高分子材料的优点范例6篇

前言:中文期刊网精心挑选了高分子材料的优点范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

高分子材料的优点

高分子材料的优点范文1

【关键词】高分子材料;成型加工技术;创新

现代社会中,科学技术成为了推动经济发展,促进社会进步的重要力量,也正是由于科技是第一生产力的这一理念,各个国家的科技都达到了前所未有的发展速度。高分子技术应运而生,随着人类对高分子技术的深入了解,在应用过程中遇到的很多问题有待探讨,本文中就高分子材料成型加工技术的发展与创新进行了深入的讨论,也希望能够为我国的高分子技术贡献一份力量。

一、简述高分子材料成型加工术的发展历程

在对一项科学技术进行深入探讨之前,很有必要对其的产生、发展到应用的过程有所了解。由于新型高分子材料的发现较早,但是由于观念上的落后以及设备上的落后,导致高分子材料从发现到大规模的应用于工业流程中所耗费的时间较为漫长。近年来,随着关于高分子技术的一系列难题攻破,到更多、更加优良的高分子材料被发现,高分子技术开始进入飞速发展的时代。20世纪90年代塑料的平均增长率有了很大的提升,随之而来的塑料产量也有很大幅度的提升。不管是在塑料的产量上有了大幅度的提升,在塑料的种类上,材质上,应用范围上都有了很大的优化与发展。举个例子来说,之前制造一批汽车可能需要三百吨钢铁,而现在可能只需要三百吨的塑料就能达到相同的效果,甚至更好的效果。在钢材日益减少的现在,这些高分子材料的发明给了人类在发展道路上无限种可能。在汽车行业中,由传统纯钢铁制造的汽车可能已经无法满足现代人类的需要了,而对于高分子材料制造而成的汽车,不仅在强度上不输于钢铁,在造价,环保方面更是胜于钢铁一筹。而在其他方面也会有很多改变,规模上要更小一些,周期要相对更短一些,能量的消耗要更低一些,回收率要更高一些,对空气的污染程度和对资源的消耗要更小一些。

二、创新型高分子材料成型加工技术

1.聚合物动态反应加工技术及设备

聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。目前国外已经对这一个项目进行了深入的研究,并且已经研制出了连续反应和混炼的杆螺杆挤出机,这一项研究的产生,有效地解决了双螺杆挤出问题,还有这其他类似的反应器所不具有的优点

在这些设备的发展过程中,技术是至关重要的一个环节,在技术上必须要有所突破。指交换法聚碳酸酝(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,而在现在世界上所使用的反应加工设备上来看,大多数都是利用传统的混合、混炼技术,有些国外的企业也只是对传统的反应器进行了小范围的优化。但是根本上都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题。另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。这一项技术实现了聚合物单体或预聚物混合混炼过程中的理论的突破,有了新的理论作为指导,新型的加工反应器才能够制作出来。新的技术从理论上解决了聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这此优点是传统技术与设备无法比拟或是根本没有的。

2.新材料制备动态反应加工设备技术的革新

这一项技术的革新主要是指信息存储光盘直接合成反应成型技术的发明,这项技术具有当代新技术所需要的大多数优点,由于采取了全然不同的理论指导和流程,这项技术具有周期短,操作建议,对环境污染小,节约资源的优点。正是由于这些优点的存在,这项技术打破了原有传统技术的局限性,避免了很多问题的出现。而且随着光盘存储技术的发展,这项技术还有无限的提升空间。它的主要工作机理是把光盘级的PC树脂化,将中间存储和盘基成型融合在一个流程当中,再借鉴动态连续反应成型技术对交换连续化生产技术进行研究和发展。

3、复合材料物理场强化制备技术

此技术在强振动剪切力场作用下对无机粒子表而特性及其功能设计,整个流程都是在设计好的连续的加工环境中进行,省去了其他化学催化剂或者改性剂的参与,有效地实现了资源的节约。利用聚合物使无机粒子进行原位表面性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料热塑性弹性体动态全硫化制各技术:此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化。解决共混加工过程共混物相态反转问题。

三、展望高分子材料成型加工技术未来的发展方向

近年来,在世界上的高分子材料成型技术的发展热潮的影响下,我国的各省各地也加快了高分子材料成型技术的发展,相关部门也加大了政策上的支持。这一做法是完全符合我国改革开放以来的经济发展路线,因此这一技术已经具备了发展的一切有利因素。

我国的各个城市陆续展开这项技术的推广,已经有超过一半的地区在推广和使用这一技术,这一技术所创造的经济利益也是不容忽视的,很多地区已经将这一技术变成一个产业,工业制成品大量出口到欧洲和亚洲的很多国家和地区,在国际贸易方面有非常显的成效,不但提高了出口的多样性,而且拉动了社会效益和经济效益的增长。在未来的时间里,这项技术还具有非常大的发展空间,新型高分子材料成型技术还可以应用在更多的领域,相信会有一天高分子材料会成为我们日常生活中不可缺少的东西。希望以后有更多的人才投入到这项技术中去,这样我国的高分子成型材料加工技术才能够赶超发达国家,为我国的外贸的发展。

四、结语

综合上文所陈述的,我国要想在高分子材料的道路上走的更远,必须牢记科技史第一生产力的这一原则。并且只有随着高分子材料的不断深入应用,我国才能够更好地建设资源节约型环境友好型社会,才能让世界看到中国的发展不是以牺牲环境,大量消耗资源为代价的。推动高分子加工合成技术势在必行。

参考文献

高分子材料的优点范文2

较详细地评述了高分子材料的研究方向和应用发展方向.

