前言:中文期刊网精心挑选了高科技纳米技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
高科技纳米技术范文1
高科技和高时尚在大多数情况下很难两全,但科技融入时尚给衣服增加了许多新的功能。如最实际的科技应用,如防风、防雨、保温等都是人们户外活动的基本需求,是在征服户外巨大的环境变化过程中逐渐开发的。但是,最近出现了一种新的趋势一含有较高科技成分的奢侈品渐渐为高端客户所青睐。一些讲究款式的消费者,开始关注那些承诺为纳米、防污光纤材质和防褶皱的西服等产品,这样的趋势发展下去,会产生一个必然的结果,即高科技高端产品很快会成为零售市场的宠儿,他们会给商家带来巨大利润,而干洗店将会面临收入困境。
在过去的18个月里,全球知名的时尚品牌,如Hugo Boss、Ren é Lezard和Perry Ellis等,都开始尝试在服装中加入科技元素,使其高端价位的衣服更具高性能的特征(从防污到防皱)。Brooks Brothers兄弟和Nordstrom也开始出售工作服,优雅的西装、领带、裙子和衬衣,高科技的处理都保留在那些职业的服装中。
高科技的特殊性能
传统的专业服装是拥有很大利润空间的系列产品,耐用、可塑性很强的高科技纤维能够抵挡各种形式的物理侵害,因而广泛应用于户外和体育活动之中。一个位于马萨诸塞州的小型公司(Malden Mills Inaustrles)在人造毛的极地系列产品(Polartec)之后,又开创了一个新品牌,深得户外爱好者和美国准军事服装追捧者的喜爱。在今年1月,公司获得了此新产品价值1500万美元的订单。尽管高科技的应用受到了消费者的青睐,但是对时尚的追求,似乎是服装的永恒主体。零售商仍然更关注活泼的、前卫的消费者对服装的需求。优衣库(uniqlo),这个日本最流行的时尚休闲品牌,于去年11月在美国开张了一家别致的“旗舰店”,他们推出了系列饱含高科技元素的户外、运动服饰,旨在打败那些毫无价值的低档衣服。
最近在休闲装和职业装上的科技突破是对传统布料的扬长避短。如材料在创新的基础上,仍保留了如丝绸、棉等材质的手感舒适的正轨纤维元素,并采用了成熟的、耐皱的材质。这样,改进后的时尚布料就通过微波和纳米技术改变了纤维的化学构成成分。
以Brooks Brothers防污领带为例,新的材料实际上是用超薄超细的防护膜包裹了布料上每根独立的纤维,这样的化学再造使得它能够抵御流动性污渍的入侵。与以往不同的是,此种防护型衣料在服装制造工业的各个领域都被广泛使用,而且多次清洗,化学保护成分也不会脱落,目前它已成为化纤中最流行的用料了。这种材质领带的售价每条大约在60―70美元之间。
销量上升
目前,在竞争激烈的时尚服装市场,尽管经过测试的如Brooks Brothers和HugoBoss品牌的高科技商品数量有限,但强调融入先进科技元素的衣服将会成为未来细分市场潜在的最大获利点。NPD集团的首席零售市场分析员马歇尔・科恩(Marshal Cohen)先生表示:“公司意识到通过品牌和形象来细分市场还远远不够,在工业中,市场是可以无限细分的,而科技将会是一个重要的标准,来使我们的产品在市场上变得与众不同。”
消费者逐渐开始关注和选购融入了科技的时髦的职业服饰,证明了市场的新趋势。根据NPD集团去年秋天的一个研究调查显示58%的男人和33%的女人已经购买了抗皱布料的衣服。
虽然目前高时尚和高科技商业服饰在整个服装市场上所占的比重还是很小的,但销售额的增长速度却是十分明显的。整个2006年,在美国男装总销售额为550亿美元的市场中,大约有88亿美元(占16%)是由含有科技性能的衣服(防污、抗皱等)提供的。相比2000年,所占比例上升了将近一倍。对于女性服装来说,高科技的比重相对少一些,大约仅为女性每年1050亿美元的庞大服饰收入市场的2%,约21亿美元。科恩认为,女性消费者购买衣服还是更多地首先关注品牌、式样等,很少有人会很在意衣服材质的性能。
服装材料的研发
对于服装界的这种变化,虽然仅仅是不到五年的事情,但NPD预测到2010年,含有高科技元素的男式服装将会上升50%,女士服装的科技化脚步虽然会比男装晚一些,但是也会在201 2或2013年迎来变革。科技服装的每年潜在收入将会在250亿―500亿美元之间。
一些专家认为随着高科技的理念被坚持和推广,女装一旦融入这样的趋势,那么高科技在女装中的应用和普及速度会比男装更迅速。对此,科恩说:“在时尚领域,成功是具有递推性的,即一个成功会带来更多的成功。一旦一些企业看到、并感知了新思路所带来的成功,那么一切都会跟着发生变化。”
DuPont公司是一家知名的制造特氟纶的企业,现在也进入了高科技材质行业。但是从目前市场来看,还未出现非常流行也具有影响力的高科技服装公司。但是相比高科技进入医疗领域,科恩表示,一些小型实验室的独立发明制造者的研发成果更容易被市场所接受。有一个位于美国加利福尼亚洲埃默里维尔(Emeryville)的Nano-Tex公司是制造纳米高科技布料比较知名的企业。这家公司是国际纺织品集团的成员,他们使用纳米工艺制造出防皱、防油污渗透的纤维材料。
Nano-Tex公司出售自己的技术给一些知名的品牌服饰生产商家,使得消费者从裤子、裙子、衬衣、领带到床单都包含了高科技的应用。基于Nano-Tex公司的纳米技术,著名品牌Eddie Bauer.Gap.L.L.Bean等都推出了综合的高科技服装。
拭目以待?
