生物医学工程的发展方向范例6篇

前言:中文期刊网精心挑选了生物医学工程的发展方向范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

生物医学工程的发展方向

生物医学工程的发展方向范文1

美国生物医学工程本科教育注重学生生物医学以及相关的工程学背景双方向的培养,使学生不仅在生物医学工程、生物医学科学及其相关领域内可以继续深造,同时能为在医学、管理和法律等方面继续谋求发展打下坚实基础[2]。通过分析约翰霍普金斯和凯斯西部保留地2个美国具有代表性的大学的学生毕业情况,发现在过去几年里约有2/3生物医学工程本科毕业生选择继续深造,研究方向涉及医学、生物学和工程学在内的各个领域。美国生物医学工程本科教育的培养目标集中在如何提高学生运用数学、物理学、工程学的原理去解决医学问题的能力,培养学生在相关研究领域的学习兴趣,筑牢学生在职业中的实践基础抑或拓展其未来继续深造的可能性,加强学生对职业操守与伦理责任的认识。我国生物医学工程本科教育的培养目标相比美国较具体,主要是以适应岗位需求导向为教育思路,注重培养学生的专业性,毕业生所从事的研究及工作领域相比之下较为局限,缺乏为毕业生后续发展奠基和能力塑造的前瞻性。中美生物医学工程本科教育培养目标出现如此的差异化,主要因为两国在生物医学工程领域发展的阶段、程度及背景上存在差距,这重点反映在教育理念上的不同:美国更加注重本科通识性教育和职业素质的培养,特别是学生可持续发展能力和产业服务技能的培养;中国仍然是以专业化的教育为主,更加注重培养学生在具体专业领域内从事具体工作的技能。

2师资队伍之比较

在美国高校的生物医学工程专业,不仅有负责课程性教学、专业化指导以及自身科研的本系导师,还拥有大量外系以及与研究所联合的教师。以霍普金斯大学为例,它的生物医学工程专业拥有100多名教师,但其本系的教师只有42名,其他均为外系教师,这些教师主要来自于药学院和工程学院。其学科背景更是丰富,涉及到电子学、材料学、数学及统计学、机械、化工等诸多方面,这种充分利用学科间的优势进行教学的模式,不仅丰富了生物医学工程专业,更为共同促进学科发展发挥了强大的推动作用[3]。随着近些年的发展,我国各高校的生物医学工程专业的师资水平有了显著提升。但与美国相比,在联合培养方面还有一定的欠缺,在与其他专业相关领域专家教授的联系方面做的还不够,各高校间的交流程度有待提升。

3课程设置之比较

美国高校的本科课程突出通识化、职业化,学制采用四年制,课程主要分为5个方面:(1)科学基本知识;(2)工程类核心课程;(3)生物医学类核心课程;(4)人文与社会科学;(5)工程类选修课程。其中工程类核心课程类似于国内的专业基础课,而工程类选修课类似于专业课[4]。在4a本科教育中,第1a主要进行通才教育,学习基础知识;第2a学生可根据个人兴趣及就业取向选择主修专业,学校安排相关专业领域的教师帮助选修工程课程并进行科研实践研究指导;最后2a学生则主要进行某一传统工程领域及其生物应用方面的学习。美国生物医学工程本科教育以能力为导向,特别关注于知识背景领域的宽度以及课程与职业发展的密切性,重视人文、社会科学等方面的教育,为今后学生在职业选择上创造了广泛有利的发展条件。我国生物医学工程本科的课程设置则主要集中于影像设备和医学电子工程学这种更为专业化的课程上,基本上没有高校针对生物医学工程自身产业化的过程及其背景等相关知识进行认知性教育。相对于专业教育,在学生职业素养和人文素质方面的培养稍显不足。学生本人对专业课程的自主选择度不高,能够选择的专业课程有一定的局限性。由此可见,我国的生物医学工程本科教育课程设置更加突出技术性和专业性,学科之间的跨度不够,学科交叉性不足,很难实现学科间的共同促进和发展,导致能够帮助学生在未来的职业选择和发展中跨领域发展的可能性降低。各高校在教学科研方面的特长开展,联系实际不够紧密,过分强调专业型技术人才培养,一定程度上与当前知识快速更新的时代脱节。

4实验实践能力之比较

美国高校非常重视学生实验实践能力的培养。生物医学工程专业最早在美国发展,积累下了丰厚的科研基础力量,并且大多高校具备条件优越的实验室,且实验室资源十分充足,为学生科研实践能力的提升提供了优越的条件。例如,哥伦比亚大学和莱斯大学在生物医学工程本科教育中,实验室课程占很大比例;杜克大学重视培养该专业的学生在实验中解决实际问题的能力;弗吉尼亚大学生物医学工程专业的实验课程平均每周超过3h。由于我国生物医学工程专业发展时间相对较晚,目前各高校的专业实验室资源有限,并且对本科生不完全开放,实验条件相对落后,因而在课程设置中实验课比重相对较少。另外,在实践实验能力培养方面相比之下重视程度不高,设置的实验课多半是验证性实验等,缺乏创新性,不能充分调动学生的积极性,也不能发挥学生的主观能动性,因此学生的动手能力得不到充分有效的锻炼。据统计,我国许多高校本科生的实验课时不到总课时的1/6,较美国高校水平差距较大。

