数学建模方法范例6篇

前言:中文期刊网精心挑选了数学建模方法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数学建模方法

数学建模方法范文1

【关键词】中学数学 数学建模 活动 探索

【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2014)8 -0129-02

“创新是一个民族进步的灵魂,是我们国家兴旺发达的不竭动力。” 中学数学建模活动最大的优点是学生的主动性,创造性可以得到充分发挥,学生的主体作用得以体现.在中学数学建模活动中,常用的建模方法有机理分析法、数据拟合法、类比分析法、图解法、假设法等,以下就这些常用的方法略以阐述。

1、机理分析法

机理分析法是指应用自然科学、数学科学等中已被证明是正确的理论、原理和定理,对被研究问题的有关因素进行分析、演绎、归纳,从而建立问题的数学模型.机理分析法是中学数学建模活动中最常用的一种方法。当我们遇到一个问题时,总是想方设法化归到我们已经掌握的知识范围内处理。当我们对某问题的各有关因素有比较透彻的了解时,机理分析法尤其适用,我们可以根据该问题的有关性质来直接建立数学模型。

例如,在公路旁的某镇北偏西60°且距离该镇30km处的A村和该镇东北50km的B村,随着改革开放要在公路旁修一车站C,从C站向A、B两村修公路,问C站修在公路的什么地方,可使费用最少?

分析:此问题可以和物理光学内容相联系。

设以公路为x轴,该镇为原点建立直角坐标系,

则A(-15,15),B(25,25)

作A点关于x轴的对称点A’(-15,-15),

连结A’B交x轴于C,则C为所求站点。

2、数据拟合法

很多情况下,由于我们对一个问题的结构和性质不很清楚,因此就无法应用机理分析法找出符合规律的数学模型.不过如果通过实验或测量已经得到了描述这个问题的一组数据,那么我们就可以对这些数据加以分析利用,数据拟合法就是根据对这些有限的数据的研究分析,找到能够精确或大致反映问题本质属性的数学模型。

例如,据世界人口组织公布地球上的人口在公元元年为2.5亿,1600年为5亿,1830年为10亿,1930年为20亿,1960年为30亿,1974年为40亿,1987年为50亿,到1999年底地球上的人口数达到了60亿,请你根据20世纪人口增长规律推测,到哪年世界人口将达到100亿,到2100年地球上将会有多少人口?

分析:题目中的数据均为大致时间,粗略估计的量,带有较多误差,因此,寻找人口增长规律不需要也不应该过分强调规律与数据完全吻合,因此,组建预报模型.不必要考虑20世纪以前的数据资料,在20世纪人口的增长速度是逐步变快的,因此不能应用一次函数来作为预报的模型,而应选择指数函数.故选择N(t)=aert,其中N(t)为t时间的人口数,a、r为参数.数据拟合是处理这类问题的有利根据.我们通过已知数据,去确定某一类已知函数或寻找某个近似函数,使所得的拟合函数与已知数据有较高的拟合精度。

3、类比分析法

如果两个不同的问题,我们都可以用同一形式的数学模型来描述,那么这两个问题就可以相互类比.通过类比分析法,我们可以去猜想这两个问题的一些属性或关系也可能是相似的,从而帮助我们掌握复杂事物的规律,提高我们分析问题和解决问题的能力。

例如:问题1. 房间有8 个人,每个人都和其余每一个人握手一次而且都只能握一次手,问他们共握多少次?

问题2. 8个班参加篮球循环比赛,共比赛多少场?

这是两个生活中的例子,可以建立这样的模型:把每个人看成一个点,构造一个凸八边形模型,则每条边和对角线都表示“握手”和“比赛”,问题归为求凸八边形的对角线数加边数.即得28:当然可以推广到n 个,结果是:

4、图解法

图解法是将问题表述在图形中,利用图形直观判断实际问题的解.常用于传递性关系或仅涉及变量的近似数据,可用的信息不多或这些信息又不精确时.例如相遇问题:某轮船公司每天都有一艘轮船从纽约开往哈佛.轮船在途中所化的时间来去都是七昼夜,而且都是匀速航行在同一条航线上.问今天中午从哈佛开出的轮船,在开往纽约的航行过程中,将会遇到几艘同一公司的轮船从对面开来?