高科技纳米技术范文2
【关键词】纳米技术 纳米材料 食品安全
1 纳米技术的概述
纳米技术是20世纪末兴起并迅速发展的N高科技技术,随着研究的深入和科学的发展,纳米技术已经日趋成熟并广泛的应用于各种领域,近年来纳米技术在医药上的许多研究成果正逐步地应用于食品行业,在此技术上开发、生产了许多新型的食品以及具有更好的功效和特殊功能的保健食品,纳米材料在食品安全上也发挥着越来越重要的作用。
纳米是一种几何尺寸的度量单位,一纳米为百万分之一毫米,即十亿分之一米的长度。以纳米为基础的纳米技术在20世纪90年代初起得到迅速发展并先后兴起了一系列的像纳米材料学、纳米电子学、纳米化学、纳米生物学、纳米生物技术和纳米药物学,纳米技术就是一种多学科的交叉技术,最终实现利用纳米机构所具有的功能制造出有特殊功能的产品和材料。因此,利用纳米技术制造出来的材料就具有微观性和一些普通材料所不具有的功能。
随着纳米技术的发展,纳米食品生产也取得了很大的成就。目前,纳米食品产品超过300种,一些带有纳米级别添加剂的食品和维生素已经实现商业化。据预测纳米食品市场在2010年将达到204亿美元,因此纳米技术在食品上的研究有着很大的发展潜力。
2 纳米技术在食品上的研究和应用
纳米技术在食品上的研究和应用主要包括纳米食品加工、纳米包装材料和纳米检测技术等方面。
2.1 纳米技术在纳米食品加工中的应用
所谓纳米食品是指在生产、加工或包装过程中采用了纳米技术手段或工具的食品。纳米食品不仅仅是指利用了纳米技术的食品,更大程度上指的是纳米技术对食品进行了改造从而改变食品性能的食品。尤其是利用纳米技术改造过结构的食品在营养方面会有一个很大的提高,在这方面应用最广泛主要有钙、硒等矿物质制剂、维生素制剂、添加营养素的钙奶与豆奶、纳米茶等。
然而纳米食品也存在一些问题,首先由于对于纳米食品的加工主要是球磨法,这就使得在纳米食品生产的过程中容易产生粉料污染,同时现有的纳米技术也会产生成材料的功能性无法预测,纳米结构的稳定性不高等问题。纳米食品还存在另外问题那就关于纳米食品的安全检测并没有个一个同一的标准。目前,国际上尚未形成统一的针对纳米食品的生物安全性评价标准,大多数是短期评价方法,短期的模型很难对纳米食品的生物效应有彻底的认识。而部分纳米食品存在一些有害成分,并且经过纳米化后,这些物质更加容易进入细胞甚至细胞核内,因此副作用也就越大,而这些由于安全检测的标准不统一可能在检测的时候检测不出来,因此纳米食品的安全标准有待进一步统一。虽然纳米食品存在一系列的问题但是纳米技术在食品包装和保险技术中却得到了很好的应用。
2.2 纳米技术在食品包装中的应用
首先,在已有的包装材料中加入一定的纳米微粒可以增加包装材料的抗菌性从而产生杀菌功能。目前一些冰箱的生产技术中已经应用了这种技术生产出了一些抗菌性的冰箱。
其次,由于纳米材料的特殊性质,加入一定的纳米微粒还可以改变现有的包装材料的性能,从而进一步保证食品的安全。目前,部分学者已经成功的将纳米技术应用于改进玻璃和陶瓷容器的性能,增加了其韧性。同时,由于纳米微粒对紫外线有吸收能力,因此在塑料包装材料中加入一些纳米微粒还可以防止塑料包装的老化,增加使用寿命。从而为食品生产提供了性能更加优越的包装容器。
第三,由于纳米材料的力磁电热的性质,使得纳米材料有着优越的敏感性。一些学者已经在研究将纳米材料的敏感性应用到防伪包装上面并取得了一定的成就。新的防伪包装的产生,无疑能够进一步加强普通食品和纳米食品的安全。
第四,经过研究发现纳米技术和纳米材料的一些性能能够很好地解决食品的保鲜问题。经过研究发现传统的食品保鲜包装,在起到保鲜功能的同时还能够产生乙烯,而乙烯又反过来加剧了食品的腐蚀,因此可以说传统的食品保鲜包装并没有能够很好的起到保鲜功能。在纳米技术在研究过程中,发现纳米Ag粉具有对乙烯进行催化其氧化的作用。所以只要在现有的保鲜包转材料中加入一些纳米Ag粉,就可以加速传统保鲜包装材料产生的乙烯的氧化从而抑制乙烯的产生,进而产生更好的保鲜效果。
结语
综上所述纳米技术虽然还有一些不足和缺陷,但是经过多年的研究和发展纳米技术已经取得了很大的进步和发展,并且已经开始应用于生产和生活领域。纳米技术和纳米材料以其特殊的性能不仅能够生产出性质更加优越的纳米食品,同时通过改善包装材料还可以进一步提高食品的安全。
参考文献
[1]杨安树,陈红兵.纳米技术在食品加工中的应用[J].食品科技,2007(9)
高科技纳米技术范文3
关键词:纳米技术;科技成果转化;产业化:技术联盟
0 引言
我国纳米科技的研发始于20世纪80年代,据有关机构统计,2006年以来我国纳米科技在基础研究方面数量和论文引用次数都只仅次于美国,排名全球第二:但在应用研究方面,满足国家重大需求的导向性的应用研究能力不足,研究水平中等;在可转移技术研究方面,能力较差,很多纳米产品只存在实验室里,同国际最新进展相比,我国纳米科技的产业化应用水平仍然处于初始发展阶段。
而在当前形势下,纳米技术产业化对于保持我国纳米科技在基础研究方面已有的优势地位,以及形成新的经济增长点提供科技支撑都具有重要的作用。而纳米技术的跨学科性、实验和技术上的局限性、技术的成熟度不够、研究成本高周期长等问题,这使得纳米技术仅靠一个产业部门或者研究机构将无法加快推动纳米技术产业化进程。所以,迫切需要总结和吸收同外先进的纳米技术产业化经验,完善和优化我国纳米技术产业化模式。
1 纳米技术成果转化的特殊性