5对我国生物医学工程专业本科人才培养发展模式的启示

通过比较中美两国生物医学工程专业本科人才培养模式,发现了我国在该专业本科教育领域存在的不足。针对如何更好地开展生物医学工程本科人才培养,更好地发展我国生物医学工程教育,总结了以下感受与启示。(1)结合我国生物医学工程的发展趋势,确立适合我国生物医学工程发展现状的人才培养目标。目前,我国生物医学工程专业还处于发展的初期阶段,但伴随我国经济的持续发展、技术领域的更新进步,该专业将会进入到一个快速发展的时期。因此,我国生物医学工程本科教育应适当借鉴美国高校的培养模式,更加注重为研究生培养打下坚实基础,而本科阶段主要集中在理工基础知识的掌握以及生物学与医学背景的了解上,从而为学生下一阶段在某个研究领域的继续深造创造有利条件[5]。同时,我国生物医学工程本科教育还要注意与产业发展相结合,致力于培养既能推动科研发展又能满足产业化需求的高素质复合型人才,为该专业下阶段的跨越式发展进行力量储备。(2)根据学科发展的规律及特点,逐步实现我国高校师资队伍的有机整合。生物医学工程专业属于交叉学科,是理、工、医等多学科的交织融合。美国生物医学工程本科教育的教师很多都是各学科分支的领军人物,将他们整合在一起组成师资队伍顺应了学科发展规律,发展势头必然明显。随着我国生物医学工程专业的发展,目前国内也有一大批该领域的专家学者,他们在各自的研究领域都有着不菲的成绩,掌握着丰富的理论知识与科技前沿技术,对临床需求有着深刻的认识与理解。因此,各高校在师资队伍建设方面应当充分考虑生物医学工程专业的发展规律,真正理解交叉学科的内涵,一方面通过高校联合优势,集中解决各个分支专业的教学问题;另一方面,尽可能将该领域的专家融入到教育队伍当中,高效整合师资队伍,使其充分体现医工融合的特点,从而为学生提供优质的教学资源,使其真正领会医工结合的真谛与内涵,那么优秀的生物医学工程人才必将源源不断地被挖掘、培养出来。(3)筑牢学生人文素养基础,强化学生实践能力,课程体系设置应基于产业市场需求和科研发展。美国生物医学工程的本科课程尤其以专业课程设置突出其学科本身涉及面广的特点,同时注重学生人文素质的综合培养以及实验实践能力的有效锻炼,具有相当的灵活性,并且能够结合科研优势突显重点。我国开设生物医学工程的各高校应该充分借鉴学习这些经验做法,并结合各高校的实际情况,贴合自身的科研方向与优势,有针对性地指导学生进行科研实践,提升学生的实验实践能力。同时,要强化研究与产业的双方面发展,将市场需求纳入课程设置的考虑因素,并且融合学生自身的兴趣及未来就业形势等相关方面,灵活创新地设计课程,争取培养出具有特点鲜明的、发展方向广泛的、综合素质与竞争力强大的医工人才。

6结语

生物医学工程的发展方向范文2

关键词: 传感器 课程建设 生物医学

随着近年来科学技术的发展进步,生命科学已经处于从定性医学走向定量医学的崭新阶段。生物医学工程即结合理、工、医等各门学科的知识和技术手段解决医学检测、诊断、治疗和信息化管理等问题,为医学诊断和研究提供高科技含量的现代医疗装备。纵观我国的生物医学工程领域医疗器械的发展,与世界先进国家的水平相比,仍存在非常大的差距,国内有近70%的医疗器械市场被发达国家的公司瓜分;在高档医疗设备市场,更呈现出进口产品几乎独霸天下的局面,其中以GE、西门子和飞利浦三大医疗集团为突出代表。因此,发展我国的生物医学工程,提高医疗仪器的研发技术水平是机遇与挑战并存的;根据社会发展与市场需求,努力提高我国各个院校和科研机构生物医学工程专业的人才培养,是发展我国医疗检测设备研发水平的基础和保障。生物医学传感器作为医疗仪器的第一个环节,延伸了医生的感觉器官,可帮助医生进行客观正确的定量分析;同时生物医学传感器的灵敏度和可靠性决定医学测量系统的精度和有效性,因此在医学仪器设备的研制和开发及使用中都占据重要的地位。

对于生物医学工程专业的本科生教学来说,《传感器与医学工程》在生物医学工程专业的课程体系中起到承上启下的作用,上承模拟电路、数字电路及生物医学电子学课程,下接医学仪器设计课程。传感器与医学工程不仅是对生物医学电子学课程的必要补充,而且是生物医学工程设计实践课程的重要基础,该课程的学习能够有效加深学生在医学电子系统设计中对传感器这一关键部件的理解。学生通过生物医学电子学的学习,掌握信号检测与处理的电路设计;通过嵌入式系统课程的学习,提高信号处理的硬件编程能力;再经过传感器与医学工程课程学习,学生具有从信号采集、检测、分析到处理等一系列系统设计与开发的能力。因此,作为一门重要的专业基础课程,同时是一门能直接应用于工程实践的技术课程,该课程的教学质量和效果直接决定该专业学生对传感器和现代医学检测概念的理解及新型医疗装备的使用与设计。

一、目前在课程的教学内容和教学体系方面存在的问题

1.生物医学工程是一个年轻的专业,与传感器与医学工程相关的课程资源不够丰富,现有的传感器与检测原理的相关教材对医用传感器的特色介绍不够突出,不能满足传感器与医学工程课程的教学需求。相关的网络资源方面,大多只是对传统传感器的基本原理的介绍,特别针对生物医学类传感器特点的内容比较欠缺;仅有的教学资源以文字讲解为主,即使有的内容配备一定的图表,也显得单一,不利于给学生以更直观更深刻的理解。

2.对于本课程在内的任何一门课程的教学来说,教师的教与学生的学都应当以教会和学会为目的;然而,目前衡量教会和学会的程度一般都只能通过期末考试的成绩,这种教学缺乏学生的日常反馈的环节,不能使教师随时掌握学生的学习动态和学习当中遇到的困难,以及时调整教学进度和方法,势必影响授课质量。

3.该课程的教学方式仍以传统的课堂讲授为主,偏重理论教学,缺乏实践,不利于充分调动学生的动手积极性;学生只能纸上谈兵,不能更好地解决具体的实际问题,因此教学与社会需求有所脱节,造成学生的考试成绩很好,但是不被用人单位认可。

二、解决问题的若干改革方法

1.改善教学资源,提高授课对象兴趣。充实和完善传感器与医学工程的教学资源,具体可以从教师的课件制作及丰富的动画补充环节加以改善。优秀的教学课件能够使教师以多种软件工具为载体,围绕知识点展开形象生动的讲解,开展以教师制作为主、学生为辅的课件制作方法的尝试,既可以提高课件的多元化内容,使学生更容易理解,又可以充分调动学生的听课积极性,深化学生对知识的记忆和应用。