数学建模方法范文2

关键词:数学建模;思想;应用;方法;分析

0引言

随着自然科学的发展,利用数学等思想来解决实际问题,越来越受到人们的重视,数学作为一门历史悠久的自然科学,是在实际应用的基础上发展起来,但是随着理论研究的深入,现在数学理论已经非常先进,很多理论都无法付诸实践,在这种背景下,如何利用现有的数学理论来解决实际问题,成为了很多专家和学者研究的问题。通过实际的调查发现,要想利用数学来解决实际问题,首先要建立相应的数学模型,将实际的问题转化成数学符号的表达方式,这样才能够通过数学计算,来解决一些实际问题,从某种意义上来说,计算机就是由若干个数学模型组成的,计算机软件之所以能够解决实际问题,就是根据实际应用的需要,建立了一个相应的数学模型,这样才能够让计算机来解决。

1数学建模思想分析

1.1数学建模思想的概念

数学是一门历史悠久的自然科学,在古时候,由于实际应用的需要,人们就已经开始使用数学来解决实际问题,但是受到当时技术条件的限制,数学理论的水平比较低,只是利用数学来进行计数等,随着经济和科技水平的提高,尤其是在工业革命之后,自然科学得到了极大的发展,对于利用自然科学来解决实际问题,也成为了人们研究的重点,在市场经济的推动下,人们将这些理论知识转化成为产品。计算机就是在这种背景下产生的,在数学理论的基础上,将电路的通和不通两种状态,与数学的二进制相结合,这样就能够让计算机来处理实际问题,从本质上来说,这就是数学建模思想的范畴,但是在计算机出现的早期,数学建模的理论还没有形成,随着计算机软件技术的发展,人们逐渐的意识到数学建模的重要性,发现利用数学建模思想,可以解决很多实际的问题,而数学建模的概念,就是将遇到的实际问题,利用特定的数学符号进行描述,这样实际问题就转化为数学问题,可以利用数学的计算方法来解决。

1.2数学建模思想的特点

如何解决实际问题,从有人类文明开始,就成为了人们研究的重点,随着自然科学的发展,出现了很多具体的学科,利用这些不同的学科,可以解决不同的实际问题,而数学就是其中最重要的一门学科,而且是其他学科的基础,如物理学科中,数学就是一个计算的工具,由此可以看出数学的重要性,进入到信息时代后,计算机得到了普及应用,无论是日常生活中还是工作中,计算机都有非常重要的应用,而在信息时代,注重的是解决问题的效率。与其他解决问题的方式相比,数学建模显然更加科学,现在数学建模已经成为了一门独立的学科,很多高校中都开设了这门课程,为了培养学生们利用数学解决实际问题的能力,我国每年都会举办全国性的数学建模大赛,采用开放式的参赛方式,对学生们的数学建模能力进行考验,而大赛的题目,很多都是一些实际问题,对于比赛的结果,每个参赛队伍的建模方式都有一定的差异,其中选出一个最有效的方式成为冠军。由此可以看出,对于一个实际的问题,可以建立多个数学模型进行解决,但是执行的效率具有一定的差异,如有些计算的步骤较少,而有些计算的过程比较简单,而如何评价一个模型的效率,必须从各个方面进行综合的考虑。

2数学建模思想的应用

2.1计算机软件中数学建模思想的应用

通过深入的分析可以知道,计算机之所以能够解决实际问题,很大程度上依赖与计算机软件,而计算机软件自身就是一个或几个数学模型,在软件开发的过程中,首先要进行需求的分析,这其实就是数学建模的第一个环节,对问题进行分析,在了解到问题之后,就要通过计算机语言,对问题进行描述,而计算机语言是人与计算机进行沟通的语言,最终这些语言都要转化成0和1二进制的方式,这样计算机才能够进行具体的计算。由此可以看出,计算机就是依靠数学来解决实际问题,而每个计算机软件,都可以认为是一个数学模型,如在早期的计算机程序设计中,受到当时计算机技术水平的限制,采用的还是低级语言,由于低级语言人们很难理解,因此在程序编写之前,都会先建立一个数学模型,然后将这个模型转化成相应的计算机语言,这样计算机就可以解决实际的问题,由于计算机能够自行计算的特点,只要输入相应的参数后,就可以直接得到结果,不再需要人为的计算。

2.2数学建模思想直接解决实际问题

经过了多年的发展,现在数学建模自身已经非常完善,为了培养我国的数学建模人才,从1992年开始,每年我国都会举办一届全国数学建模大赛,所有的高校学生都可以参加,大赛采用了开放性的参赛方式,通常情况下,对于题目设置的也比较灵活,会有多个题目提供给队员选择,学生可以根据自己的实际情况,来选择一个最适合自己的问题。而数学建模大赛举办的主要目的,就是让学生们掌握如何利用数学理论,来解决实际问题,在学习数学知识的过程中,很多学生会认为,数学与实践的距离很远,学习的都是纯理论的知识,学习的兴趣很低,与一些实践密切相关的学科相比,选择数学专业的学生很少,而数学建模的出现,在很大程度上改善了这种情况,让人们真正的了解数学,并利用数学来解决复杂的问题。受到特殊的历史因素影响,我国自然科学发展的起步较晚,在建国后经历了很长一段时间封,闭发展,与西方发达国家之间的交流比较少,因此对于数学建模等现代科学,研究的时间比较短,导致目前我国很少会利用数学建模来解决实际问题,相比之下,发达国家在很多领域中,经常会用到数学建模的知识,如在企业日常运营中,需要进行市场调研等工作,而对于这些调研工作的处理,在进行之前都会建立一个数学模型,然后按照这个建立的模型来处理。