1.1 科技成果转化的一般模式
科技成果转化是一项社会系统工程,其主体是企业、高校和研究机构,但政府在其中的规划和组织行为,如科技、产业政策法规,都对转化有不可忽视的重大影响,实际中政府的角色特殊而复杂、科技成果转化的客体为科技成果,在我国科技成果一般分为基础理论研究成果、应用技术成果和软科学成果三大类。
科技成果转化一般可分为以下5个步骤:①技术构思;②获得样品(模型);③小试(将选定的实验品样机研发成产品样机、样品);④中试;⑤规模生产及产业化。
日前促进科技成果转化的机制主要有以下几种:第一,加强科技成果转化的法规建设;第二,建立成果转化专门机构;第三,建立科技园和孵化器,企业尤其是高科技企业既是技术创新的主要承担者,也是技术尤其是高新技术转移和扩散的主要承载者,而催生高新技术企业发育生长的科技工业园和企业孵化器就是技术转移和成果产业化的重要平台;第四,技术许可,大学和研究机构作为专利技术和成果的拥有者,常常通过专利许可和技术转让的方式完成科技成果转化;第五,发挥风险投资的独特作用。总之,科技成果转化需要得到市场、政府、中介的共同支撑,见图1。
1.2 纳米技术成果转化的特点
比起一般的科技成果转化,纳米科技成果转化具有以下几个特点;
第一,纳米技术应用范围广。纳米技术是指在纳米水平上对物质和材料进行研究处理的工作,也就足用单个分子或原子制造新型材料或微型器件的科学技术。纳米技术事实上它不隶属于任何一个学科,而是一个交叉性的,涉及到物理、化学、生物、医学、微电子等等。交叉了不同领域,就会渗透到方方面面,将来也会渗透到我们生活的方方面面。所以说纳米技术将来的应用是非常非常广的,可以应用在材料领域、新能源领域、信息技术领域、生物医药领域、环保领域等等。
第二,纳米技术的创新源头主要是高校和科研机构。大部分企业为生产型企业,缺乏持续创新和应用开发能力,只接受非常熟练的技术,尽管作为高科技企业,理应以技术创新为要务,但是在纳米领域,各企业却均表现的力不从心。
第三,纳米技术研发方向不明确。由于科研机构和高校以科研为主导方向,不直接面对市场,国内很多科研机构和高校只是根据科研发展制定了相应的研究规划。而纳米科技是新领域,目前全世界对它的前景和风险还缺乏足够的认识;纳米科技又是各学科的交叉领域,必须在各学科中找到合适的切入点,研发方向成为科研机构和高校从事纳米技术研究中一个关键问题。
第四,纳米技术应用中有很强的规模经济效应。纳米技术成果转化过程中,企业效益好坏很大程度上依赖于其生产规模,因此生产的总成本绝大部分必须一次性投入,并要在成果应用阶段后追加投资扩大规模,这样对资金的一次性需求和连续需求都比较大。
第五,纳米技术基础研究和应用研究同时产生。不同于一般的科技成果,基础研究和应用研究是严格区别开来的,而对于纳米技术,纳米技术基础研究和应用研究是同时产生,纳米的研究成果是一种产品,如纳米陶瓷、纳米染料、纳米T恤等,那么纳米技术研究机构是纳米技术成果的生产基地。
2 产学研合作缺失成为我国纳米技术产业化的主要障碍
我国纳米技术应用成果处于初期阶段,产业化效果不理想,成果转化率低。如果将纳米产品的成熟程度按中试、批量生产和规模化生产划分,其分布明显呈剧烈递减态势。研究开发和规模化生产的距离较大,大约只有5%的实验室成成果最终能转化为规模化生产。
在纳米科技成果转化过程中,目前存在的主要问题是技术与市场之间的脱节,主要表现在以下两个方面。
一方面,纳米技术属于高新技术,因此回报周期长,按照国际惯例,一个纳米技术企业从建立到突破需要8年时间。而投资者的意图有时不在于项目,而在于筹资,回报周期越短就越促使他们的投资行为。此外,我国许多企业还是生产型企业,缺乏持续的创新和应用开发能力,所以只能接受非常成熟的技术,即中试的放大,其技术选择的接口是产业化链条中比较靠后的阶段,又由于没有雄厚的资金作为支持,这使得国内很多企业不愿意投资到纳米产业中。
另一方面,科研机构往往无力完成从实验室成果到产业化这一过程中的许多复杂的工程化、系统化工作,往往急功近利,实验室成果一一出来,就匆忙“交货”,使得我国纳米技术的技术成熟度比较低,非常不成熟的实验室技术远离市场需求,转化时也没有从市场的角度提出改进的建议,科研机构无法潜心于后续的应用开发和技术支持,技术选择的接口又十分靠前。两者接口的差异,使得纳米技术成果的产业化受到严重影响。
而需求动力和产品订制是纳米技术成果转化的两大动力。需求动力影响纳米技术的扩散和成果转化的实施,而产品订制则影响着纳米技术成果转化的速度和规模。如果实验室的纳米产品无法满足市场需求,研究前期也没有企业愿意产品订制,纳米技术必然不能成功转移,纳米产业化也无从谈起。
3 国外纳米技术产业化模式的经验借鉴
3.1 美国加州纳米技术研究院运营模式
美国加州纳米技术研究院简称CNSI,创建于
2000年12月,是美国加州政府为迎接新技术革命,进一步保持加州在科技和经济上的领先地位而成立的科技创新机构。经过几年的发展,CNSI已经成为美国科研经费最充足、与产业界结合最为紧密的现金技术创新中心之一,无论在学术上还是在技术成果转化以及在纳米技术产业化上都取得了丰硕的成果,这些成果主要依赖于其成熟的运营模式。
3.1.1 CNSI运营模式概况
CNSI是在加州政府、产业界、投资界和专业服务机构的共同支持建立起来的,它以世界名校加州大学洛杉矶分校(UCLA)和加州大学圣芭芭拉分校(UCSB)为技术支撑,通过组建产业联盟和投资联盟,构建了科研平台、成果转化与教育交流平台和投资产业化平台,其运营模式如图2。