2.改进教学方法,注意效果反馈。搭建网络平台,方便学生学习,并且将教师与学生的距离拉近,随时随地展开提问与讨论,教师可从中获知学生的学习动态和教学效果,并找到教学方式的改进办法。实时的教学反馈是教学过程中非常重要的一个环节,以网络平台为媒介,建立学生的反馈机制有利于教师实时地调整授课内容和授课进度。

3.加强实验环节,提高动手能力。加强实验环节,例如动手设计试验箱。目前市场上可购买的传感器试验箱很多,但大多集成度较高,不利于学生了解传感器的测试原理和尝试基本测量电路的搭建。因此,试验箱的设计和搭建既是对学生动手能力的培养和锻炼,又是弥补上文所述现状分析中教学资源不足的一种重要手段。

三、结语

对于传感器与医学工程的授课过程,通过提出如上的教学改进思路,通过改善教学资源、改进教学方法、加强实验环节等途径保证课程的有效讲授,使该课程在生物医学工程专业建设中发挥良好的作用。在教学中要重视培养学生对人体生理信号特征和测量基础知识的理解,解决实际问题的能力,充分调动学生的学习积极性,以增强整体教学效果。

参考文献:

[1]张东,程正富.《传感器原理》课程实验教学设计[J].重庆文理学院学报(自然科学版),2006,5(1):84-85.

[2]王平,刘清君.生物医学传感与检测[M].浙江大学出版社.

生物医学工程的发展方向范文3

[关键词]生物医学工程;核心课程群;整合优化课程;教学方式改革;教学评价体系

生物医学工程专业是生物学、医学及工程学交叉构成的一门综合学科。[1]随着我国医疗事业的快速发展,医疗器械(设备)的设计、研发、销售以及售后服务等岗位的需求量逐渐增多,该专业毕业生的就业面也在逐步加宽。[2-3]目前,长治医学院(以下简称“我校”)生物医学工程专业共设三个方向,分别是康复器械工程、医疗设备管理维护和医学物理三个方向。这三个专业方向各有侧重,如康复器械工程方向侧重于临床康复器械的开发、设计、维护与管理等;医学物理方向侧重于医用放疗设备的临床应用及维护管理等;医疗设备管理维护方向侧重于医学仪器的研究、设计、维修和维护等。三个方向培养的人才均服务于医学。为让我校生物医学工程专业毕业生在医疗器械行业获得较高的匹配度和认可度[4-5],学校必须从实际出发,从基础做起,从专业建设上寻求突破,而加强专业建设的基础就需加强课程建设与改革,从教学的源头直接与社会需求对接。我校生物医学工程专业开设的课程包含通识教育课程、学科基础教育课程、专业教育课程、专业选修课及实践教学环节。但在这五部分的课程设置及教学内容上存在一些不足,如:课程独立性较强,课程与课程之间衔接不好;部分课程内容存在重复;教学重理论轻实践等。因此,整合优化本专业的课程结构是教学改革的重点。基于此,本文以我校生物医学工程专业医疗设备管理维护方向为例,结合本专业方向的培养特色、本专业人才需求以及本专业已毕业学生的就业情况,构建核心课程群。

一、核心课程群初构

医疗设备管理维护方向的培养目标是培养既满足临床需要的工程人员,又能够从事医学仪器的研究、设计、制造以及能够从事医疗器械产品的经营、技术服务[3]等工作的人才。根据本专业方向的人才培养目标、企业对本专业学生的基本要求、已毕业学生对本专业课程设置的反馈及就业情况,我校设置了相互衔接,但各有侧重、特色突出的核心课程群。按照本专业方向课程之间的互通性、独立性及综合性,我校将本专业方向课程划分为基础医学课程群、医疗设备课程群及医学信号课程群,每个课程群所包含的课程如图1所示。基础医学课程群是本专业方向学生了解、掌握基础医学的入门课程,学生通过学习医学方面的基本理论,基础知识和基本技能,掌握人体正常功能活动的基本规律、了解生物体的代谢规律及其与各种生命现象之间的联系,为后续医疗仪器在临床上的使用及临床上各类医学信号的分析处理奠定基础。医疗设备课程群是上述三大课程群中的核心,具体包含两方面的内容:一方面介绍影像类仪器(如X线机、超声、MRI、CT等仪器)、检验类仪器(如光谱分析仪、电化学分析仪、色谱分析仪等)及测量与监护类仪器(如心电图机、呼吸机、病房监护系统等)等设备的结构、工作原理、性能、使用方法、故障分析处理以及仪器的设计;另一方面介绍如何购置医疗仪器、购置完成后仪器设备的验收及安装、临床使用过程中设备的维护保养、管理及质量控制。[6]医学信号课程群着重培养学生掌握医疗仪器采集生理信号的原理、过程,以及对采集到的医学生理信号进行分析处理,从而辅助医生完成对疾病的诊断治疗。为打破各核心课程群之间的壁垒,加强核心课程群之间的联系,我校在开设各核心课程群之前,首先开设了生物医学工程导论课程作为本专业方向的学科概论课。一方面,该课程为学生介绍与本专业方向相关的基本理论、本专业方向的发展现状、应用领域及发展方向;另一方面,通过该课程的学习,学生可以了解各个核心课程群在本专业方向中所起的作用及相互之间的联系。

二、核心课程群的教学改革

(一)整合、优化核心课程群的课程本专业方向核心课程群以生物医学工程导论课程为主线,设置了基础医学、医疗设备及医学信号三大课程群。各核心课程群中均设有自身的基础或核心课程,其他课程在此课程上进行延伸或扩展。但是,各课程存在内容多且部分课程内容重复等现象,因此,学校首先需对课程内容进行整合及优化,具体优化策略如下。第一,每个核心课程群的教师团队成立相应教研室,并设立课程群的主要责任人。责任人与承担该核心课程的教师、企业技术人员共同研讨教学内容,对各课程的教学内容进行整合、优化,使其相互交融,又各具特色。如医学信号课程群中信号与系统课程与数字信号处理课程在“离散时间信号与系统的时域分析”“Z变换与离散时间傅里叶变换”等内容上存在重复。因此,根据设置课程的先后学期,数字信号处理课程不再开设重复的内容,而加强突出具有本课程自身特色的教学内容。第二,结合本专业方向的培养目标,培养具备创新精神、实践能力的医工学生,适当调整更新课程群中部分课程的总学时及理论与实验的学时分配比例。[7]如实用传感器课程由原来6/21(理论/实验)学时调整为24(实验);数字信号处理课程由原来总学时54(42/12)调整为32(20/12)。通过总学时调整,学校更加精炼了课程内容,使学生有更多的时间用于探索、发现自身感兴趣的课题。此外,适当增加实验在总学时中的占比,尤其是增加设计或综合性实验所占的学时,可以使学生通过实验的设计、调试等阶段,锻炼并挖掘自身的动手能力及创新思维能力,激发自我主动分析解决实验中遇到的问题;通过实验成果的展示,在一定程度上增强学生的自信心与成就感,激励学生在原有作品的基础上继续扩展或融入更多可实现的设计或功能。