关键词:高分子材料 应用 现状 发展

高分子材料(macromolecular material),以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。

高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。

高分子材料的结构决定其性能,对结构的控制和改性,可获得不同特性的高分子材料。高分子材料独特的结构和易改性、易加工特点,使其具有其他材料不可比拟、不可取代的优异性能,从而广泛用于科学技术、国防建设和国民经济各个领域,并已成为现代社会生活中衣食住行用各个方面不可缺少的材料。很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等

目前,高分子材料的应用现状主要有以下几个方面:

1.传统产品

如纤维、橡胶、塑料等等

2.高分子分离膜

高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,使气体混合物、液体混合物或有机物、无机物的溶液等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。

3.高分子磁性材料

高分子磁性材料,是人类在不断开拓磁与高分子聚合物(合成树脂、橡胶)的新应用领域的同时,而赋予磁与高分子的传统应用以新的涵义和内容的材料之一。早期磁性材料源于天然磁石,以后才利用磁铁矿(铁氧体)烧结或铸造成磁性体,现在工业常用的磁性材料有三种,即铁氧体磁铁、稀土类磁铁和铝镍钴合金磁铁等。它们的缺点是既硬且脆,加工性差。为了克服这些缺陷,将磁粉混炼于塑料或橡胶中制成的高分子磁性材料便应运而生了。这样制成的复合型高分子磁性材料,因具有比重轻、容易加工成尺寸精度高和复杂形状的制品,还能与其它元件一体成型等特点,而越来越受到人们的关高分子材料。

4.光功能高分子材料

所谓光功能高分子材料,是指能够对光进行透射、吸收、储存、转换的一类高分子材料。目前,这一类材料已有很多,主要包括光导材料、光记录材料、光加工材料、光学用塑料(如塑料透镜、接触眼镜等)、光转换系统材料、光显示用材料、光导电用材料、光合作用材料等。光功能高分子材料在整个社会材料对光的透射,可以制成品种繁多的线性光学材料,像普通的安全玻璃、各种透镜、棱镜等;利用高分子材料曲线传播特性,又可以开发出非线性光学元件,此外,利用高分子材料的光化学反应,可以开发出在电子工业和印刷工业上得到广泛使用的感光树脂、光固化涂料及粘合剂;利用高分子材料的能量转换特性,可制成光导电材料和光致变色材料;利用某些高分子材料的折光率随机械应力而变化的特性,可开发出光弹材料,用于研究力结构材料内部的应力分布等。

5.高分子复合材料

高分子材料和另外不同组成、不同形状、不同性质的物质复合粘结而成的多相材料。高分子复合材料最大优点是博各种材料之长,如高强度、质轻、耐温、耐腐蚀、绝热、绝缘等性质高分子结构复合材料包括两个组分:增强剂。为具有高强度、高模量、耐温的纤维及织物,如玻璃纤维、氮化硅晶须、硼纤维及以上纤维的织物;基体材料。主要是起粘合作用的胶粘剂,如不饱合聚酯树脂、环氧树脂、酚醛树脂、聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂,这种复合材料的比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料。

目前,我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上,重点发展以下方向:

1.工程塑料

全世界通用热塑性树脂约占97%,工程塑料的生产规模远不如通用塑料,但因市场的需求,近年来其发展的速度则远远高于通用塑料,年均增长率达7%~8%。近年来工程塑料的发展方向是研究开发工程塑料高分子合金、发展超韧尼龙、超韧聚甲醛、耐应力开裂聚碳、聚苯醚和聚矾等高性能合金研究开发特种工程塑料,如聚酞亚胺。

2.复合材料

复合材料合成一种新材料使之满足各种高要求的综合指标。复合材料的发展可以分为4个方面。一是以玻璃纤维增强为手段,对大品种塑料进行改性研究开发新的复合工艺;二是采用高性能增强剂如碳纤维等来增强耐高温等高性能树脂;三是开发新型热塑性树脂基体如热塑性聚酞亚胺;四是研究开发功能复合材料,如压电材料等。

3. 液晶高分子材料

液晶聚合物是介于固体结晶和液体之间的中间状态的聚合物 ,其分子排列的有序性虽不如固体晶体那样有序,但也不是液体那样的无序 ,而是具有一定的 一维或二维 有序性 ,当加工此种聚合物 ,如纺丝或注射成型时,其分子发生取向 这种分子取向一旦冷却即被固定下来,从而具有不寻常的物理和机械性能。

高分子材料的优点范文3

【关键词】高分子材料 合成应用 绿色战略

绿色化学的概念从提出到现在一直备受关注,我国的化学研究工作中也逐渐重视绿色和环保的理念。尤其是在高分子材料的研究方面,人们更倾向于无毒的环保的生产过程。近来,高分子材料的绿色化学有了新的进展,高分子材料合成与应用中的绿色战略已经形成。