如图所示,CNSI运营模式的最大特点就是打破了原来的纯研究模式,使得科学研究可以针对产业需求进行,建立了科研、成果转化与产业投资有机结合的良好机制,科学研究与市场、科学研究与产业、科学研究与投资有机紧密结合,从而有利于实现科技成果的快速转化及产业化。
3.1.2 CNSI运营模式成功的关键要素
如图3所示,本文认为CNSI的运营成功的关键之处在于产业界和投资界的早期介入,其组建的产业联盟超过了14家世界知名企业加盟,既有像默克(Mer-ck)、安静(Amgen)和凯龙(Chiron)这样的世界级制药介业,也有像英特尔(Interl)、惠普、IBM等信息产业的巨头。其组件的投资联盟吸引了17家世界知名的投资公司,如美国JP摩根公司、美国伊士曼基金等。
对于科研平台,产业界早期介入到研究的选题和立项过程中,这使得纳米技术科学研究导向性更强,纳米技术的研究本身具有方不小确定的特点,产业界的提早介入就为其提供了方向,而且研究的课题又符合市场需求,为之后成果快速转化准备了条件。而在CNSI成果转化与教育交流平台的作用下,对其进行知识产权转移和培育、投资产业化,外对技术转移&企业孵化等提供各项服务,科研项目与产业能够迅速结合,研究成果能够迅速转化。成果转化和产业化平台对科研成果产业化所产生的收益按照市场机制部分返回研究平台,用于支持科学研究的顺利开展。
3.2 日本产业技术综合研究院运营模式
日本产业技术综合研究院是日本最大的国家级公共研究机构,其研究领域非常广泛,涵盖了计量、地质勘探、电子技术、材料技术、生物技术、环境保护、纳米技术在内的许多领域。对于纳米技术,主要是采用与企业合作的方式,国家只是部分投入资金,这样,机构的研究方向与企业的需要更加紧密地结合起来,尽可能快地将科学技术转化为生产力,从而为经济和社会发展服务。
日本综合研究院能够顺利成功开展的关键原因在于有一个完善的科研评估体系,如图4所示。
如上图所示,经济产业省设立的评价委员会由专家、学者、产业界的中立人士组成,分两个层次对独立行政法人进行评价。第一层是评价产业经济部下属的所有独立行政法人的本身运营效果,经济产业省根据评价结果决定研究实验室是撤并或续存。第二层是专门对综合研究院的业务情况进行的评价,评价结果将反映在下一年度计划、下一个中期目标、中期计划、领导和职员的待遇等方面。此外,综合研究院请外部和本机构的人员对研究院内部的中心和部门进行评价,根据评价结果对研究院的发展和研究人员的薪水、职位进行调整。
该评估体系的作用主要体现在3个方面。
第一,对研究实验室的申请进行评估。在综合研究院工作的所有研究人员都可以提出意见,申请成立研究实验室,只有经过评价中心的评价后,通过审议认可的项目可以得到资金和设备的投入。由于评委一般为该领域的专家,构成方式也不拘泥于机构内部,因此,所进行的评价也较为公平、公正。
第二,对研究实验室的存续进行评估。为了保证中心在课题研究和运营管理上的有效性,综合研究院每年都要请专人对中心的各项工作情况进行评价,对其资金的使用情况进行审核,进行必要的控制,一旦发现项目没有任何进展或与原来的研究目标有偏离或已经不适合国际发展的趋势,研究中心就会立即被取消。一般来说研究实验室的设立时间一般为一年,最长可达3年,如果有效果,可以上升、扩建成为研究中心。但无论研究是否完成,研究中心成立7年就会解散,这也保证了研究项目的时效性。
第二,对于研究人员进行评估。通过对领导和员工进行评估,来决定其待遇和职位。但由于研究前沿课题本身具有一定风险性,所以综合研究院只是对研究中心的负责人和研究人员采取降薪方法作为惩罚,剩余的资金则投向其他研究项目。
通过有效的评估体系,对机构的管理和研究工作的效能进行及时评价,保障有效运行,保持科研人员的研究积极性,更好地为产业发展和科技进步提供技术支撑,并且来保证科技成果的实时性,时效性,满足市场的需求,从而有利于科技成果的转化。
3.3 经验总结
通过对CNSI和日本综合研究院的分析可以总结以下4点经验。
①与企业的合作很重要,这种研究机构与企业之间的联系有助于对新技术的预先识别、增强意识、提供测试设备和培训计划,从而可以显著地加速纳米技术产业化的过程。
②推动纳米技术产业化,首先要发掘市场需求,在有限的资金和设施条件下选好研究目标,纳米技术的发展一定要从科研源头上加以调控,科研项目选题要以市场需求为导向,以形成产业化为根本目标,强调市场服务意识。
③科学评估,适时调整。对于不适合市场需求的,要及时中止。利益均衡,多方合作是产业化不断发展的保证。
④纳米技术具有多学科交叉的特性,因此需要加强各领域科研人员之间的协作。
总体而言,从国外的经验可以看出,纳米技术产业化的关键在于基础研究要面向市场,而满足市场需求的关键在于加强和企业的合作,而且要有一个完善的科研评估体系作为支撑。
4 建立纳米技术产业联盟,加快纳米技术产业化进程
上述分析可以看出,我国产业化存在的最大的问题是技术和市场的脱节,而国外纳米技术产业化成功的原因就在于技术和市场的充分结合,进一步说,我国之所以技术和市场脱离的根结就在于研究机构与企业没有进行密切的合作。
本文认为虽然在现阶段,要求企业具备与专业科研机构相当的技术实力是不现实的,但是建立企业与科研机构之间的紧密联系却是必要的,因此本文提出应尽快建立纳米技术产业联盟,具体措施包括以下6个方面。