2.3数学建模思想应用的发展

从本质上来说,数学是在实际应用的基础上,逐渐形成的一门学科,但是受到当时技术水平的限制,虽然人们已经懂得去计算,却并知道自己使用的是数学知识,随着自然科学的发展,对数学的应用越来越多,而数学自身理论的发展速度很快,远远超过了实际应用的范围,同时随着其他学科的发展,数学变成了一种计算的工具,因此数学应用的第一个阶段中,主要是作为一种工具。随着电子计算机的出现,对数学的应用达到了一个极限,人们在数学和物理的基础上,制作出了能够自动计算的机器,在计算机出现的早期,受到性能和体积上的限制,只能进行一些简单的数学计算,还不能解决实际的问题,但是计算机语言和软件技术的发展,使其在很多领域得到了应用,在计算的基础上,能够解决很多问题,而软件程序的开发,其实就是建立数学模型的过程,由此可以看出,数学建模思想应用的第二阶段中,主要是以现代计算机等电子设备的方式,来解决实际的问题。

3数学建模思想应用的方法

3.1分析问题

数学模型的应用都是为了解决实际问题,虽然很多问题都可以通过建模的方式来解决,但是并不是所有的问题,因此在遇到实际问题时,首先要对问题进行具体的分析,首先就是看是否能够转化成数学符号,如果能够直接用数学语言来进行描述,那么就可以容易的建立相应的数学模型,但是通过实际的调查发现,随着经济和科技的发展,遇到的问题越来越复杂,其中很多都无法直接用数学语言来描述,这就增加了数学建模的难度。由此可以看出,分析问题作为数学建模的第一个环节,也是最重要的一个环节,如果问题分析的不够具体,那么将无法建立出数学模型,同时对数学模型的建立也具有非常重要的影响,通过实际的调查发现,能够建立高效率的数学模型,都是对问题分析的比较彻底,甚至有些独特的理解,只有这样才能够采用建立一个最简单的模型,而随着数学建模自身的发展,现在建立模型的过程中,对于一个实际的问题,经常需要建立多个模型,这样通过多个数学模型协同来解决一个问题。

3.2数学模型的建立

在分析实际问题后,就要用数学符号来描述要解决的问题,这是建立数学模型的准备环节,要想利用数学来解决实际问题,无论采用哪种方式,都要转化成数学语言,然后才能够通过计算的方式解决,而数学模型的过程,就是在描述完成后,建立相应的数学表达式,通常情况下,在分析问题时,都能够发现某种内在的规律,这个规律是数学建模的基础。如果无法找到这个规律,显然就不能利用现有的一些数学定律,从而建立相应的表达式,最后解决相应的问题,由此可以看出,分析问题的内在规律,是影响数学建模的重要因素,而这个规律的发现,除了在现有的数学知识外,也可以结合其他学科的知识,尤其是现在遇到的问题越来越复杂,对于以往简单的问题,只需要建立一个简单的模型即可解决,而现在复杂的问题,经常需要建立多个模型。因此现在数学建模的难度越来越大,从近些年全国数学建模大赛的题目就可以看出,对于问题的描述越来越模糊,甚至出现了一些历史上的难题,而不同学生根据自己的理解,建立的模型也具有很大的差异,其中一些模型非常新颖,为实际问题的解决提供了良好的参考,目前我国对数学建模的研究有限,尤其是与西方发达国家相比,实践的机会还比较少。

3.3数学模型的校验

在数学模型建立之后,对于这个模型是否能够解决实际问题,具体的执行效率如何,都需要进行校验,因此检验是数学模型建立最后的一个环节,也是非常重要的一个步骤,通常情况下,经过校验都能够发现模型中存在的一些问题,从而进行完善,这样才能够保证严谨性,在实际校验的过程中,要对数学模型的每个部分进行验证,通过输入特定的数据,看得到的结果是否符合理论值,如果没有问题,就说明该模型可以解决实际问题。除了检验模型的准确外,校验还有另外一个作用,就是优化模型,在选定数据后,能够看到数学模型计算的整个过程,这时就可以对具体的细节进行优化,如哪部分可以减少计算的步骤,或者简化计算的方式等,这样可以使整个模型更加科学、合理,由此可以看出,校验工作对于数学模型的建立,具有非常重要的意义。

4 结语

通过全文的分析可以知道,对于数学理论的应用,从很久之前就已经开始了,但是数学建模思想的出现,却是随着计算机技术的发展,逐渐形成的一门学科,电子计算机的出现,在很大程度上改变了处理事情的方式,利用计算机软件,只要输入相应的参数,就可以直接得到结果,这正是数学模型完成的任务,只是计算机的出现,省略了中间的计算过程,因此计算机软件的方式,是数学建模思想最好的应用方法,要想解决不同的问题,只要建立不同的模型,然后编写相应的程序。

参考文献:

[1] 吴俊,劳家仁.高校师资管理中数学建模的应用研究[J],南京工业职业技术学院学报,2009(02):84-86

[2] 温清芳,最优化方法在数学建模中的应用[J],宁德师专学报(自然科学版),2007(02):151-153

[3] 张绍艳,浅谈数学建模思想的应用[J],科技咨询导报,2007(20):233

数学建模方法范文3

关键词:数学建模;大学数学;教学方法;兴趣;创新思维

引言

随着我国科学技术的不断发展,计算机应用技术给我们的生活带来了前所未有的便利,数学在我们日常生活中的应用变得越来越普遍,利用数学方法来解决我们的生活及工作中的难题将成为数学应用在未来的发展趋势。高校数学教学效率很大程度上取决于学生对数学的学习兴趣,将数学建模思想应用于数学教学中可以将数学问题形象化、简单化,将枯燥无味的数学课堂变得更加生动、有趣,从而激发起学生的学习效率,提高数学的教学质量。

一、数学模型应用概述

随着社会主义经济不断发展,数学已在各个领域得到广泛的应用,建立数学模型解决实际工作问题是大学生走向社会要经常运用到的基本技能。利用数学模型解决问题仅仅是具有数学知识和数学解题能力是不够的,它还需要大学生具有优秀的综合素质能力,而且具有这种优秀素质的专业人才在社会工作中会比数学专门人才受欢迎得多。高等学校的教育目标是为生产、服务以及管理前线输送高素质专业人才,因此数学建模的应用就成了高校数学专业学生择业的必备素质和技能[1]。

二、高校数学教学弊端

数学作为科学研究的基础工具,在知识性人才的培养方面具有不可替代的作用,但是当前我国高校的数学专业教学在教学内容和教学方式上存在着一定的弊端。从高校数学的教学内容来看,老师在教学过程中过于重视理论教育而忽视数学的实际应用问题;过于注重解析数学问题的小技巧,而忽视整个解题思路的训练;过于强调例题的经典性,而忽视对新案例的引进,不能对学生进行新思维的锻炼。从教学方式上来看,高校数学老师往往重视对知识的传授而忽视对学生学习方法的指导,使得学生根本不能独立的解决问题,缺乏独立思维能力,只要一遇上实际问题,学生往往会显得手足无措,不知道从哪开始下手。古人言“授之以鱼,不如授之以渔”只有学生学会了正确获得知识的方法,那么他们就能够进行独立自主的学习,在以后的生活和工作中都将受益无穷。从教学手段来看,由于高校学生从高中升入大学一直接受的是应试教育,应试的思维模式已经根深蒂固,习惯了填鸭式的教学方法,他们很不适应大学里提倡的自主学习模式,实践教学环境的缺失,使得学生学到的数学知识远离实际应用和社会需求,不利于创造型人才的培养,数学教育模式继续改革。实践调查证明,在高校数学教育中引入数学建模思想和教学方法,能够取得良好的教学效果,很多学生在建立数学模型的过程中逐渐地对数学专业产生了浓厚的兴趣,数学建模思想的引入促进了学生将理论知识与社会实践相结合的学习模式,使学生的学习效率有了显著的提高。

三、数学建模思想和方法在高校数学教学中的作用

数学建模就是指用数学语言和方法将现实信息进行翻译,并对所得数据进行整理、归纳所得出来的数学产物。数学模型经过演绎、推断和求解的过程,最后将得出的推论和结果回到社会现实世界当中进行实践验证,从而完成数学模型由实践到理论,再由理论到实践的有效循环过程。从高校数学教学的角度来看,指导学生运用所学到的数学知识建立数学模型是一种创新性的学习方法,这种方法的运用可以让学生体验综合运用数学知识和方法解决现实问题的过程,能有效激发学生的学习热情,有助于学生创新意识的培养,提高学生数学的综合运用能力[2]。

(一)数学建模思想有利于激发学生的学习兴趣

数学建模的思想过程符合学生对事物认知过程的发展规律,数学建模能有效提高学生学习数学,应用数学的积极性;数学建模从实践到理论再到实践的建造过程,不仅能帮助学生牢固的掌握数学知识,还能有效训练学生运用数学语言和数学方法的能力,帮助学生树立正确的数学观,有效促进了学生在生活中运用数学的意识。数学建模将枯燥无味的数学理论知识转化成了生动形象的现实案例,使学生非常清楚的感受到了数学在日常生活中的应用过程,能有效启发大学生们的数学灵感,提高学生的学习效率。数学建模思想的形成能够让学生在学习方面产生良好的学习习惯,即使在以后的工作及生活中都会受益无穷。

(二)数学建模思想有助于学生创新意识的培养

传统的教学理念主要强调老师在教学过程中的主导作用,老师一味地对学生进行理论知识的传授,将学生当作知识的储存器,过于偏重于知识的灌输,在课堂上留给学生自主思考时间很少,从而抑制了学生创新思维能力的发展。传统的数学教育模式主要注重对数学知识的演绎,对于数学归纳方法则不是太看重;虽然演绎法在数学学习中很重要,有利于学生对数学原理的学习和运用,但是它对学生创新思维意识的形成却没有太大帮助,不能很好的引导学生去创新。要想在数学学习中培养学生的创新思维必须重视数学中归纳法的学习,培养学生从社会现实中善于发现和归纳的能力。所以高校数学老师应转变教育观念,革新教育思想,在数学课堂中引入数学建模思想,有利于提高学生的创新能力。