1 原材料本身的无毒化

在现今的高分子化学材料的研究过程中我们逐渐引进了生物降解的技术来保证高分子化学材料本身的无毒和绿色,这也是化学研究的一大热门领域。用生物来降解高分子化学材料的方式应用较为广泛,降解的高分子材料包括了天然的有机高分子材料和合成的有机高分子材料。这种技术对淀粉、海藻酸、聚氨基酸等各种高分子的研究非常实用。目前,医药领域的许多材料多采用这种绿色无毒的形式来进行生产,达到和人体的和谐相容。

2 高分子原料合成朝无毒化方向发展

高分子原料的合成也在向绿色的方向发展。在化学合成过程中,许多高分子化学材料的合成可以采用一步催化的方式来完成,转化利用率可以达到百分之一百。而且这种过程避免了使用有毒的化学催化剂,改变了传统的操作模式。例如已二酸的合成就是采用生物合成的技术,使其生产过程完全绿色化,安全可操作。传统的方法生产环氧丙烷是采用两步反应的方式,而且中间使用了氯气。这种气体带有一定的毒性会造成环境的污染。但现在,国内外已经改变了这种生产方法,采用的催化氧化的方法使原材料在制作反应的过程中完全利用,而不产生有的物质来污染环境。目前,在进行制作合成化学材料的过程中,许多都在逐步改善材料合成产生有毒废弃物的或排放物的情况,朝着绿色生态环保的方向发展。

3 合成原料的绿色化

生活物质材料中有许多都是采用高分子合成的原料制造的。尤其是医用材料,这些材料在使用的过程中必须保证无毒,而且必须是生物可降解、可以为人体的免疫系统所接受的。因此,对合成原料的要求必须是绿色的、安全的。近年来,在这方面,国内外已经取得了较多的成就。

1988年在荷兰有相关学着就在研究聚乳酸类网状弹性体材料,这种材料完全采用绿色原料合成,并且可以被生物所降解。他们用赖氨酸二异氰酸醋等扩链了由肌醇、L--丙交酯等生成的星形预聚体。LDI可以称为“绿色”的二异氰酸酯扩链剂,因为LDI扩链部分最终的降解产物是乙醇、赖氨酸等,这些降解产物都是无毒的,完全可以进行生物利用。在这一聚合物生成的过程中,不仅最终的产物是环保安全的,而且其原料肌醇是人体所需的维生素之一,乳酸、6―烃基己酸等在生物医学上颇为常见,也是一些安全的、“绿色”的物质,可以说这一过程接近于“完全绿色”。1994年strey等学者在此基础上进行进一步的研究,合成了与该绿色试剂LDI聚乳酸衍生物,用高结晶性的聚乙醇酸纤维为增强材料,制备了无毒的、可生物吸收的骨科固定复合材料。

4 催化剂的绿色化

在聚乳酸类材料研究过程中,虽然目前的高分子原材料和聚合物都实现了基本的绿色化、无毒化,但在这过程中大家可能会忽略一个因素,那就是催化剂的使用安全问题。例如聚乳酸化合物的生成过程中大多采用辛酸亚锡作为中间催化剂,加快化学反应的过程。但是这种催化剂由于含有锡盐成分可能会具有生理毒性,如果是人体吸收可能会造成中毒的情况。相比而言,用生物酶作催化剂就显得安全可靠。使用生物酶催化的瓶颈在于酶的种类有限问题,致使一些化学反应找不到相应的生物酶进行催化。在目前的高分子聚合物当中,虽然一些加聚反应的原子利用率可以达到100%,但是各种催化剂和添加剂的使用对安全情况造成的影响却不能忽视。尤其是在医用物品当中,必须对这些材料的安全性进行试验和考核。催化剂的绿色化道路的发展还值得我们进一步努力探索。

5 合成高分子材料的安全应用

人工合成的高分子材料可能会对环境存在一定的危害,对不可利用的高分子材料的垃圾处理也得考虑到绿色无毒的问题。我们必须选择正确的方法来安全使用这些高分子材料。

对于可用生物降解的高分子合成材料可以采用填埋的方式进行处理。对于不可生物降解的高分子材料废物进行分类,主要分为可回收利用的废物和不可回收利用的废物。将可回收的高分子材料分类进行整理,实现循环利用,减少资源的浪费。对于可焚烧的高分子材料可以进行焚烧处理,还可以将垃圾焚烧过程中释放的热能加以利用。

(1)对可以再生与循环使用的环境惰性高分子材料,如 PP、PE、PET、尼龙 66、PMMA、PS 等,应尽可能地再次利用,尽可能避免使用填埋方法处理环境惰性塑料垃圾。

(2)PP、PE等聚烯烃具有很高的热值,与燃料油相当,并且具有无害化燃烧特性。因此,可以将这些高分子材料燃烧产生的巨大热能转化为电能或者其他形式的能源,避免热能污染。目前,顺利实施城市生活垃圾变电能的关键是将 PVC 除开,避免与PP、PE等混杂,避免造成能源回收困难而浪费能源。