第一,我们应该学习美国模式,与企业密切合作,将产业界和投资界尽早的吸纳到纳米技术研究中。与企业的密切合作可以通过以下几个方面:首先,专门聘请产业界的专家做顾问,对科研项目做必要的市场分析,这使得科学研究能够针对市场的需求,做到有的放矢,实现了科研与市场的有机结合;其次,根据企业需求开展研究,解决企业实际问
题,并和企业合作研究,共同享有研究成果,提供先进的开放实验室,为企业发展创造良好环境。
根据美国加州纳米技术研究院规章制度,CNSI与企业合作方式主要是通过会员制的方法,从而赋予其一定的权利和义务。主要权利如下:获得核心设施;允许进人互动空间,包括剧场、大厅、会议室等;对于与CNSI相关的研究获得资会支持;允许参加CNSI的有关活动,包括研讨会,座谈会和会议,得到人员配备的支持,并对会员进行广告宣传,得到CNSI的培训资助计划等。通过这些权利来吸引企业的加入,使得CNSl与企业之间形成良好的合作关系,共同发展纳米技术。这样的会员制的方式也值得我们学习。
第二,我们应该学习日本模式,建立一个完善的评估体系,来检验成果是否符合市场需求,是否具有市场前景,而不只是领导拍脑袋决定纳米技术的发展方向,并对科研人员进行绩效评价,这样有利于提高科研人员的积极性,有利于国家的资金得到最大化的利用,有利于纳米的基础研究符合市场需求,有利于纳米技术的产业化。
第三,组建技术联盟网络,正如美国为了加快大学、国家实验室等研究机构的科研成果向企业界转移,建立了全国性的技术转让网络,包括国家技术转移中心(NTTC)、联邦实验室技术转让联合体(FLC)和国家技术信息中心(NTIS)。
第四,引进技术联盟风险投资基金。纳米技术产业足一个回报周期比较长的产业,因此纳米技术产业化必须有充足的风险资本的支持。风险投资对成果转化、技术转移,进而对纳米技术企业的孕育和成长都将产生巨大的推动作用。
高科技纳米技术范文4
【关键词】纳米技术 电子技术 未来展望
纳米技术在近几年中接连取得一系列的突破诸如碳纳米管的出现,纳米制造工艺的进步等等。纳米技术成为一个国家科技竞争力中非常重要的一个方面,其未来发展前景十分广阔。随着纳米技术的不断发展,纳米电子技术研究也渐渐取得突破。纳米电子技术成为国家信息技术发展那壮大疾驰在世界前列的根本推动力。也成为保持世界电子技术快速发展并使摩尔继续延续的重要影响因素。本文就当前纳米电子技术发展现状以及未来纳米技术可能的发展方向做出思考并提出相关刍议。
1 纳米电子技术发展现状
1.1 纳米电子技术优点及地位
传统硅基电子元件技术将很快面临其发展瓶颈,电子元件技术若想获得进一步发展必须对现有技术进行突破,微电子理念作为主流电子发展理念结合当前信息技术实现原理对未来电子元件技术实现必将以纳米电子技术为主要突破口,换言之,纳米电子技术是未来电子元件技术的必然发展趋势,是国家信息技术发展的必然选择,在国家科技发展中占有十分重要的发展地位。纳米电子技术有着许多优点,例如纳米电子元件体积非常小,集成度极高,运算速度以及处理速度非常快同时有着极小的耗能更低的散热。无论在制造领域,信息领域还是军事应用,纳米电子技术都⒂凶攀分广阔的应用。纳米电子技术凭借以上优点将能够实现许多的未被实现的技术诸如量子运算,更大的存储技术,VR技术,增强现实技术等等。可预见的,纳米电子技术应用将在信息领域实现革命性突破。
1.2 纳米电子技术现阶段成果
在现阶段,纳米电子技术主要还是以实现纳米电子元件以及各种纳米电子材料为主。
1.2.1 纳米电子材料
纳米电子材料研究在现阶段取得了很多成果包括纳米硅薄膜、纳米硅材料以及纳米半导体材料等等。现阶段对于硅基材料的更种应用还在进行,纳米硅材料的出现符合现阶段人们对于电子技术发展的需求,纳米硅材料应用有许多好处,运用纳米硅材料能制造出集成度更高,运行更稳定,能耗更低,效率更优的电子板以及处理器芯片。能够有效降低高性能计算机的生产成本。纳米硅材料相较于一般材料有着明显的技术优势,其在生活中的应用能够为人们带来更意料之外的便捷。
1.2.2 纳米电子元件出现
电子元件的发展一直都在努力实现在单位面积上实现更多电路的集成,所以,在之前的发展中电子元件经历了集成元件发展,大规模集成元件,超大规模集成元件三个历史发展。最终相关电子设备由一整个房屋大小微缩到如今的桌面大小。电子元件发展进步有着很重要的意义。基于集成电路的发展进步融合纳米技术便出现了纳米电子元件。
1.2.3 纳米电子技术现实应用
随着纳米电子材料发展以及高度集成的纳米电子元件出现,纳米电子技术开始真正的运用于医学军事等领域中。在医学领域中,纳米传感器使得现代医学细微部位研究取得突破,进一步的对人体生化反应中各种化学信息以及电化学信息进行展示。另外,纳米电子技术应用高级医疗设备制造出现了一大批如螺旋CT和MRI等高科技医疗设备的问世。纳米技术在医学其他领域也有着十分广泛的运用,这些都大大推动了医学行业的发展。
军事领域的应用更为普遍,专家预测未来的战争就是信息化的战争,掌握信息多的一方就能够获得绝对的主动,纳米电子技术推动了军事化信息战的发展。不仅如此,纳米技术应用与武器制造进而出现制导更精确的导弹,各种微型飞行器,纳米装备等等。军事领域获得快速发展。
2 纳米电子技术未来发展展望