(三)数学建模思想有助于提高学生的数学应用能力

美国科学院院士格林教授曾说过:“时代需要数学,数学需要应用,应用需要建立模型”。利用数学模型来解决实际问题,不仅需要大学里所学的数学知识,而且需要多方面的综合知识,包括熟练掌握计算机应用技术和对问题的建模能力。老师对学生数学建模能力培养,需要让学生掌握所运用数学知识产生的背景,加深对问题的深入了解,拓展学生的知识面,从多方面提高学生的数学知识水平。

四、数学教学中应用数学建模的具体方法和措施

在数学教学中引入数学建模思想需要以实例为中心,让学生在学习体验过程中掌握数学建模的中心思想和步骤,老师应丰富数学课堂的教学内容,将学生视为课堂主体,采用启发式教学为主、实践教学为辅的多种形式相结合的教学模式,充分让学生体验用数学知识解决实际问题的全部过程,并感受其中的学习乐趣。

(一)从实例的应用开始学习

学生对数学的学习不能只局限于对数学概念、解题方法和结论的学习,而更应该学习数学的思想方法,领会数学的精神实质,了解数学的来源以及应用,充分接受数学文化的熏陶。为了达到教学目的,高校数学老师应结合教学课程,让学生认识到平时他们所学的枯燥无味的教学概念、定理及公式并非空穴来风,而都是从现实问题中经过总结、归纳、推理出来的具有科学依据的智慧成果[3]。将教学实例引入课堂,从教学成果来看,数学建模思想可以充分的让学生理解数学理论来源于实际,而学习数学的最终目的却是将数学理论回归到实际生活应用中去,学生明白了学习数学的实际意义,有助于提高学习数学的兴趣,促进创新意识的培养。

(二)在实际生活中对数学定理进行验证

高校数学教材中的很多定理是经过实际问题抽象化才得出来的,但正是因为定理和公式过于抽象使得学生们在学习时特别枯燥和乏味。因此数学老师在讲授定理时,首先要联合实际应用对数学定理进行大概的讲解,让学生们有个直观的印象,然后结合数学建模的思想和方法,把定理当中的条件当作是模型的假设,根据先前设置的问题情境一步步引导学生推导出最终结论,学生经过运用定理解决实际问题切实的感受到了定理运用的实际价值。例如,作为连续函数在闭区间上性质之一的零点存在定理,在高等数学的学习中有着非常重要的意义。零点定理的应用主要有两个方面:其一是为了验证其他定理而存在,其二是为了验证方程是否在某区间上有根。学生学习这个定理时会有这样的疑问:一个定理是为了验证另一个定理而存在,那么这个定理还有没有实际的应用价值呢?所以我们高校数学老师在讲完定理证明之后,最好能够结合现实生活中的问题来验证定理的实际应用。

(三)结合专业题材,强化应用意识

数学学习涉及到高校的各个专业,拿电子科技类专业来说,毕业生毕业后主要从事有关工程和科学的职业,这些工作要求学生必须具有数学技能和解决科学问题的能力。学生学习数学的目的主要是为了培养利用数学思维分析问题的能力以及解决工作中出现的具体问题的能力,这种职业要求决定了高校学生理解数学思维并使用数学的重要性。因此在大学数学教学中老师需要结合专业的相关知识,根据专业的不同有目的性地选择典型问题进行教学,去掉数学教材中的一些纯数学的案例,能够有效地激起学生的求知欲,在数学建模过程中强化数学思维及数学应用意识,提高学生的专业能力。

五、结束语

综上所述,在大学数学教学中贯穿数学建模思想,等于传授给学生一种良好的学习方法,更是为学生架起了一座从数学知识到实际问题的桥梁,学生只有大量接触与专业有关的现实实例,才能够建立正确的数学观念,提高整体的数学课堂教学效果,拓宽学生解决问题的思路,提高学生分析并解决实际问题的能力,强化专业知识,提升人才培养的力度,为社会各界输送高质量的人才。

参考文献

[1]陈龙.数学建模思想在高等数学教学中应用价值的研究[J].亚太教育,2016(4).

[2]刘君.在高等数学教学中融入数学建模思想的探讨[J].科技视界,2016(5).