(3)对 PVC 应合理使用。PVC 的制造、加工、使用和废弃物的处理,都涉及环境问题,其中最危险的是PVC 废弃物的处理。PVC的加工过程使用的添加剂非常多,使用不当就会使材料中的有毒物质渗出,应该尽量避免其与食物和医药产品的接触。PVC废弃物处理要尽可能避免使用焚烧的方式,因为这种高分子材料在焚烧的过程中会产生毒性物质,对环境造成的伤害非常大。应尽快使 PVC退 出包装、玩具 、地膜等使用周期短的应用领域;同时,鉴于PVC具有节约天然资源、适用性广、价格低廉、难燃、血液相容性好等优点,应加强对 PVC 生产、加工、使用、废弃物处理等方面的研究。

6 结语

高分子材料合成与应用的绿色化、无毒化、安全化会是将来高分子材料化学发展的热潮,结合高分子材料特有的实用性因素来建立高分子材料绿色战略的系统,可以使高分子材料化学朝着更加全面的、长远的绿色化道路发展。

参考文献

[1] 戈明亮.高分子材料探寻绿色发展之路[J].中国化工报,2003

[2] 罗水鹏.绿色高分子材料的研究进展[J].广东化工,2012

[3] 石璞,戈明亮.高分子材料的绿色可持续发展[J].化工新型材料,2006

高分子材料的优点范文4

关键词:高分子材料,;材料成型; 控制技术

中图分类号: TB324文献标识码:A 文章编号:

前言

随着现代社会科技水平的提高和科技工作者的努力,高分子材料成型技术得到了飞速的发展,在现代化的工业建设中起着越来越重要的作用。下面通过简要叙述高分子材料成型的基本原理、高分子材料成型过程中的控制。探析高分子材料成型及其控制技术。

1.高分子材料成型的基本原理及问题

通常,在传统的高分子工业生产中,高分子材料的制备和加工成型是两个截然不同的工艺过程。制备过程主要是化学过程:单体、催化剂及其他助剂通过反应堆或其他合成反应器生成聚合物。聚合反应往往需要几小时甚至数十小时, 部分聚合反应还需要在高温、高压或真空等条件下进行。聚合反应结束后再分离、提纯、脱挥和造粒等后处理工序。制备过程流程长、能耗高、环境污染严重,增加了制造成本。合成的聚合物再通过加工成型,得到制品。一般采用挤塑、注塑、吹塑或压延等成型工艺,设备投资大。此外,加工过程中,聚合物需要再次熔融,增加了能耗。高分子材料反应加工是将高分子材料的合成和加工成型融为一体,赋予传统的加工设备(如螺杆挤出机等)以合成反应器的功能。单体、催化剂及其他助剂或需要进行化学改性的聚合物由挤出机的加料口加入,在挤出机中进行化学反应形成聚合物或经化学改性的新型聚合物。同时,通过在挤出机头安装适当的口模,直接得到相应的制品。反应加工具有应周期短(只需几分到十几分钟)、生产连续、无需进行复杂的分离提纯和溶剂回收等后处理过程、节约能源和资源、环境污染小等诸多优点。

高分子材料的性能不仅依赖于大分子的化学和链结构,而且在很大程度上依赖于材料的形态。聚合物形态主要包括结晶、取向等, 多相聚合物还包括相形态( 如球、片、棒、纤维及共连续相等) 。聚合物制品形态主要是在加工过程中复杂的温度场与外力场作用下原位形成的。

高分子反应加工分为两个部分:反应挤出和反应注射成型。目前国内外研究与开发的热点集中在反应挤出领域。高分子材料的反应挤出通常包括两个方面:一是将反应单体、对话及核反应助剂直接引入螺杆挤出机,在连续挤出的过程中发生聚合反应,生成聚合物;二是将一种或数种聚合物引入螺杆挤出机, 并在挤出机的适当部位加入反应单体、催化剂或反应助剂, 在连续挤出的过程中,使单体发生均聚或与聚合物共聚,或使聚合物间发生偶联、接枝、酯交换等反应, 对聚合物进行化学改性或形成新的聚合物。反应加工过程中涉及的化学反应有自由基引发聚合、负( 或正) 离子引发聚合、缩聚、加聚等多种反应类型, 与传统反应需数小时或十几小时相比,其反应时间往往只有几分钟或几十分钟。

高分子材料的合成和制备一般是由几个化工单元操作组成的,高分子反应加工把多个单元操作熔为一体,有关能量的传递和平衡,物料的输运和平衡问题,与一般单个化工单元操作截然不同。由于反应加工过程中发生的化学反应(聚合)多为放热反应,传统聚合过程是利用溶剂和缓慢反应解决传热与传质问题的,而在聚合反应加工过程中,物料的温度在数分钟内将达到 400-800℃,若不将反应过程中产生的热及时的脱除,物料将发生降解和炭化。传统的加工过程是通过设备给聚合物加热,而聚合反应加工中是需要快速将聚合生成的热量通过设备移去,因此,必须从化学工程和工程热物理学两个方面开展相应的基础研究。

高分子材料的物理机械性能、热性能、加工性能等均取决于其化学结构、分子结构和凝聚态的形态结构,而高分子材料的形态结构则与加工工艺有着密切的关系。

流变学是研究物体流动和变形的科学,高分子材料流变学是其成型加工成制备的理论基础。伴随化学反应的高分子材料的流变性质则有其自身的规律和特点。因此, 研究反应加工过程中的化学流变学问题将为反应加工过程的正常进行和反应产物加工成制品提供重要的理论基础。