其实在目前,世界主要国家都已经加强对纳米电子技术的重视程度并积极进行着各种各样的推动纳米电子技术发展的计划。诸如美国的国家纳米计划,欧盟的框架计划等等。其中主要针对的方向是纳米电子学发展,纳米信息处理和纳米储存技术等。通过对世界主要国家纳米电子技术计划的分析能够看出未来主流纳米电子技术发展方向为纳米信息系统以及纳米电子学两个方面。具体方向将主要集中在新型电子元件开发制造,石墨烯材料研究应用,碳纳米管研究应用等等。
通过不断的开发制造新的纳米电子元件进而推动未来纳米级计算机技术出现。在未来,能够通过纳米电子技术实现量子晶体管技术,进而推动量子超级计算机出现为世界科技进步做出卓越贡献。
石墨烯以及碳纳米管应用于新一代的半导体材料中,新一代半导体材料将对未来的移动设备进步,未来虚拟现实技术发展,未来增强现实技术发展等等带来坚实的基础。
再进一步的畅想,纳米电子技术能够方便的用于人体,结合网络技术能够实现人体与网络的互联互动,人体的各种数据诸如身份信息,健康信息等等都能得到实时监控遇保护对人们的生活方式进行改变。纳米电子技术的不断突破还将会为太空电梯,海底隧道技术等等高精尖技术的发展带来推动。
3 结语
纳米技术在当前发展迅速并且影响深远,抓住机遇,集中优势力量,进一步加强纳米电子基础研究和相关应用研究,抢占纳米电子技术高地,是推进我国新一代信息技术的快速发展的必然选择。加强纳米电子学基础理论研究,顺应世界发展潮流,特别是纳米电子器件中最基本的载流子输运现象及其规律的研究是把握好未来纳米电子技术的关键。
参考文献
[1]余巧书.纳米电子技术的发展现状与未来展望[J].电子世界,2012(02):20-25.
[2]刘长利,沈雪石,张学骜,刘书雷.纳米电子技术的发展与展望[J].微纳电子技术,2011(10):32-36.
[3]万亚力.纳米电子技术的发展与展望[J].中小企业管理与科技(中旬刊),2016(03):16-22.
[4]余稀,但涛.纳米电子技术的发展现状与研究展望[J].开封教育学院学报,2016(10):36-41.
作者简介
陈建(1978-),女,辽宁省锦州市人。任职河北省高校工业数据通信与自动化仪表应用技术研发中心,承德石油高等专科学校,讲师,大学本科学历,在职研究生,主要从事电子技术,工业数据通信方面的研究。
高科技纳米技术范文5
[关键词]纳米 光电 测控技术
纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用。它主要包括纳米材料、纳米动力学、纳米生物学和纳米药物学、纳米电子学等四个方面。纳米级材料工程是指用于纳米技术的材料开发,主要应用于功能织物、医学生物工程、电子工业、催化剂、超微传感器等几个方面。纳米级加工技术纳米加工技术在纳米技术的各领域也起着关键作用,包含机械加工、能量束加工、化学腐蚀以及扫描隧道显微镜加工等许多方法。然而,纳米级的测控技术是制约纳米技术发展的关键。
我国测控领域的科研人员经过四十多年长期探索,不断研究,克服了各种困难,利用光、机、电、算多学科综合,发展了一整套微/纳米光电测控新技术,研制出新一代测控仪器,已经成功地应用于军用、民用很多领域,取得了明显效果。
一、纳米光电测控技术
纳米光电测控技术以纳米计量光栅为核心元件,配以光电转换、信号读取、信号处理以及超精机械,形成各种测量仪器,可直接用于测量或控制长度、位移等多种几何量。具有测量精度高、量程大、环境适应能力强、稳定性好等优点。该项技术主要由传感器和数显装置两部分组成。利用该项技术所生产的产品具有自动求最大值、最小值、峰峰值、公英制转换、置数、打印、复位、自检等功能,同时还具有RS232串行通讯接口,与计算机、单片机等连接后可进行自动测量、自动数据处理和自动控制等优点。纳米测控技术包括纳米级的测量技术和纳米级的定位控制技术两个方面。
1.纳米测量技术
目前,纳米级测量技术的主要发展方向有光干涉测量技术和扫描显微技术等,以表面粗糙度和表面形貌等为测量对象。
(1) 光外差干涉仪
光外差探测是一种对光波振幅、频率和相位调制信号的检波方法,可以对于光强度调制信号。光外差干涉仪是使用两种不同频率的单色光作为测量光束和参考光束,通过光电探测器的混频,输出差频信号(受光电探测器频响的限制,频差一般在100兆赫以内)的仪器。被测物体的变化如位移、振动、转动、大气扰动等引起的光波相位变化或多普勒频移载于此差频上,经解调即可获得被测数据的仪器。目前,通常使用的干涉条纹图的测量方法,在进行纳米级测量时有非常大的局限性。因此利用外差干涉测量技术,可以得到0。1nm的空间分辨率,测量范围可达50mm,促进了纳米技术的进一步发展。
(2) X射线干涉仪
X射线干涉仪以非常稳定的单晶硅晶格作为长度单位,可以实现亚纳米精度的微位移测量。
可见光和萦外光的干涉条纹间距为数百纳米,这种间距不易测量。而利用射线的超短波长干涉测量技术,可以实现0。005nm分辨率的位移测量,测量范围可达200μm,是一种测量范围大较易实现的纳米级测量方法。近年来,又产生了X射线形貌测量仪,它采用掠人射角的射线来测量超光滑表面形貌。
(3) 激光频率分裂测长
激光频率分裂的值与分裂元件的位移有关。通过测频率测位移,精度已达到1nm,进一步稳定激光频率可达到0.01nm,测量范围为150μm。
(4) 扫描探针显微(SPM)技术
SPM实际上是一个很大的家族,它包括扫描隧道显微镜、原子力显微镜、磁力显微镜、激光力显微镜、光子扫描隧道显微镜及扫描近场光学显微镜等等,利用它们可以用来测量非导体、磁性物质,甚至有机生物体的纳米级表面。