生物医学工程的发展方向范文4

通过评阅国内外研究所、高校和企业的最新研究文献,分析生物医学传感器的研究进展,阐述移动医疗中传感器的研究和发展方向。生物医学传感器的不断创新和发展,从种类、精度及应用等各方面均获得高度关注,可总结归纳为电生理类、生化检测类、心肺监测类及运动监测类。移动医疗是现代医疗发展的必然趋势,移动医疗离不开通讯网络、智能终端以及生物医学传感器,其技术进步为移动医疗的迅猛发展奠定了基础。

[关键词]

移动医疗;生物医学传感器;电极;动态血压

随着移动通信技术的飞速发展,移动医疗产业正飞速发展。移动医疗是指通过移动通信技术、智能终端及便携式生物医学传感器技术的集成,提供方便快捷的生化检测、实时生命体征监测等移动远程医疗健康服务。并可集合临床医疗数据,为医务人员、研究人员和患者提供医疗信息服务。生物医学传感器分为电生理类、生化检测类、心肺监测类以及运动监测类。

1可移动与穿戴监测设备

1957年,Holter首先尝试在临床使用无线电遥测技术的心电图仪,并使用磁带记录,这正是现在24h心电图设备的原型[1]。在移动医疗方面,便携式产品成为了开发研究的重点。随着现代微电子和机械加工技术的发展,使得可以制作出家用型的更加紧凑和方便的设备,如生命体征监测腕表,具有动态血压、心率、血氧及呼吸等监测功能[2-7]。可移动穿戴监护系统,包括生物传感器,便携式数据处理、存储器,数据显示单元。生物传感器或电极可以是传统方式佩戴,也可以设计成嵌入衣服或紧贴皮肤。无线通讯技术的发展也使得各单元之间可通过无线蓝牙等技术连接,避免了使用繁杂的连接线。

2电生理类传感器及电极

2.1电生理测量的新型电极

通常测量心电图(electrocardiogram,ECG)、肌电图(electromyography,EMG)及脑电图(electroencephalogram,EEG)等电生理信号均采用电极直接与皮肤接触的方式,如何提高信噪比、稳定性、不刺激皮肤成为研究重点。临床上较常用的是湿式凝胶电极,而干式电极可以保证电极长期运动下的稳定性,其研究有了很大的进展,但干式电极的可靠性还有待进一步研究。电容型电极,可通过衣服采集ECG信号,由硬币大小的非接触式电容式生物电极和低功率放大器组成(940μW)。Prance等[8]使用电容型电极和一个超高阻抗电位传感器,输入电容10pF、输入电阻1015Ω,用来测量人体周围40cm范围内的电场,可以检测到与ECG同步的波形信号。虽然40cm空气间隙的测量效果比10cm空气间隙的噪声大许多,但仍可以获得较好的结果;并可以同时测量呼吸信号,尽管目前呼吸测量结果还不非常稳定,但此种真正意义上的非接触式传感器将成为电生理测量的新方法。易弯曲的干式表面电极,使用时可以不需要电解质凝胶,也不需要对测量表面进行预处理[9]。Gargiulo等[10]发明的导电橡胶电极和高输入阻抗的放大器,使用蓝牙通讯24h不间断的采集心电信号,可应用于塑身和游泳训练中及监护运动员健康,防止运动员猝死。新材料碳纳米管或微米线阵列电极,Ruffini等[11]通过真空铸造的方法研制出直径6μm、长110μm的微米线微阵列电极,这些微米线可以刺破表皮角质层,增加导电性。采用真空铸造的方法比传统的电沉积或光刻、电铸和注塑(德文Lithographie(LI)、Galanoformung(G)、Abformung(A),LIGA)方法成本更低。

2.2心肺监测可穿戴传感器

鉴于监测心肺功能的重要性,可穿戴是监护设备成为近数十年来的研究目标。其中包括测量反映心肺功能的基本生理指标,如心电、血压及呼吸等。其在小型化、微型化方面具有显著改进。欧盟“第五框架信息科技计划”中的健康计划,提出实现心电和呼吸等生命体征的实时监测。为用户研究开发穿在身上的织物传感器,且不会带来任何不适感。织物传感器采用具有导电性和压敏电阻特性的智能纤维和纱线编织而成。与常规方法相比,该系统具有很高的可靠性和满意度,并且可以长时间的应用于康复训练或者更高强度的环境中。Mitchell等[12]设计了1件T恤,嵌入织物压敏电阻传感器和Zigbee无线发射模块,用于监控呼吸,呼吸信号可实时显示,结合无线生物反馈系统可以用作呼吸训练(治疗呼吸道疾病,如囊性纤维化)。Rantala等[13]设计出用于监测呼吸和潮气量的光学传感器,传感器具有16根光纤,光强会随着呼吸运动引起的光纤弯曲形变而发生变化,通过换算可以代表潮气量。Fletcher等[14]使用光电体积传感器用来探测脉搏振动,结合研制的皮肤电传感器测量手腕处的信号,可用来评估自主神经的活动。在传输方面提出了同时采用两种类型的网络系统,即内部IEEE802.15.4网络系统,用于为多个传感器提供服务;另一个是使用蓝牙网络与手机通讯。关于血流动力学检测,移动血压监护仪(ambulatorybloodpressuremonitor,ABPM)已成为商业化研究成果中最成功的案例之一。虽然这种设备非常方便实用,间隔30min或者更长的时间来测量一组血压值。然而,该仪器测量的血压数据量将<48次。而由于人体每次心跳搏动的差异,一日的血压变化却可能达80000~100000种,ABPM只能采集全部血压数据的0.05%,不能完全满足动态采集的需要。因此,如何测量与心跳同步的血压变化,同时采集心输出量数据,并能结合其他心血管数据,将是非常重要的。通过详细分析血液动力学的响应,可以研究心血管系统在应对各种日常压力时的自主调节能力。Nakagawara[15]基于体积补偿法和心电导纳法,开发了与心跳同步的血压动态监测系统;Ogawa等[16]已将该系统应用于心血管应激反应研究,使用Gregg等[17]的方法分析日常活动中单次心跳的变化,成功分离了主动、被动和混合压力。