2高分子材料成型过程中的控制

一般说来,在六七十年代主要重视的是单一聚合物在通常加工过程中的形态;到了七八十 年代以通常聚合物共混物相形态形成规律以及单一聚合物在特殊加工条件下形态成为主要研究对象;九十 年代以来,主要从控制聚合物形态规律出发, 研究新型聚合物、新型加工过程中聚合物形态形成、发展及调控, 通过新型形态及特殊形态的形成,获得性能独特的单一或多相高分分子材料。

我国是自 20 世纪 80 年代以来,对聚合物及其共混物在加工中形态发展和控制给予了高度重视。方向上大体是与国际同步的。近年来,我们国家主要研究内容涉及高分子材料加工过程中形态控制的科学问题,包括高分子在复杂温度、外力等各种外场作用下聚合物形态结构演化、形成规律以及在温度、压力等各种极端状态下高分子聚集态结构的特点。在已取得的理论成果知道下,开发了多种新型高分子材料,有的产生了良好经济效益。多数聚合物多相体系不相溶,给共混物加工中形态控制和稳定带来困难。通常是加入第三组分改善体系的相容性。聚合物加工中制品处于非等温场中,制品温度对其形态及性能有很大影响。但在通常聚合物加工中制品温度控制非常盲目,原因是很难知道不同制品位置温度随时间的变化关系。关键是要弄清楚聚合物及其共混物在非等温场作用下制品温度随时间变化关系。研究微纤对基体聚合物结晶形态、结构的影响,发现不仅拉伸流动行式成核和纤维成核,而且发现纤维在拉伸流动场作用下辅助成核。将导电离子组装到微纤中, 使微纤在体系中形成导电三维网络结构,从而显著降低体系的导电逾渗值和独特的 PTC(电阻正温度效应)和 NTC(电阻负温度效应)效应。

高分子材料的形态与物理力学性能之间有密不可分的关系,这是高分子材料研究中的一个永恒课题。与其他材料相比, 高分子材料的形态表现出特有的复杂性:高分子链有复杂的拓扑结构、共聚构型和刚柔性,可以通过现有的合成方法进行分子设计和结构调整;高分子长链结构使得其熔体有粘弹性;高分子的驰豫时间很宽,并在很小的应变作用下出现强烈的非线。

3高分子材料的发展趋势

高分子材料的高性能化:现有的高分子材料虽已有很高的强度和韧性,某些品种甚至超过钢铁,但从理论上推算,还有很大的潜力。另外,为了各方面的应用, 进一步提高耐高温、耐磨、耐老化等方面的性能是高分子材料发展的重要方向。改善加工成形工艺、共混、复合等方法, 是提高性能的主要途径。

高分子材料的功能化:高功能化主要是指具有特定作用能力的高分子材料。这种特定作用能力, 即“特定功能”是由于高分子上的基团或分子结构或两者共同作用的结果。这类高分子材料又称为功能高分子。例如, 高吸水性材料、光致抗蚀材料、高分子分离膜、高分子催化剂等,都是功能化方面的研究方向。

高分子材科的生物化:生物化是高分子材料发展最快的一个方向。各种医用高分子就属于这一范畴。有人认为,除人脑仅 1.5kg 重的大脑外,其他一切器官均可用高分子材料代替。此外, 生命的基础,细胞、蛋白质、胰岛素等也均属于高分子。生物化于是成为高分子科学的一个最主要发展方向。如合成或模拟天然高分子,使之具有类似的生物活性,代替天然的组织或器官。

结束语

综上所述,在科技日益进步的今天,我国必须走具有中国特色的发展高分子材料成型加工技术与装备的道路,把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。

参考文献:

[1] 高分子材料的发展方向.国家自然科学基金委员会.高分子材料科学.科学出版社,1994.

[2] 史玉升,李远才,杨劲松.高分子材料成型工艺[M].化学工业出版社,2006.

高分子材料的优点范文5

Abstract: Function polymer materials are rapidly developing in recently years. But there are not any generalizations to the development of shape memory polymers. The defined, mechanism, characterization and the preparation of the most simulative shape memory polymer are briefly introduced in this paper. Then the developing prospects are also reviewed.

关键词: 功能高分子材料;展望;形状记忆

Key words: functional polymer materials;outlook;shape memory polyer

中图分类号:TB324 文献标识码:A 文章编号:1006-4311(2012)31-0303-02

0 引言

随着社会的进步和科学技术的发展,一般的材料难以满足日益复杂的环境,因此需要具有自修复功能的智能材料——形状记忆材料。20世纪50年代以来,各国相继研究出在外加刺激的条件(如光、电、热、化学、机械等)经过形变可以回复到原始形状的具有形状记忆功能的材料,它可分为三大类,形状记忆合金、形状记忆陶瓷和形状记忆聚合物材料。高分子产业的迅速发展,推动了功能高分子材料得到了蓬勃发展。形状记忆聚合物材料的独特性,广泛应用于很多领域并发展潜力巨大,人们开始广泛关注[1]。