扫描探针显微(SPM)技术是在扫描隧道显微镜(STM)发明取得巨大成就的基础上发展起来的各种新型显微镜。它们的原理都是通过检测一个非常微小的探针(磁探针、静电力探针、电流探针、力探针),与被测表面进行不接触各种相互作用(电的相互作用、磁的相互作用、力的相互作用等),借助纳米级的三维位移定位控制系统,测出该表面的三维微观立体形貌,在纳米级的尺度上研究各种物质表面的结构以及各种相关的性质。
扫描探针显微技术(SPM)具有以下特点:(1)具有原子级的高分辨率。STM的横向分辨率可达到0.1nm,垂直表面方向分辨率可达0.01nm,这是目前所有显微技术当中分辨率最高的。(2)可以观察单个原子层的局部表面结构。STM观察的是表面的一个或两个原子层,即几个纳米的局域信息,而不是像光学显微镜和电子束显微镜只能获得平均信息。(3) STM配合扫描隧道谱(STS),可以得到表面电子结构的有关信息,可以通过调节隧道结偏压来观察不同位置电子态密度分布,观察电荷转移的情况,还可以得到电子结构的信息。(4)STM可以实时、实空间地观察表面的三维图像。而不像其他,例如各种衍射方法所得到的只是倒易空间的图像,不是实空间的,而且只有进行 “傅里叶变换”才能得到实空间图像。(5) STM可以在不同条件下工作,例如真空、大气、常温、低温、高温、熔温,不需要特别的制样技术,而且探测过程对样品无损伤,因而扩展了研究对象的范围。(6) STM不仅可用于成像,还可以对表面的原子、吸附的原子或分子进行操纵,从而进行纳米级加工,这是其他技术所不具备的一种功能。
2. 纳米定位控制技术
在纳米级加工与测量中,需要纳米级的三维定位与控制。目前,用一个执行元件来实现大范围的纳米级定位是比较困难的。因此,实际的定位机构多采用大位移用的执行元件和纳米级定位用的执行元件相结合方式来实现。实现三维定位与控制,目前普遍采用压电陶瓷致动器件,它在纳米级的极小范围内,通过控制系统能实现近似的三维驱动。此外,利用电致材料、静电或磁轴承式结构,以及静电致动的高精度定位控制技术,也向纳米级精度发展,也可采用摩擦驱动装置及丝杠定位元件,通过特殊的方法进行纳米级的定位。
二、纳米光电测控技术特点
光电测控技术采用的光电自动测量方法是为适应我国高速发展的测控领域的现状而逐步研究、开发形成的,并以其独特的优点逐步成为当今世界范围内的一种新型、高精度的测试手段。它采用现代高科技手段,测试精度涵盖了微米、亚纳米及纳米领域。
这种新型测控技术,具有许多重要的特点:
(1)首先,它的应用覆盖面特别宽,既可用于微米、亚微米量级,也可用于纳米量级;既可用于传统机械、传统仪器的更新改造,又可用于尖端科技的高层突破;
(2)其次,技术上综合性很强,光、机、电、算容为一体,具备了纯机械、纯电学、纯光学等传统测量技术很难达到的优越性;
(3)再次,它的应用范围特别宽广,军用上,如常规武器的改造提高;航空航天的各种测控等;民用上,传统产业上的更新改造、制造业的技术提高等。
三、最近研究成果
目前世界上已出现了一些能达到纳米量级的测量仪器,但在测量范围和实用性上尚不能完全满足实际要求。中国青旅实业发展有限公司所属标普纳米测控技术有限公司开发的两项科技成果在很大程度上弥补了这一领域存在的不足,对微/纳米测控技术和相关领域的发展起到了促进作用。这不仅表明我国微/纳米光电测控技术处于世界领先水平,而且对解决目前制约我国高新技术、传统制造业发展及新材料研制过程中的计量问题,推动世界精密计量仪器的升级换代也具有重要意义,同时标志着世界微/纳米测控技术向更精微迈进了重要一步。
“纳米测长仪”是一种通用长度传感器,它的研制成功表明长度通用量具已经提高到了纳米量级,并且从静态人工读数发展到数字化自动显示。其数显分辨率达到1纳米,测量重复性(标准偏差)为0.8-1.2nm,在未作误差修正的前提下,10mm测量范围内示值误差优于±0.06μm。与国际上同类仪器相比,它在分辨率、重复性、准确度和短时稳定性等主要技术指标上,都处于国际领先水平。它用途广泛,技术独特,生产成本远低于国外同类产品,推广应用前景广阔。
“量块快速检测仪”是一种新型的量块检测仪器,它成功的将纳米测长仪应用到量块检测上,将直接测量与比较测量结合起来,对名义尺寸10mm及10mm以下的量块实现了直接测量。该仪器测量分辨率达到1nm,直接测量范围10mm,比较测量范围110mm,与国外同类仪器相比,主要技术指标达到了国际先进水平。该仪器还可以与计算机连接通讯,实现数据自动处理,从而提高了量块检验速度,减轻了检测人员的劳动强度。由于其对环境温度不敏感,现有基层计量室不必提高温控要求即可推广使用。该仪器经济实用,适合基层计量室检测三等及三等以下量块。该科技成果在纳米光栅的制造与检测、纳米光栅的信号读取、光电信号的高质量处理和超精机构的加工改进等四方面均具有独创性,集光学、机械、电子、计算机多学科于一体,开发难度大。国内外多家科研单位曾致力于该种仪器的研究,但都没能取得突破性进展。
四、结论与建议
纳米光电测控技术的应用,将极大地促进我国新材料技术的研发,对于各种新型材料的加工、检测及生产高精度新型材料的机械设备的制造等都有着举足轻重的意义。同时,纳米光电测控技术解决了当代高新技术发展在测控方面面临的十分棘手的难题,具有划时代的意义。
参考文献:
[1]曾令儒.纳米技术[J].宇航计测技术,1999,19(5):43-45.