2.3生化检测传感器

迄今在移动医疗领域中,人们研制了很多种类的可穿戴生理监测的系统。然而,很少有监测生化参数的传感器。如能准确、便捷的检查生化参数,将为更好的监测个体的健康情况乃至诊断疾病带来可能。Yang等[9]直接将生物传感器印制在内衣上,可以监测微量的化学物质,亚铁氰化物(0~3mmol/L)、过氧化氢(0~25mmol/L)及还原辅酶NADH(0~100mmol/L)。此外,“BIOTEX”的欧盟计划[18]资助开发了一种基于织物的可穿戴生物传感器,用于监测汗水的pH值和Na+含量。该传感器由一个织物泵,一个pH值敏感染料和LED光电探测器组成,其中织物泵由超吸水材料制成,可不断从人体皮肤吸入汗液,LED光电传感器用来检测由汗液内溶质含量改变而导致的pH敏感染料颜色变化。同时,还使用金电极和离子敏感膜制成Na+传感器来监测汗液里Na+含量。在生化检测中,血糖测量对糖尿病患者是非常重要的,但现今的方法大部分都是有创的,需要在手指上针刺取血,采用光化学法或电化学法进行检测。在不需要血液样本方法里,经皮提取分析物质是其中一种值得关注的方法,市场推出的一种血糖检测装置GlucoWatchBiographer即是采用离子渗透法。然而,这种方法也有对皮肤刺激较大之类的缺陷。因此,需求度最高的是开发无创血糖测量仪器,如基于表面等离子体共振等光学技术、光声测量、光学相干断层扫描以及漫反射光谱法等。不同于需要复杂仪器的技术,近期开发的一种采用分光光度测量技术的方法,命名为“脉冲血糖测量”,是基于高速近红外光谱结合多变量分析的方法。虽然这种方法的微型化检测仪器尚未研制出,但完全无创的血糖仪在糖尿病患者的日常监护中有着广泛的需求和前景。

2.4运动监测传感器

在老年医学、康复、运动训练和常规医疗保健领域,运动或步态监视的重要性受到广泛认可。在康复领域,医师必须评估如站起、散步或其他活动的运动特征,直接观察和定量评估的方法最为理想。以往的方法是使用三维运动捕捉系统进行直接观测,但这种方法往往具有一定的局限性,数据处理起来也较复杂,不大适合实际应用。一些可穿戴的设备使用加速度计、陀螺仪等传感器,能够监测运动、步态和姿势;Motoi等[19]通过对矢状平面、步态和步行速度的研究,可监测人们姿势的静态和动态变化。该系统使用加速度计和陀螺仪原理,并将三组微型传感器分别固定在躯干、大腿和小腿上,通过测量相对与重力方向的角度变化分析运动状态。每组传感器上都有Ziggbee无线通讯模块和SD卡,保证实时观测和长时存储。这套系统在定量评价康复计划的效果和日常生活监测方面都有很高的可行性。Lee等[20]研究出运动训练的传感系统,将三轴加速度计和导电织物电极嵌入衬衫中,可同时监测运动以及实时心电图,并建立了基于IEEE802.15.4和Zigbee传感网络。这种类型的传感网络配合传感器的微型化改造,可以实现多种数据采集。

3展望

通过文献评阅、调研国外近年来生物医学传感器的研究进展发现,多功能集成化、无创化及微型化是移动医疗中传感器的发展方向;集成化创新,即将现有的种类的传感器集成在同一可穿戴设备上是发展标志,但集成成为重要课题,既要求并行工作,又不能相互干扰等。无创化主要针对生化检验类传感器,作为日常监测使用人们对无创无痛的要求也越来越高,新技术、新算法的发展为实现这一目标奠定了基础。微型化的要求也是便携性的要求,即随时随地都可以使用监测,对日常生活不产生影响,既要求体积小、重量轻,也不能降低准确性和精度。这些新思路对于我国的科研和产业发展具有借鉴意义。移动医疗的迅速发展,势必将带动便携式、多功能传感器的发展,同时,更多创新性的传感器及传感系统将更大程度的促进移动医疗的发展,从而根本上转变现有的医疗服务模式,以患者为中心,实现随时随地的健康监护和健康管理服务[21]。

参考文献

龚渝顺,吴宝明,高丹丹,等.一种抗干扰穿戴式血氧饱和度监测仪的研制[J].传感技术学报,2012,25(1):6-10.

郭维.穿戴式人体生理参数监测系统的研究与实现[D].吉林:吉林大学,2012.

刘光达,郭维,李肃义,等.穿戴式人体参数连续监测系统[J].吉林大学学报:工学版,2011,41(3):771-775.

王子洪,吴宝明,银健,等.具有人体活动情景辨识的穿戴式心电监测仪的研制[J].生物医学工程学杂志,2012,29(5):941-947.

张云浦,李玉榕,陈建国,等.基于MEMS传感器的可穿戴式老年人跌倒监测系统的设计[J].生物医学工程研究,2014,33(3):170-175.