数学建模方法范文4

关键词:数值计算方法;数学建模;必要性;途径

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2013)24-0047-02

随着计算机的飞速发展,几乎所有学科都走向定量化和精确化,从而产生了一系列计算性的学科分支,如《计算物理》、《计算化学》、《计算生物学》、《计算地质学》、《计算气象学》和《计算材料学》等,而《计算数学》中的数值计算方法则是解决“计算”问题的桥梁和工具。因此掌握数值计算方法的基本理论及其应用对理工科大学生从事专业研究具有重要意义。那么如何加强学生对计算方法思想的领悟?如何增强学生运用计算方法思想解决实际问题的能力?在计算方法教学中融入数学建模思想是值得我们认真思考的问题,也是解决学与用关系的一个非常有意义的尝试。笔者参加了山东省精品课程数值计算方法的建设,又结合近几年的教学体会,提出以下几点认识。

一、数学建模思想融入数值计算方法教学的必要性

1.传统数值计算方法教学的不足之处。值计算方法,也称数值分析或计算方法,是专门研究各种数学问题的数值解法(近似解法),包括方法的构造和求解过程的理论分析。课程中有大量的、冗长的计算公式,所涵盖的知识面宽,各部分内容自成体系,因而给人的感觉是条块分割严重,逻辑性、连贯性不强。在传统的数值计算方法教学中,主要是讲解定义、公式推导和大量的计算方法等。很多学生在学习的过程中甚至考试结束之后仍然不知道自己所学的算法能在什么地方应用,导致学生学习目的性模糊,学习兴趣减少,因此加强培养学生的数学建模能力具有十分重要的意义。

2.数学建模思想在数值计算方法教学中的作用。所谓数学建模[1],就是将某一领域或部门的某一实际问题,通过做一些必要的简化和假设,明确变量和参数,并依据某种“规律”,运用适当的数学理论,建立变量和参数间的一个明确的数学关系式,这个数学关系式即为数学模型,建立这个数学模型的过程即为数学建模。建立实际问题数学模型的过程如下[2]:实际问题建立数学模型求解模型检验模型结果修改模型再求解模型(可循环多次)实际问题的合理结果。在这个过程中,只有一小部分模型能解析求解,大部分数学模型只能数值求解。这就要用到数值计算方法课程中所涉及的算法,如插值方法、最小二乘法、曲线拟合法、方程迭代求解法、共轭梯度法等,这就启发我们将数学建模的思想融人计算方法的教学中,提供数值方法实际应用的源泉,体现数值方法的价值和意义,使数学教学不再是无源之水,无本之木,不再显得那么空洞,从而把以往教学中常见的“要我学”真正地变成“我要学”。

二、数学建模思想融人数值计算方法教学的途径

将数学建模的思想融人数值计算方法教学中是很有必要的,但具体如何融入呢?结合教育的实际,笔者提出以下几点建议。

1.原则。课堂教学的主要内容和地位而言,数值算法是课堂教学的主要内容,数学建模仅作为一种教学方法而存在,是学生认知的一种途径,它为数值计算方法教学服务,是教学工作的一种延伸和补充,处于从属地位。数值计算方法为主,数学建模为辅,二者不能平分秋色,更不能本末倒置。因此,数学建模思想渗透到数值计算方法教学中的量不能超过一个度,否则,数值计算方法课就会变成数学建模课。

2.在解决应用问题的讲解中渗透数学建模的思想与方法。值计算方法中的数值方法都有很强的实际应用背景,每一种方法都直接或间接与工程应用有关。教学中通过对实际应用背景的描述,可以激发学生的学习欲望和探究心理,从而对学习内容及过程产生强烈的兴趣和需要。这就要求授课教师了解其他相关学科课程,让学生知道所学的知识在不同领域的应用。例如:在信息技术中的图像重建、图像放大过程中为避免图像失真、扭曲而增加的插值补点,建筑工程的外观设计,天文观测数据、地理信息数据的处理,社会经济现象的统计分析等方面,插值技术的应用是不可或缺的;在实验数据处理问题中,曲线拟合得到广泛应用;在汽车、飞机等的外型设计过程中,样条技术的引入使其外型设计越来越光滑、美观。

3.数学实验中渗透数学建模的思想与方法。机环节是数值计算方法这门课程重要的组成部分,也是检验学生理解授课内容好坏的“试金石”。授课教师可以结合实际和所学数值算法设计一些综合性的问题,让学生去解答。学生通过查阅资料,认真研究,建立模型,设计算法,编程上机,调试运行,得出结果。这个过程既提高了学生编程上机能力,对所学算法有了更深刻的理解,而且对提高学生应用所学的计算方法知识解决实际问题的能力也有很大帮助。

4.在案例教学中渗透数学建模的思想与方法。案例教学[3],就是在课堂教学中,以具体案例作为教学内容,通过具体问题的建模范例,介绍数学建模的思想方法。所选教学案例要尽可能结合学生所学专业,并且涉及相应数值算法而又能体现数学建模思想。这样既使学生掌握了数学建模的方法,又使学生深刻体会到数学是解决实际问题的锐利武器。下面具体举一个例子给予说明。例:三次样条插值案例.在工程技术和数学应用中经常遇到这样一类数据处理问题:在平面上给定了一组有序的离散点列,要求用一条光滑曲线把这些点按次序连接起来。解:传统的设计方法是工程技术人员常常用一条富有弹性的均匀细木条,让它们依次经过离散数据点,然后用“压铁”在若干点处压住,在其他地方让它自由弯曲,然后沿细木条画出一条光滑曲线,形象的称为样条曲线