高科技纳米技术范文6
纤维桩:口腔医院座上宾
这个小东西是口腔医院的“座上宾”——当我们口腔里发生了龋齿,牙齿慢慢被腐蚀掉,当被腐蚀的部分到达牙根处就会伴有钻心的疼痛感。医生先对患牙进行修整,杀死牙根管暴露在外的神经,然后进行完善的根管治疗,在确认牙根没有炎症的情况下,就要用到这个小东西,它就是在医院的口腔科或牙科诊所里用作龋齿桩核修复的重要“零部件”——纤维桩。牙科医生首先会把一个纤维桩插入到牙根管里,然后在上面堆砌树脂核,光固化后预备至所需形态,再加上牙冠,最终通过打磨塑造成真牙的形状。
“过去,医院大多用的是金属铸造桩,时间长了,不仅会因其腐蚀性导致牙齿变灰暗,而且今后如果做核磁共振等医疗检查时也会受到影响。而纤维桩通过采用先进的纳米技术和复合材料成型工艺,克服了这些问题。”欧亚瑞康公司工作人员在展台上向观展者们介绍着这款新产品。
无论是金属铸造桩还是纤维桩,所起到的作用都相当于盖房子时打下的地基。在实际治疗操作中,纤维桩可以通过树脂类粘接剂与根管牙本质之间达到很高的粘接强度,延长修复体的使用寿命、减少根折的发生,有利于牙齿的保存和失败后的再修复。
由于具有独特的力学、美学和操作性能,纤维桩进入中国市场以来,受到了国内医生的一致认可和好评,在临床上广泛地得到了应用。目前,北京欧亚瑞康公司生产螺纹纤维桩的技术成果将准备落户北京市怀柔区纳米科技产业园,并建成国内唯一一条年产100万支口腔修复材料、螺纹纤维桩生产线。同时,公司目前在十二五国家“863”计划、十二五国家科技支撑计划、2010年度国家中小企业创新基金及北京市创新基金的支持下,正在加大力度研发一体化纤维桩、光固化预成型体、纳米填料增强型光固化树脂、纳米氧化锆陶瓷和纳米纤维引导组织再生膜等新型纳米口腔修复关键材料。
纳米“小”显身手
据欧亚瑞康公司技术人员介绍,科博会上展出的这款纤维桩是一种主要由石英纤维与高分子环氧树脂构成的复合材料。两种结构、性质迥异的材料如何很好地复合在一起,成为这款产品的研发重点。
纳米技术,可以在不破坏石英纤维的高强度性能条件下,通过纳米技术,在石英纤维表面“接”上一些纳米基团,与具有可塑性的高分子环氧树脂表面的基团紧密“结合”起来,从而使整个纤维桩兼备高强度与可塑性。由于纤维桩内部石英纤维与表面树脂的紧密结合,纤维桩可以为整个牙齿提供足够的支撑力,消除了在咀嚼中脱落的危险。
除了纤维桩以外,纳米技术还可用作口腔修复材料的强度调节、颜色调控、X射线阻射性调节。以X射线阻射性调节为例,在需要通过X射线做牙齿检查时,一颗树脂牙不能像真牙一样在X射线中显影,这样就无法看到口腔修复与周围的牙体组织是否有缝隙,无法判断是否修复完毕。如果在用于填充用的树脂中加入一些特殊的改性纳米级填料,当其均匀分布在树脂后,就可以产生X射线阻射性,从而使牙齿检查成为可能。强度调节和颜色调控也是通过添加相应的改性纳米填料来实现。
我们常说,量变会引起质变。这句话在材料学中也十分适用。当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。
纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。纳米粒子的表面积增大,粒子之间的空隙变小,与周围物质更贴合,并且粒子之间也更难被分开,从而可以产生较强的耐磨性和贴合性。这一特点在高科技口腔修复材料有很大的作用。
纳米材料的“小”除了给材料带来与众不同的才能,却也给研究者们带来不少的困扰。“由于自身尺寸微小,纳米粒子彼此吸附力强,让其均匀分布就十分困难。另外,当纳米粒子含量达到一定程度时,容易吸附在一起,就不再有纳米级材料的优势,因此,这也成为当前口腔修复材料产品研究开发的重要方向。”
纳米化:口腔修复材料研发趋势
纳米技术在口腔充填和修复材料中的应用可显著提高产品的性能。据悉,国际上常用的光固化树脂、氧化锆陶瓷、纤维桩修复材料等均已实现了纳米化。
以光固化树脂研发为例,公司技术人员介绍了纳米技术在口腔修复材料应用的趋势。
最初,传统的光固化复合树脂在使用时,通常处于玻璃态,脆性大,导致耐磨性较差;另外,在树脂分子聚合时存在一定的体积收缩,这种收缩会影响充填修复的预后效果,容易引发继发龋齿。
根据传统光固化复合树脂的问题,研究者们通过研究发现认为,通过引入纳米无机填料,可减少固化收缩、线性膨胀和材料吸水性,降低树脂固化时的热释放,提高复合树脂的综合机械性能。
然而由于纳米填料易团聚,在树脂基体中难以均匀分散,因此,添加量也难以提高。目前研究中认为比较有效的改进途径是,采用与树脂相容的高分子对无机纳米填料表面进行接枝改性,从而发展具有超低收缩率的充填修复树脂。