生物医学工程的发展方向范文5

关键词:诱发脑电;事件相关电位;信号提取;生物医学信号处理

中图分类号:TP391文献标识码:B

文章编号:1004-373X(2008)22-139-03

Review of Methods for Extracting Evoked Potential

HUANG Rihui,LI Ting,FU Yan,WANG Zhaodong

(School of Information,Wuyi University,Jiangmen,529020,China)

Abstract:Estimation of Evoked Potential(EP)is one of the pop issues in biomedical signal processing.As the review of extracting evoked potential,the theories of EP estimation using the methods of coherent average,independent component analysis,wavelet transform,time sequence analysis and neural network in application are introduced.The problems in application with the upper five methods are indicated,it provids a theory basis for research.

Keywords:evoked potential;event related potential;signal extract;biomedical signal processing

诱发脑电(Evoked Potential,EP)是指人为地对外周感觉神经、感觉通路与感觉系统有关的任何结构进行施加适当刺激时所引起的脑电位变化,事件相关电位(Event Related Potential,ERP)是一种特殊的诱发脑电信号,两者区别主要在于EP是受感觉刺激(视、听或体感)后神经系统对刺激的直接电生理反应,ERP则是受试者受某一事件刺激后,对该事件所携带的某种信息的反应,涉及到人的高级认知活动。

在实际中,由于诱发脑电总是淹没在较强背景噪声(包括自发脑电、工频干扰、眼电、肌电、心电等) 中,其幅值只有0.2~20 μV,信噪比为0~10 dB,而且脑电信号本身又具有随机性和非平稳性,诱发脑电和自发脑电在频谱上有相当大的重叠区,使得从观测的脑电信号中提取诱发脑电更加困难。目前用于脑电信号提取的主要方法如下文所述。

1 相干平均

目前较多用于提取诱发脑电的方法是相干平均[1],采用相干平均法进行诱发脑电提取是基于以下3个假设的:

(1) 诱发脑电和噪声为加法性的关系,且相互独立;

(2) 每次刺激后所获得的诱发脑电波形是一致的,即诱发脑电为确定性信号;

(3) 噪声与刺激无关,且是零均值的随机信号。诱发脑电、噪声和记录到的信号表示如下:

由于各次记录下来的诱发脑电信号基本不变,而自发脑电及其他噪声信号却是随机呈现的,故式(2)中的第二项1N∑ni=1ni(n)=0。因此,叠加平均后得到的诱发脑电信号的信噪比提高了N倍。由于各次刺激和响应间的潜伏期有随机性[2]:

其中,ni是随机的潜伏期,在进行记录的信号xi(n)累加时不能简单地以刺激开始时刻作为对齐数据的参考点,而需要对齐各次记录信号后再进行叠加。用原始模板0(n)和xi(n)做互相关,由互相关极大处得到延迟ni,对齐后再做平均,并把平均后的结果作为新的模板。

相关平均可以减少不相关自发脑电、噪声干扰的影响,并可以突出诱发脑电;但这样需要耗费更多的时间来进行实验,而且并不是每次实验都会产生诱发脑电,相干平均后反而会使得诱发脑电更小[3]。

2 独立分量分析

独立分量分析(Independent Component Analysis,ICA)是信号处理领域在20世纪90年代后期发展起来的一种全新的处理方法。ICA的发展是和盲信源分离(Blind Source Separation,BSS)紧密联系的,并在通信、特征提取、生物医学信号处理、语音信号处理、图像处理等方面得到广泛的应用。近年来,ICA逐渐应用于脑电信号处理中,如用ICA进行眼电、肌电、工频干扰等脑电伪迹(artifact)的去除[4],及单次(或少次)的诱发脑电信号的提取[5],并比较了使用PCA和ICA进行脑电去噪的效果[6]:

(1) 后者适用于去除更多不同种类的脑电干扰;

(2) 分离分析不需要分开不同类型的干扰;

(3) 同时把EEG和干扰信号分离成独立分量;

(4) 在训练完成后,能同时提取各通道中的无干扰的脑电信号;

(5) 在大部分的情况下,ICA比PCA保留更多有用的脑电信号。

独立分量分析是基于信号高阶统计量的信号处理方法[7],其基本含义是将多道观测信号按照统计独立的原则通过优化算法分解为若干独立成分,复现出原来的独立信源。前提是各源信号为彼此统计独立的非高斯信号(最多有一个源信号符合高斯分布)。

在以往的多导信号处理中,主分量分析(Principal Component Analysis,PCA)和奇异值分解(Singular Value Decomposition,SVD)是较常用的方法之一,但按PCA或SVD分解出来的各分量,只能保证它们之前各不相关,除非它们都是高斯过程,才可以保证各分量之间相互独立。ICA不仅实现了信号的去相关,而且要求各高阶统计量独立。

ICA的基本原理框图如图1所示[8],多导观测信号X是由多个等效源S(独立信源)经混合系统A组合而成。ICA的任务是在假定各等效源S独立且S与A均为未知的条件下,求取最优的解混系统B,使得X通过B后得到的Y逼近S。

图1 ICA原理图

独立分量分析实际上是在某一衡量独立性的优化判据最优的意义下寻求其近似解,使Y中各分量尽可能独立;Y与S不但只是近似,而且在排列次序和幅度上都允许不同。较常用的判据如下:互信息极小化,信息极大化,极大似然判据,代价函数极小化等。

由于各种伪迹与脑电信号在时间上是相互独立的,而且观测信号可视为它们与脑电无延迟的线性组合,伪迹等效源的数目一般比头皮上测得的脑电导数要少,所以可以应用ICA来进行脑电去噪,并已经取得了很好的效果[4]。

也有一些研究者把ICA应用于诱发脑电信号的单次提取中[5],主要是假定诱发脑电和背景脑电EEG为相互独立的信号成分,通过寻找线性变换,在上述优化判据最优的意义下,将观测到的脑电信号分解为尽可能相互独立的成分。在将观察信号分解成相互独立的分量以后,为了达到增强或提取诱发脑电信号的目的,把不相干的分量置零或对其中的某些分量幅值做适当的衰减,然后再用处理后的独立分量重建原始信号。

3 小波变换法

如果信号x(t)∈L2(R),小波变换定义为信号x(t)和小波函数ψa,b(t)的卷积:

小波变换是同时具有时域和频域的良好局部化性质的时频分析方法。小波变换的主要优点在于它具有可变的时-频分析窗口,对于低频信号可用宽的窗口分析,对于高频信号可用窄的窗口分析。这样小波变换可以在所有频率范围内为信号分析提供最优的时-频分辨率。而且,由于小波变换窗口范围能够自动地适应每个尺度的瞬时事件,因此它能够精确地检测到神经信号定事件产生的时间、瞬变程度及其频率随时间变化的情况,所以特别适合于分析脑电信号等非平稳信号[9,10]。

在诱发脑电信号处理方面,主要应用小波变换的多分辩率分析,当尺度a较大时小波视野宽而分析频率低,可以观察信号的概貌;当尺度a较小时小波视野窄而分析频率高,可以观察信号的细节。但不同a值下分析的品质因数(指中心频率与带宽的比值)却保持不变。

如果把小波ψj,k对每一分辨率j所产生的L2子空间用Wj表示,当j∞时WjL2(R),包含整个平方可积的实函数空间。则空间L2可以分解成一系列的子空间Wj之和[9]:

L2=∑j∈ZWj(6)

定义子空间为:

Vj=Wj+1Wj+2…j∈Z(7)

子空间Vj是L2的多分辨率近似,它是由尺度函数φj,k经伸缩和平移产生的。对于子空间Vj会有一个与之相对应的正交子空间Wj:

Vj-1=VjWjj∈Z(8)

假设有一能量有限的离散信号x(n)a0(n),可依照下面的关系式连续对信号进行分解:

aj-1(n)=aj(n)dj(n)(9)

这里aj(n)∈Vj,它表示信号的概貌;而dj(n)∈Wj,它表示每一尺度(j=0,1,…,N)的细节。因此对每一分辨率N>0,信号的分解形式可表示为:

x(n)a0(n)=d1(n)+d2(n)+…+dN(n)+aN(n)(10)

因此每一分辨率分解把该级输入信号分解成一个低频的近似信号和高频的细节信号。

诱发脑电是由刺激引起的观测脑电信号中的变化,它与刺激作用存在锁时关系。尽管诱发脑电淹没在强背景噪声中(含自发脑电及其他干扰信号),而且部分EEG和EP在频率上重迭,但可根据它们时间位置的不同区别出来。如较常用着实验的P300(事件相关电位的一种),它是在受刺激后约250~400 ms期间脑电产生的正向波峰,频率范围集中在2~8 Hz间,与自发脑电中的θ波(4~8 Hz)和δ(0~4 Hz)在频率上有重叠。

利用小波变换的多分辨率分析后,把与P300有关频带的小波系数保留,然后从保留频带的小波系数中取出在250~400 ms之间的小波系数,用这些小波系数进行诱发脑电信号的重构,从而从强背景噪声中提取出微较的诱发脑电信号。

4 时间序列分析法

由于在诱发脑电中,信号与噪声频谱重叠,一般的滤波方式很难将其分开。有些学者试图通过时间序列分析方法,用AR或者ARMA模型对诱发脑电信号建立数学模型,再通过滤波等方法提取诱发响应信号。

1988年Sprechelsen[11]等的方案中,利用卡尔曼滤波对已知随机信号建立模型,根据前一个估值和最近一个观察数据估计信号的当前值,自动跟随信号统计性质的非平稳性,从而提取出诱发响应信号。

李鲁平[12]等还提出了带外输入的自回归算法和附加信号处理方法两种基于时间序列分析的方法;关力[13]的则提出了维纳滤波在诱发脑电信号处理上的应用。

5 神经网络法

Nishida[14]等1994年提出了用神经网络方法自动提取P300的方案。1999年Fung KSM[15]等提出了一种自适应信号处理与神经网络相结合的方法,文献[16]对这种方法进行了总结。

神经网络可以把专家知识结合进一个数学框架,并通过训练对专家的经验进行学习,而不需要任何对数据和噪声的先验统计假设;但它只能用于提取EP信号的特征,无法提取整个波形,因而丢失了部分重要的信息。

6 结 语

相干平均在实现上较为容易,但相干平均后只反映多次平均的结果,不能反映诱发脑电的逐次变化,而随着实验次数的增多,会使得受试者疲劳或不适,影响实验结果。独立分量分析和小波变换能从单次(或少次)刺激中提取出诱发脑电,但ICA后的各独立分量所对应的物理意义有待进一步研究;如何在减少检测通道数的同时,能有效地分离出各独立分量也是ICA在诱发脑电提取方面有待研究的方向。SVM能很好地区分观测信号中是否存在诱发脑电,但它只能提取特征,不能提取信号,因而丢失了部分信息。如何能有效地在单次(或少次)刺激中提取诱发脑电是这方面研究的发展方向。

参考文献

[1]胡广书.数字信号处理――理论算法实现[M].北京:清华大学出版社,1996.

[2]杨福生,高上凯.生物医学信号处理(二)[M].北京:高等教育出版社,1995.

[3]Bayliss J D.A Flexible Brain-computer puter Science Dept.,Univ.of Rochester,Rochester,NY,2001.

[4]Jung T P,Humphries C,Lee T W,et al.Removing Electroencephalographic Artifacts by Blind Source Separation [J].Psychophysiol,2000,37:163-178.

[5]Jung T P,Makeig S,Westerfield,et al.Analysis and Visuali-zation of Single-trial Event-related Potentials[J].Human Brian Mapping,2001,14(2):166-185.

[6]Jung T-P,Humphries C,Lee T-W,et al.Removing Electroencephalographic Artifacts:Comparison between ICA and PCA.Neural Networks Signal Processing,1998:63-72.

[7]Hyvarinen A,Oja E.Independent Component Analysis:Algorithms and Applications [J].Neural Network,2000,13:411-430.

[8]杨福生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2006.

[9]Quiroga R Quian.Obtaining Single Stimulus Evoked Potentials with Wavelet Denoising.Physica,2000,145(3):278-292.

[10]R.Quian Quiroga,Sakowitz O W,Basar E.Wavelet Transform in the Analysis of the Frequency Composition of Evoked Potentials.Brain Research Protocols,2001,8:16-24.

[11]Spreckelsen M V.Estimation of Single Evoked Cerebral Potentials by Means of Parametric Modeling and Kalman Filtering.IEEE Trans.BME,1988,35(9):691-700.