1 功能高分子材料研究概况

功能高分子材料是20世纪60年代的新兴学科,是渗透到电子、生物、能源等领域后开发涌现出的新材料。由于它的内容丰富、品种繁多、发展迅速,成为新技术革命不可或缺的关键材料,对社会的生活将产生巨大影响。

1.1 功能高分子材料的介绍 功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子[2]。

1.2 功能高分子材料分类 可分为两类:第一类:以原高分子材料为基础上进行改性或其他方法,使其成为具有人们所需要的且各项性能更好的高分子材料;第二类:是具有新型特殊功能的高分子材料[3]。

1.3 形状记忆功能高分子材料 自19世纪80年现热致形状记忆高分子材料[4],人们开始广泛关注作为功能材料的一个分支——形状记忆功能高分子材料。和其它功能材料相比的特点:首先,原料充足,形变量大,质量轻,易包装和运输,价格便宜,仅是金属形状记忆合金的1%;第二,制作工艺方简便;形状记忆回复温度范围宽,而且容易加工,易制成结构复杂的异型品,能耗低;第三,耐候性,介电性能和保温效果良好。

形状记忆聚合物(SMP)代表一项技术上的重要的类别刺激响应的材料,在于形状变动的反应。更确切地说,传统意义上的SMP是聚合物变形,随后能固定在一个临时的形状,这将保持稳定,除非它暴露在一个适当的外部刺激激活了聚合物恢复到它原来的(或永久的形状)。因此,相关的反应被称为聚合物内的形状记忆效应(SME)。虽然各种形式的外部刺激可以被用来作为恢复触发,最典型的一种是直接加热,通向温度增加[4]。

2 部分形状记忆高分子材料的制备方法

2.1 接枝聚乙烯共聚物 在形状记忆聚乙烯中,交联(辐射或化学)是必须的,但是交联程度过高会导致聚合物的加工性能不好,因此最好是将交联放在产品制造的最后一步:Feng Kui Li等采用尼龙接枝HDPE获得了形状记忆聚合物。他们采用马来酸酐和DC处理熔融HDPE在180℃反应5分钟,然后在230℃下和尼龙-6反应5分钟得到产物。SEM照片显示尼龙微粒小于0.3μm,在HDPE中分散良好,两者界面模糊,显示两者形成化学粘合;而尼龙和HDPE简单混合的SEM照片中两者界面明显试验同时表明,随着DCP含量和尼龙含量的提高,共聚物中形成了更多的共聚物具有和射线交联聚乙烯(XPE)SMP相似的形状记忆效应,形变大于95%,恢复速度好于射线交联的聚乙烯SMP,该聚合物在120℃左右形状恢复达到最大。对其机理研究表明,接枝在PE上的尼龙形成的物理交联对形状记忆效应有重要作用。值得注意的是该共混物是仅仅通过熔融混合得到的,工艺非常简单,而且采用的是通用聚合物,因此该方法值得推广[5]。

2.2 聚氨酯及其共混物 聚氨酯是含有部分结晶相的线性聚合物,该聚合物可以是热塑性的,也可是热固性的。聚氨酯类形状记忆材料,软段的结构组成和相对分子质量是影响其临界记忆温度的主要因素,硬段结构对记忆温度影响不大。

采用聚氨酯和其它聚合物共混,可以改善性能,得到所需要的产物。有报道采用聚己内酰胺(PCL)、热塑性聚氨酯(TPU)和苯氧基树脂制得的形状记忆材料。发现该产物随着组成的变化而玻璃化转化温度不同;同时发现PCL部分在混合物中结晶相消失,说明结晶过程被阻碍。改混合物具有形状记忆效应的原因在PCL/苯氧树脂作为了可逆相。该混合物的玻璃化温度可以通过TPU/苯氧基树脂的混合比例和种类决定,增加混合物中固定相和减少TPU链长度可以减少滞后效应。报道采用PVC和PU共混也能得到SMP。该混合物中存在PVC/PCL形成的无定形相,混合物的玻璃化的温度也随着PVC/PCL的组成变化而平稳的发生变化,固定相记忆着最初形状[6-8]。

3 国内外形状记忆高分子材料研究现状

3.1 国内研究现状 国内研究的形状记忆高分子材料多以聚氨酯和环氧树脂基为主,加入添加剂或固化剂进行改性,可以得到满足基本要求的SMPs,但是由于其自身缺点的约束,所以限制了其使用范围。最近几年来,形状记忆合金以利用聚合物为基体添加其他成分,突出各个优点进行对比,得到一些性能良好的形状记忆材料因此我们列举国内最新的SMPs研究。

魏堃等人将新型聚合物固化剂与环氧树脂(EP)进行机械共混,进行适度交联固化后,制出具有较低玻璃化转变温度(Tg)的无定型EP体系,得出结果显示适度交联固化的EP体系具有良好的形状记忆特性。

高淑春等人利用活化溅射方法制备TiO2薄膜,以Ni-Ti形状记忆合金生物材料为基体,附着在形状记忆和金材料的表面,其跟血液相容性比较好,因此具有较高的临床使用价值。

