压器运行的相关规定,其具体的保护方案设计如下:
2.3.1 瓦斯保护。该保护在变压器运行中较为常见,是一种电力变压器内部的装置,以气体变压器为主。瓦斯保护的目的是保证电力变压器油箱内部的气体可以及时排出,防止油箱温度突然上升,并且确保了绝缘油的基本性能,防止出现漏电和短路等安全隐患。针对不同的变压器故障,瓦斯保护的原理不同。在正常运行状态下,变压器信号由油箱的上触点连通中间变压器发出,当系统存在故障时,则警报信号由油箱的下触点连通信号回路发出,并辅以跳闸应急处理,此时可以确保故障的正确预警,并且降低了故障的可能范围,提高了故障排除和维修的效率。
2.3.2 变压器的差动保护。差动保护实际上是利用了变压器高压端和低压端电流和相位的不同,根据变压器的运行原理,将两侧的不同电流互感器进行连接,形成环流。通过判断电流变化来判断是否存在故障,此方法也被称为相位补偿,分别将变压器星形侧和三角形侧的电流互感器连接成三角形和星型。正常状态下,星型互感器和三角形、星形之间的电流差值为零或者接近于零,此时差动保护无动作,而在出现故障时,继电器的两侧电流差值会增大,并且是快速增大,此时的电流值为继电保护装置的两侧互感电流所形成的二次电流之和,远大于故障点的短路电路,从而造成系统短路,安装继电保护装置的主要目的就是在系统某处出现故障时做出相应的动作,缩小短路带来的影响。由继电保护装置发出相应的差动信号,预示存在故障,并协助解决故障。差动保护原理清晰,能够保持灵敏度高、选择性好、实现简单等特点,在发电机、电动机以及母线等设备上均能得到广泛应用,作为电器主设备的主保护,优势比较明显。
2.3.3 电力变压器的过电流保护和负荷保护。电力变压器过电流保护常用于上述所述两种方案的备用保护方案。过电流保护分为几种,主要是按照不同的短路电流来划分。其中过电流保护主要用于降压变压器。复合电压启动的过电流保护则应用于升压变压器,对其灵敏度不足具有弥补作用。负序电流和单相式低电压启动的过电流保护,则多应用于系统联络变压器和63MV-A及以上大容量升压变压器。与之相对应的变压器负荷保护主要应用于故障预防,变压器长期处于大负荷状态下,会导致其电流增大,负荷保护就是通过降低负荷来控制过电流。该装置通常指采用一只电流继电器与某个单相线路相连的一对一的接线方式,一般在经过一定延时后动作于信号,或延时跳闸。
3 结语
在我国,电网的发展有着不可磨灭的作用,变压器是电网运行中的核心设备,变压器的运行稳定决定了整个网络的稳定。继电气试验和继电保护是维持变压器安全和稳定的基本策略,要求电网系统正确运用继电保护策略,减少设备故障并及时清除已发生的故障。另外,在运行过程中,还要对实际的运行状况进行具体的分析。
参考文献
[1] 郭启禄,张坤.发电厂电气设备运行中常见故障及应对措施[J].科技经济市场,2015,12(1).