遥感应用技术范例6篇

前言:中文期刊网精心挑选了遥感应用技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

遥感应用技术

遥感应用技术范文1

关键词:水工环;遥感技术;应用

中图分类号: F407.1文献标识码:A 文章编号:

一、水工环地质工作的现状

当前,我国国土资源部和地质调查局系统正努力开展地质找矿改革发展的相关工作,基本的指导思想是“树立大地质、大服务理念”,打破过去“安于现状墨守成规、自我循环”的旧思想,实现冲破传统束缚。突破固有模式、闯出新的路子,促进观念大转变把思想认识切实与中央的指示精神,与提升服务能力、与促进地质找矿重大突破相统一,始终坚定一个目标,即为实现重大找矿突破做好理论准备和体制准备。

二、主要遥感信息源及其发展

根据传感器类型不同,遥感图像可分为可见光摄影、红外摄影和扫描、多光谱扫描、微波雷达和成像光谱图像等。近l0年来,传感器技术迅猛发展,主要表现在:

图像分辨率提高,卫星图像分辨率已达到1米级。

具备立体观察功能。

应用波段数增加,机载高光谱成像仪已投入使用。

如美国的AVIRIS(空可见光/红外成像光谱仪),波谱范围0.4―2.5/l,波段数224个。CASI(航空光谱成像仪),波谱范围0.4―0.95/u,波段数72个。高光谱成像光谱仪简称成像光谱仪,也称超光谱成像仪,按其波段数目可分为高光谱成像光谱仪(波段数

近年来发射的主要对地观测卫星及图像进步简述如下:1999年美国发射了Landsa7卫星,其ETM+图像分辨率与过去的TM相同,为30m,增加丁分辨率15m的全色波段(PAN)。热红外波段ETM+6分辨率从TM6图像120m基础上提高到60m。TM图像图幅185X185km,最大可放大到1:10万。1995年升空的加拿大雷达卫星RADARSAT为C波段、HH极化方式,具7种模式,25种波束的特点,分辨率有10、25、35、50、100m多种,图幅50km×50km~50km×500km,有立体观察功能,实际重复周期1~8d。1999年9月,美国IKONOS一2发射成功,图像分辨率高达lm。

三、水工环领域遥感应用技术的发展现状

经过近30年的应用研究,遥感技术依靠传感器技术、图像处理技术及计算机技术的提高,在水工环领域的应用取得了长足的发展。遥感水文地质开始逐步形成一门独立的学科。传统的遥感水文地质着重于水文地质测绘系统中定性特征的解释和特殊标志的识别,近期的研究则扩展到应用热红外和多光谱影像进行地下水流系统内的地下水分析和管理,目前研究的重点集中到了空间补给模式、污染评价中植被、区域测图单元参数的确定和空间地下水模型中地表水文地质特征的监测。纵观国内外遥感技术在水工环领域的一些应用成果,可把近年来遥感技术的应用发展现状概括为以下几个方面:

1.从目视解译发展到计算机辅助解译

如线性影像计算机自动判释专家系统及土地利用(分类)计算机判读模型以及机助信息提取与制图系统等。由于影像的多解性及识别系统的不完善性,虽还需要投入一定的人力工作,但已大幅提高解译工作效率。

2.从几何形态解译到充分利用光谱信息

过去的多光谱遥感数据波段划分过少,只有几个波段,使地面波谱测试数据与图像光谱数据难以精确比较。因此,图像解译工作很少考虑地物的波谱特征,主要根据影像的色彩、色调、纹理、阴影等所形成的几何形态特征。随着机载成像光谱仪(高光谱)技术的商业运作及2000年前后的高光谱成像卫星的发射,使得用光谱信息对地物的分析更精细、更准确。

3.出现地面温度反演技术

地面温度反演是指从热红外图像数据的辐射亮度值获得地表温度信息。反演方法主要有地表温度多通道反演法和多角度数据进行组分温度反演法等。

4.从定性分析评价到依靠计算机数字模型模拟的定量分析评价

如遥感技术在地下水流系统应用中,根据遥感数据建立的地形、流域面积、水系密度等数据集结合气象数据建立空间补给模型。数字模型成为遥感技术实现定量评价的重要途径,而DEM/DTM是涉及地形数据计算方面不可缺少的工具。