3.2 国外研究现状 对比国内,国外的SMPs发展比较早,例如:美国、日本、德国等由于具有先进的设备和理论基础,因此在各个方面相对国内都比较成熟,所以本人参考最近国外SMPs相关研究在此论述。

Y.C.Lu等人利用环氧基的形状记忆材料设计模拟服务环境所能反映出的预期性能要求即

①暴露在紫外线辐射下循环为125分钟;②在室温下沉浸油内;③浸泡在热水中49℃。一种新颖的高温压痕法评估适应条件的SMPs的形状和力学性能。结果表明对于有条件的比较一般环境条件SMPs的玻璃化转变温度降低与较高模和敏感应变速率。如果温度设定低环境条件影响的SMPs形状恢复能力。特别是紫外线暴露和浸入水中的SMPs回复率明显低与无条件的材料。当回复温度高于Tg,材料的回复能力相对保持不变。

R.Biju等人用双酚A(BADC)与缩水甘油醚或者双酚A(DGEBA)与苯酚螯合物(PTOH)通过一系列聚反应合成热固性聚合物表现出具有形状记忆性能。利用差示扫描量热分析、红外光谱及流变仪来表征其固化特征。以不同比例DGEBA/PTOH/BADC混合,研究了它们的弯曲、动态力学性能以及热性能;对于一个给定的成分,弯曲强度和热稳定性随着氰酸酯浓度增加而增加,而这些特性随着PTOH浓度的增加而降低,储存模量表现出相似的趋势。这个转变温度(Tt)随着整体氰酸酯含量的增加而增加。这些聚合物在形状记忆性能显示出良好的恢复形状,并且形状恢复时间减少。而显示恢复时间与形状恢复模量增加(Eg/Er)刚好相反。这个转变温度可调谐反应物组成及变形恢复速度随驱动的温度增加而增加。这些环氧基氰酸盐系统具有良好的热、力学和形状记忆特征很有希望用在智能电气领域。

4 展望

由于SMP有着丰富的后备资源,而且形状记忆的方式灵活,具有广阔应用和发展前景。因此本文认为,有很多重要因素影响将SMPs技术成功转化成生产应用,例如:标准化的不同方法描述为量化形状记忆材料的性能。应该进一步完善形状记忆原理,在分子结构理论和弹性形变理论基础之上,建立形状记忆的数学理论模型,为开发新材料奠定了理论基础;运用分子结构理论、实验设计原理和改性技术知识,提高形状记忆各项性能、丰富品种、满足不同的应用需要,增强应用和开发研究,拓宽应用领域,尽快转化为生产力。

形状记忆高分子与形状记忆合金相比具有感应温度低,且形状记忆高分子因其独特的优点而具有广泛的应用前景,但是我们也应该看到在开发应用上仍存有一些不足[22]:形变回复力小;只有单程形状记忆功能,没有双程性记忆和全程记忆等性能;优化制作设计与工艺,开发更多优秀的品种,在研究聚合物基的SMP中有许多重要工作需要我们一步步努力去做,在完善SMP过程中,同时要研究复合社会不同需求的产品。

参考文献:

[1]陈义镛.功能高分子[M].上海:上海科学技术出版社,1998:1-5.

[2]江波等.功能高分子材料的发展现状与展望[J].石油化工动态,1998,6(2):23-27.

[3]古川淳二.对21世纪功能高分子的期待[J].聚合物文摘,1994,(6):17.

[4]Tao xie. Recent advances in polymer shape memory[J].Polymer, 2011,(52):4985-5000.

[5]Han Mo Jeong Europen polymer ourn [M].2001,(37):2245~2252.

[6]饶舟等.形状记忆聚氨酯高分子材料的研究进展[J].聚氨酯,2011,110(7):1-7.

高分子材料的优点范文6

1 基于工作过程教学简介

基于工作过程的课程体系,是一种以任务为驱动,以项目为载体的教学模式。高等教育的人才培养目标需突出学生综合职业能力的培养。高校更应该结合各类企事业单位对人才的需求,参照基于工作过程的课程体系,构建基于工作过程的课程体系建设的改革发展之路。

目前,课程设计方法越来越被高职院校所重视。所谓工作过程,是指为完成工作任务并获得工作成果而进行的一个完整的工作程序,包含若干个既相对独立又相互联系的工作环节。由于毕业生所对应的相关职业的工作过程特征不同,各院校的情况和办学条件也不同,因此,引进这种课程设计方法时,在强调这种课程设计方法优点和有利条件的同时,一定要注意不同类型院校和专业存在的各自特点及不利因素。我院在进几年的课改过程中积累了一定经验,对课程改革有一定研究。基于工作过程的教学,以工作过程为参照系,以完成职业工作应具备的专业技术能力项目为依据,针对行动顺序的每一个工作环节知识、能力要求传授相关的课程内容,组织技能训练,突出学生在校学习与实际工作的一致性,实现理论知识与实践技能的整合。