在力学上,通常均匀细木条可以看作弹性细梁,压铁看作是作用在梁上的集中载荷,“样条曲线”就模拟为弹性细梁在外加集中载荷作用下的弯曲变形曲线。设细梁刚度系数是A,弯矩为M,样条曲线的曲率为k(x)。由力学知识:Ak(x)=M(x),M(x)是线性函数,k(x)=■当 时(即小挠度的情况),上述微分方程简化为Ay"(x)=M(x),y(4)(x)=0因此,“样条曲线”在每个子区间可近似认为是三次多项式。通过此数学建模案例可以让学生体会三次样条的基本特征:分段三次光滑,整体二次光滑。

总之,在数值计算方法教学中融入数学建模思想,不但搭建起数值计算方法知识与应用的桥梁,而且使得数值计算方法知识得以加强、应用领域得以拓广,在推进素质教育和培养创新能力上将会发挥重要的作用。

参考文献:

[1]丁素珍,王涛,佟绍成.高等数学课程教学中融入数学建模思想的研究与实践[J].辽宁工业大学学报,2008,10(1):133-135.

[2]曾国斌.试论数学建模与高等数学教学[J].湖南理工学院学报(自然科学版),2008,21(3):92-94.

[3]何莉.在高等数学教学中培养学生数学建模能力[J].科教文汇,2008,68.

数学建模方法范文5

关键词:概率统计;数学建模;途径

中图分类号:G642 文献标识码:A 文章编号:1674-9324(2012)06-0047-02

一、引言

数学建模的基本思想方法是利用数学知识解决实际问题。《概率论与数理统计》是一门应用数学课程,有大量抽象的概念和理论知识,在其教学过程中融人数学建模思想方法,将部分概念、性质、理论寓于一些实际问题当中,选择有现实意义、应用性较强、又便于操作实现的实例,让学生运用学过的概率统计知识去解决,从而激发学生学习的主动性和积极性,提高他们的运用能力。

二、《概率论与数理统计》教学中融入数学建模思想方法的途径

1.通过概念的实际背景融入数学建模思想方法。《概率论与数理统计》课程中的很多概念都是从实际问题中抽象出来的,在教学中应注重让学生看到如何从实际问题抽象出概念、模型,增强学生数学建模的意识与能力。例如,在讲概率的统计定义时,我们可以让学生作“抛硬币”试验,观察出现正面的频率,让学生看到:抛硬币次数较小时,频率在0,1之间波动,其幅度较大,但随着抛硬币次数增大,频率总是在0.5附近摆动,其幅度较小,即频率总是稳定在0.5附近摆动,再给出概率的定义。这样可以让学生理解概率与频率的关系,加深对概率的概念的理解。再比如,讲解“数学期望”这个概念时,我们可以从生活中的“算术平均数”、“加权平均数”引入,加深学生对“数学期望”就是“均值”的理解。

2.通过实例融入数学建模思想方法。《概率论与数理统计》是一门应用性很强的学科,教师应充分利用教材中的实例或自己设计实例进行讲解。使学生学会如何收集、分析数据,建立模型解决实际问题。

例1 如何估计池中的鱼的个数?

问题的分析:池中的鱼的个数是不可能一一数出来的,但可以通过抽样来估计。即先从池中钓出r条鱼,作上记号后放回池中;再从池中钓出s条鱼,看其中有几条标有记号(设有m条)。然后再根据收集到的资料进行估计。

问题的解决:设池中有N条鱼,第二次钓出且有记号的鱼数是个随机变数记为ξ,则

P(ξ=k)=■,k为整数,max(0,s-N+r)≤k≤min(r,s)

记L(k,N)=■,应取使L(k,N)达到最大值■作为N的估计值。但用对N求导的方法相当困难,我们考虑比值R(k,N)=■

可以看出当且仅当N<■时,R(k,N)>1,即L(k,N)>L(k,N-1);当且仅当N>■时,R(k,N)<1,即L(k,N)<(k,N-1),故L(k,N)在■附近取得最大值,于是■=■

这个例子不仅使学生学会了如何收集、分析数据,建立模型解决实际问题的方法,也加深了学生对最大似然估计的理解,增加了学生学习概率统计的积极性和主动性。

例2 (摸球模型)摸球模型是指从n个可分辨的球中按照不同的要求,依次取出m个,计算相关事件的概率。一般来说,根据摸球的方式不同,可分四种情况讨论:

把可分辨的球换成产品中的正、次品,或换成甲物、乙物等就可以得到形形的摸球问题,如果我们又能灵活地将这些实际模型与表中的模型对号入座,就可以解决很多有关的实际问题,例如产品的抽样检查问题、配对问题等。

例3 (质点入盒模型)质点入盒模型是指有n个可分辨的盒子,m个质点,按照不同的方式,把m个质点放入n个盒中,计算相关事件的概率。一般来说,根据放入的方式不同,可分四种情况讨论:

质点入盒模型概括了很多古典概率问题。如果把盒子看作365天,(或12个月),则可研究个人的生日问题;把盒子看作每周的7天,可研究工作的分布问题(安排问题);把人看作质点,房子看作盒子可研究住房分配问题;把粒子看作质点,空间的小区域看作盒子又可研究统计物理上的模型;把骰子看作质点,骰子上的六点看作盒子,可研究抛骰子问题;将旅客视为质点,各个下车站看作盒子,可研究旅客下车问题,等等。

3.通过开展社会调查融入数学建模思想方法。把概率统计思想方法应用到实践中去,这是我们教学的最终目的。有意识地组织学生开展一些社会调查活动,如指导学生收集当地科技、经济、金融及管理等数据资料,运用概率统计知识,建立相应数学模型,进行分析与预测,这个过程就是数学建模的整个过程,这不但增强了学生数学建模的意识与能力,而且培养了学生运用概率统计知识解决实际问题的能力。

总之,在《概率论与数理统计》课程教学中融入数学建模思想方法,不但搭建起概率统计知识与应用的桥梁,而且使得概率统计知识得以加强、应用领域得以拓广,是提高学生学好概率统计课程的有效途径。

参考文献:

[1]姜启源.数学模型[M].北京:高等教育出版社,1993.

数学建模方法范文6

一、当前高职院校数学教学现状

(一)学生整体素质偏低

在高职院校中,学生数学成绩出现整体较差的情况,对教学内容难以理解,学习很吃力,很难接受带有难度的新知识.学生的抽象思维能力差,增加了正常教学的难度.

(二)教学方式机械化

这种教学方式严重制约了学生的思维开发.在高职数学教学中,大部分院校仍然采用传统的教学方式,教师机械讲授,学生被动学习,学生没有足够的时间进行思考和想象,严重束缚了他们的创新思维的开发.这种与现代化教育不相协调的教学方式不利于高素质人才的培养.

(三)教学内容重理论,轻实践

长期以来数学教师主要传授给学生的就是让他们会公式、会计算方法,能够举一反三地套用公式,与实际联系甚少,忽视了理论联系实际的训练.学生不理解数学知识有什么用,被动的学习只会降低他们的学习兴趣和学习主动性.

二、数学教学中渗透数学建模思想的重要性

(一)数学理论是为了满足实际应用的需求而产生的,运用数学知识来解决实际问题就必须将数学模型,即数学建模,添加到数学教学中.数学建模即运用数学思想、方法和知识解决实际中遇到的问题,是把实际问题和数学知识结合在一起的桥梁和途径.

(二)教师可以在完成基础知识教学之后给学生介绍合适的数学模型,这样可以让学生在加深对基础知识的理解的同时,在实际生活中能更好地应用数学知识.数学模型凭借其实例广阔的背景应用,可以有效地提高高职数学教学的质量.学生可以根据模型中的实例进行探究,了解数学知识在各领域中的应用.

(三)在数学教学中渗透数学建模思想,可以充分调动学生分析问题、解决问题的积极性,激发学生学习数学的兴趣,让学生重新认识到学习数学的实用价值.数学建模可以达到传统教学无法比拟的效果.

(四)在数学教学中渗透建模思想,可以提高学生相互协作的能力.这样做不但可以使问题圆满解决,还能让学生在团队中得到启发,得到补充.因此,数学建模有利于培养学生团结协作、勇于攻关的意识.

三、数学教学中渗透数学建模思想的实现途径

(一)应用现代化信息技术,在实践中加强数学建模理念

计算机的应用已经成为现代化教学中必不可少的一种手段.在计算机中可以把建模的重点难点以简单的形式呈现出来,如模型构造、模型检验和模型推广应用等.教师在讲课过程中也可以向学生介绍一些实用的数学软件,增强学生的动手能力,在操作过程中把被动学习变为主动学习,在“做”中发现数学的魅力.

(二)调整教学内容,渗透数学建模思想

高职数学课程在设置和教学内容上存在着一种弊端,即重视基础理论知识,轻视实践应用的重要性.然而数学建模所需要的是把数学的学习方法和数学知识结合起来,重新重视离散的数值计算等教学内容.因此,调整课程教学内容,把数学建模思想渗透到课堂教学中去已经显得尤为必要了.

(三)从习题方面着手,在教学中渗透数学建模思想

做习题对检验学生的学习能力和知识的运用能力,是一个重要环节.教师可以在教材后面的每一章节中选出一些具有简单性、综合性的实例,供学生讨论、学习.例如,在学习导数之后,教师可布置学生运用导数、极值和最值的相关知识,解决一些生活中常见问题,如资源管理、最大利润、造价最低、征税问题等.通过习题教学渗透数学建模思想,不但可以让学生了解、掌握数学建模的方法,而且能让学生在做习题的过程中巩固所学的知识,提高实践能力.

(四)从考试方面着手,在考试方式和考试内容上渗透数学建模思想