5.使用单一遥感信息源到多元信息拟合

目前的遥感应用技术,已不再是单一使用各种遥感数据,而是根据需要结合利用了其他信息源,如地质、地形、水文、土壤、植被、气象、岩土物理力学特征及人类活动等资料。这样,图像数据的预处理尤其重要,如几何较正、多波段数字合成、镶嵌、数据变换等,而地理信息系统(GIS)在多元信息数据管理中起着重要作用。

6.从单一手段应用到多手段应用

近年来,遥感技术(Rs)与地理信息系统(GIS)和全球定位系统(GPS)的综合应用,即“3s”技术,成为遥感技术应用的主流。GIS是数据库管理、数据图形处理、各主题图件叠加、制图的重要工具。GPS可以对地面控制点精确定位,提高遥感数据空间精度。另外,在具体手段配合上,也出现了遥感技术与物探技术、钻探技术等相结合的新方法。

7.数字摄影测量技术的发展

数字摄影技术的成熟,推进了制图工作的现代化,改善了基础图件的质量和成图效率,并影响着遥感技术的调查方法。该技术的产品可直接作为GIS的数据源,便于遥感与GIS一体化研究与开发。如我国自己开发的全数字摄影测量软件VIRTUOZO,具有数字化测图、自动生成DEM/DTM和等高线、生成正射影像等功能。

8.遥感技术应用成果向着便于保存、复制、携带及传输方向发展

这意味着遥感技术应用成果的数字化。由于是数字成果,可载于多种介质上,如CD―ROM、磁带及计算机硬盘上,使携带处理更加方便。随着1998年“数字地球”计划的提出及我国国土资源部“数字国土”工程的实施,遥感应用成果数字化显得尤其必要。

9.大型工程选线选址

近年来,遥感技术在大型工程规划选址、工程地质稳定性评价、铁路、高速公路、引水工程、水利水电建设等方面进行了广泛的应用,初步显示了遥感技术的优势。遥感图像具有直观特性。卫星影像视野开阔、宏观,航空像片分辨率高,二者的有机结合使用,可以实现上述问题的调恕T崇桓讨论了遥感技术在高等级公路工程地质勘察中的应用。胡佩基等人应用航空摄影测量、航卫片解译分析、GPS技术、数字地面模型研究了高原山区高等级公路的勘测设计。戴文晗等人用数字图像计算机增强信息提取技术结合航空摄影图像,快速评价了深圳沿海{速公路的工程地质调思把∠撸突出了地貌、水文及外动力地质现象,较好地划分了岩土体类型,构造解译吻合好,并且进行了新构造运动的遥感分析。、

结束语

在水工环地质中对GPSRTK 技术的采用,已经得到了很好验证,可以一步到位外业的测量,节省了很多不必要的中间环节,对外业工作量进行最大限度地减少,从而缩短整个测量工期,提高工作效率。同时,简化外业工序和迅速完成也可以使所有的后续专业工序更快的完成。

参考文献

遥感应用技术范文2

关键词:遥感技术;矿产资源;开发预测;地质遥感信息

中图分类号:P627文献标识码:A文章编号:1009-2374(2009)20-0057-03

遥感在地质学上的应用始于20世纪70年代,人们利用遥感视域宽、信息丰富、具有定时性、定位性的特点,研究地球表面及表层的地质体、地质现象的电磁辐射特征,识别地质体的物性及运动状态,从而为地质构造研究、矿产资源勘查、区域地质调查、环境和灾害地质监测等研究提供帮助。

一、遥感技术概述

(一)遥感技术的概念

遥感技术是从远距离感知目标反射或自身辐射的电磁波、可见光、红外线等目标进行探测和识别的技术。例如航空摄影就是一种遥感技术。人造地球卫星发射成功,大大推动了遥感技术的发展。现代遥感技术主要包括信息的获取、传输、存储和处理等环节。完成上述功能的全套系统称为遥感系统,其核心组成部分是获取信息的遥感器。遥感器的种类很多,主要有照相机、电视摄像机、多光谱扫描仪、成像光谱仪、微波辐射计、合成孔径雷达等。