[12]李鲁平,吴延军,程敬之.诱发脑电动态提取方法研究[J].国外医学生物医学工程分册,1995(18):195-201.

[13]关力.诱发电位检测技术的进展[J].国外医学生物医学工程分册,1995(18):125-129.

[14]Nishida S,Nakamura M,Suwazono S,et al.Automatic Detection Method of P300 Waveform in the Single Sweep Records by Using a Neural Network[J].Med.Eng.Phys.,1994,14: 425-429.

[15]Fung K S M,Chan F H Y,Lam F L,et al.A Tracing Evoked Potential Estimator[J].Signal Processing,1994,36:287-314.

[16]朱常芳,胡广书.诱发电位快速提取算法的新进展[J].国外医学生物医学工程分册,2000(23):211-216.

作者简介

黄日辉 男,1982年出生,广东台山人,五邑大学在读硕士研究生。研究方向为脑电信号处理。

生物医学工程的发展方向范文6

高校校医院是一种为教职员工提供福利型治疗的一种治疗机构。它的经费来源是教育部以高校离、退休人员、在职职工及学生的人数为基础,按照不同标准按年度拨款的。但是由于经费有限,高校医疗经费严重不足。医务人员缺乏培训进修计划。医疗设备基本上是老旧产品,长期使用无钱更换。尤其是承担着检验工作的检验设备更是无法及时更新。这种现状则引发愈来愈多的困难。特别是近年来,随着高校教职工离退休高峰期的临近,有的高校离退人员占全校教职工总数的30%以上,这部分老同志由于多年来积劳成疾,身休状况欠佳,他们需要一种较好的医疗环境。而另外一部分的中青年教师身体则大都处在亚健康状态,突发病和疑难病例呈上升趋势,要具体的诊断出这些年轻老师的身体状况必须借助于检验设备的精密和检验工作人员高超的业务能力。但是,由于经费不足,而高校规模扩大,学生人数成倍增长,学生群体总体上身体较脆弱,有些突发性、传染性疾病在这个群体中流传传播较快,加之时有突发性的事故发生,在这种状态下既使医务人员超负荷的工作,也难及时较好的解决和处置愈来愈突出的医患矛盾。

1.1检验科医务人员业务水平与医学科学发展的矛盾。

高校检验科医务工作人员基本上长期处在满负荷门诊压力之下,仅凭原有知识及经验接诊病人。学校尚未做出一个较为完善的医务人员进修培养计划,有的检验人员从到医院工作一直到离退几十年都没有一次进修学习机会,观念陈旧,知识老化,手段落后。不能面对检验技术的快速发展,对新设备和新的检查手段显然缺乏及时的学习和掌握。检验人员每天面对的病人,只有采取能诊就诊,不能诊就转到社会医院,没有时间和机会开展必要会诊和聘请有关专家作学术交流,以更新现有医务人员的知识结构提高学术水平.

1.2检验科医务人员知识水平与教职员工和学生病情多样性的矛盾

现在的学生几乎都是没有什么严谨的生活规律,经常的熬夜,包夜上网,导致睡眠不足,引起的体质变差,这样就很容易生病。而且出现病情的时候,往往不能很清楚的表述自己的病情。医生对学生询问病情的时候,也是以不知道、不清楚来应付,不能很好的配合医生的治疗,医生问多了,还表现出烦躁和不耐烦的情绪,这样就间接的影响了医生采集病情资料,使医生不能快速的做出诊断,进而进行及时的治疗。此时要确定病情就需要依赖检验科人员利用检验设备方便快速的对病情加以识别和判断,从而帮助医生和学生确诊和治疗。因为医学检验是生命科学与现代分析检验技术相互渗透、相互结合而发展起来的医学技术类学科,它涉及基础医学、临床医学、生物学、化学、物理学及管理学等多学科领域,在现代医学中的地位和影响日趋重要。高等院校可以利用大学优势,为医学检验实践提供了学术、师资和物质上的补充和支持,对培养复合型医学检验人才具有十分重要的作用。

2高校校医院检验科改进措施

高校校医院是我国卫生资源的重要组成部分,长期以来,担负着高校教职学工和家属的医疗、预防、健康保健等工作。但是,在市场经济条件下,高校校医院必须走社会化发展之路没有改革就不会有发展,没有深刻的、深层次的变革就不可能实现跨越式发展。医院应努力建立以市场为导向,以质量为核心的医疗制度,坚持以病人为中心,在适应教职学工和家属医疗服务需求的同时,建立健全完善对付突发性传染性疾病的快速反应机制和防治措施,并与杜会医疗快速反应机制接轨,防治和遏制传染性病源在高校传播和蔓延。并在做到高校自身预防疾病的同时积极为周边居民服务,广泛开拓社会化医疗服务市场,努力加强同本地区和国内大医院的交流合作,与高等教育改革深发展相适应.

2.1提高医务人员业务水平,提高服务环境

医疗改革的宗旨是以人为本,提高全民健康水平,其关键是医务工作者的服务态度和业务水平,医学科学的发展,急需广大医务工作者将自己业务能力和知识结构建立在科学的发展过程中,不断接收新的知识,更新自身的知识结构,对急需的医务工作骨干高校应制定特殊政策予以引进,只有医务人员业务水平提高了,校医院才能走向社会,扩大自身服务渠道。高校可制定医务人员长期学习和培训计划,采取请进来,派出去及举办多种病例讲座和学术报告的形式扩大员工视野,对年轻的医务工作者争取在3-5年内给予一次业务进修培训的机会,高校将医务人员培训列人教师培训计划,使医务工作的业务水平处在不断提高过程中。另外,高校有重点的拨出专项资金,防治建立传染疾病医疗保证体系。积极引导校医院医务人员了解学校有关学科的发展方向,鼓励和支持医务工作者根据医学科学的发展与学校有关学科发展方向相结合,参与医学科学、生物科学及生物医学工程技术等方向的科学项目研究。使有条件的医生与有关科研人员结合,共同攻关,具备条件的校医院不仅可在完成高校教职学工的医疗保证任务的基础上,积极探索社区服务的模式使医院成为国家整个医疗系统中的一部分。

2.2改善软硬件设施,加强人员培训