2 高分子材料加工专业“工作过程”内容设计

高分子材料加工的职业能力是一种综合能力,要求教师在教授的同时要将高分子材料常见的各种加工方法、加工手段以实践的方式教给同学,这就需要为学生模拟真实的工作情景,通过以项目任务为依托的教学使学生置身于真实的或模拟的学习工作世界中。在教学中,每个学生会根据自身的知识结构与实际经验,会给出不同的解决任务的方案与策略,产生的学习效果不是唯一的,而是多样化的。让同学在正确认识高分子材料结构和组成以及合理的配方设计基础上,能够选择合适的加工设备、加工工艺和加工方法制备高分子材料制品的过程。

教学内容可以以实际的“工作任务”为依托项目。“工作内容”的设计要结合本学科前沿研究领域和发展动态,介绍重点科技成果,增加教学信息量,使课程教学内容满足时代的要求,使学生掌握更多、更新的专业知识。教学过程通过不同的高分子材料产品项目、确定合适的加工技术及其方法。理论教学内容与实践教学内容通过项目或者是工作任务紧密地结合在一起。课程涉及到的高分子制品成型加工典型工作任务如下图所示:

主要是根据制品使用需求、选择出合适的高分子材料,并进行合理的助剂选择,进行配方设计,如不合适提出改性办法等,为生产开发决策提供完整依据。

通过项目任务的实施,使学生能针对产品的具体要求合理的设计成型加工方案,能对所设计方案进行合理的性能分析与测试,进而掌握塑料、橡胶制品加工设计的原理与方法。为将来从事高分子材料、复合材料的生产打下坚实的基础。

通过以下项目:“市政用木塑复合栅栏材料的成型加工”、“冰箱抽屉专用料加工设计”、“抗冲击阻燃电视机壳专用料成型加工”、“低成本鼠标垫加工”、“聚乙烯发泡鞋底设计”、“霓虹灯管专用料设计”、“PP汽车保险杠专用料设计”、“奥运志愿微笑圈手环配方设计与制作”的实施,让同学能够通过能够设计塑料产品的配方,能找出成型加工方案设计难点,提出解决方法的能力。能够设计橡胶产品的配方,能找出成型加工设计难点,提出解决方法的能力,能够分析测试塑料材料配方的基本性能,能够分析测试橡胶材料的基本性能。

配合上述8个项目及相关拓展任务的训练,组织学生讨论、总结、归纳如下相关知识:了解塑料的物理性能、流动特性、成型过程中的物理、化学变化情况。了解橡胶的物理性能、流动特性、成型过程中的物理、化学变化情况。掌握常用通用塑料和通用工程塑料塑料的特性、分类以及塑料配方的组成和对应的成型加工工艺。掌握常用天然橡胶和合成橡胶的特性、分类以及橡胶配方的组成和对应的相关成型加工。 转贴于

通过训练让同学以下能力得到提高:(1)培养学生自我学习,寻求探索物质之本性的兴趣与能力;(2)对事物性质的分析方法—内外因分析法;(3)培养学生信息获取的素质与能力(图表查阅、专利、手册、网络资源等);(4)逐步形成综合分析问题的素质与能力;(5)增强环境保护意识、经济意识、安全意识;(6)专业外语单词的学习与筑固;(7)团队合作意识的形成。

3 “基于工作过程”教学对教师的要求

(1)专任教师实践能力的提高。作为一线教师,在实行相关实践教学过程中,一定要具有高分子材料加工生产的职业经验,清楚高分子加工企业的工作过程和经营过程,只有这样才能找出高分子材料生产的工作任务作为具有教育的项目。

(2)专业教学团队的建立。基于工作过程的教学法涉及多学科教学内容,高分子材料加工生产需要有机械设备、加工工艺、原料配方、制品材料测试、产品检验等一系列知识,因此对绝大多数教师而言,很难独自一人很好地完成教学工作。这就要求教师具有跨学科的能力,团队协作的能力,不仅要娴熟本学科的专业知识与技能,还要了解相邻专业、相关学科及跨学科的知识与技能。

(3)学习情境设计能力的掌握。在本教学法中,学习情境的设计好坏决定了传授知识结构的合理性、能否激发同学学习的兴趣。如何在项目教学中合理有效的利用学习的资源和协作学习的环境是教师最主要的工作,这要求教师熟悉项目内容中所用的高分子材料的基础知识,并准备好项目开展过程中可能涉及到的有关知识。

4 结束语

在专业课程体系中,高分子成型加工是门重要的核心课程,是高分子加工专业学生必须掌握的专业知识和技能。在老师的指导下,用工厂的管理模式,让学生亲自动手设计和制造相关高分子产品,加深领会和掌握材料加工过程工艺设计的要点以及生产工艺与实际生产之间的联系。但以往教育方式存在着一定的不足,且与当前工厂的需求相脱节,于是笔者根据自己的教学经验,在新的基于工作过程的教学理念指导下对高分子成型加工课程进行改革,以提高学生的学习兴趣和求知欲望。

基金项目:教育部高等学校高职高专化工技术类专业教学指导委员会2009年度规划课题,课题编号HJKT-2009-034Y;常州工程职业技术学院教育研究课题《“基于工作过程的项目化教学方法”在高分子成型加工课程改革中的应用》,课题编号:10JY022

参考文献

[1]应力恒.基于工作过程的课程项目化教学改革[J].中国职业技术教育,2008(22).

[2]虞丽娟.深化课程体系改革提高人才创新能力[J].中国高等教育,2008(15).