现代遥感应用技术是指在数字地球框架下,将遥感技术与传统的地质方法相结合,和现代信息技术相结合的遥感信息深化应用技术。它的核心是遥感信息的延伸应用和信息化。最大限度地利用信息资源,以提高矿产资源的勘查效果。一方面,露出地表的矿明显减少,勘查目标已由地表或近地表转向地下深处的隐伏矿床,找矿难度愈来愈大。另一方面,各种地学手段取得的信息资源愈来愈丰富,为遥感信息与其它地学信息的集成创造了条件。

(二)遥感技术的原理

任何物体都具有光谱特性,具体地说,它们都具有不同的吸收、反射、辐射光谱的性能。在同一光谱区各种物体反映的情况不同,同一物体对不同光谱的反映也有明显差别。即使是同一物体,在不同的时间和地点,由于太阳光照射角度不同,它们反射和吸收的光谱也各不相同。遥感技术就是根据这些原理,对物体做出判断。遥感技术通常是使用绿光、红光和红外光三种光谱波段进行探测。绿光段一般用来探测地下水、岩石和土壤的特性;红光段探测植物生长、变化及水污染等;红外段探测土地、矿产及资源。

利用多种遥感平台获取的多种类、多时相遥感数据,采用多种遥感图像处理方法,室内对比提取矿产资源开发地采矿活动痕迹的影像信息,发现其不同时间段采矿活动痕迹变化信息。

二、遥感技术的优势及其在矿产资源开发预测工作中的作用

随着RS(遥感)、GIS(地理信息系统)、GPS(地理定位系统)的发展,遥感数据的可解释程度与速度得到更快地提高,影响遥感解译的不确定性因素在不断减少,在矿产资源预测评价方面,尤其是在自然环境比较恶劣的地区,遥感的作用将由矿产资源调查评价的配角到主角的新角色。

(一)遥感技术的优势

与常规手段相比,遥感技术用高空鸟瞰的形式进行探测,可以跨越交通的阻隔和视野的限制,洞察地面调查的和死角,对大面积的环境状况进行全面彻底的调查;同时,它远离观察对象,不损害研究对象及其环境条件,保证了获取信息资料的客观性、可靠性;遥感技术具有的“多点位”、“多波段”、“多时相”、“多高度”的获取和“多次增强”遥感信息处理的特征。

根据不同的任务,遥感技术可选用不同波段和遥感仪器来获取信息。例如可采用可见光探测物体,也可采用紫外线,红外线和微波探测物体。利用不同波段对物体不同的穿透性,还可获取地物内部信息。

目前,遥感技术的发展主要体现在空间、时间和光谱分辨率的不断提高。民用卫星遥感数据中Quick Bird数据的最高空间分辨率已达0.61m,轨道重复周期1~6d(取决于纬度高低);而几何分辨率为1m的IKONOS卫星数据,重复周期仅为1~3d;高光谱卫星数据Hyperion,波段高达220个,几何分辨率达30m。相对于卫星遥感而言,航空遥感具有更机动灵活、更高精度的优势,如目前较先进的基于POS系统的航空摄影技术,可根据POS系统检校场的测量数据直接制作正射影像图,从而实现无地面控制点的高精度航空遥感影像定位,极大地提高调查的几何精度,缩短调查周期。

(二)在矿产资源开发预测工作中的作用

在矿产资源预测的应用主要在于矿产遥感信息的形成机理和遥感成矿模式研究上。地质遥感信息形成机理研究是遥感理论研究的新领域,是遥感找矿方法的科学性、针对性和有效性,促进遥感地质解译向规范化、模式化方向发展的必由之路。这些信息的识别提取在许多地区已经有了初步应用,取得较多的成矿信息,资源预测及其评价效果比较好。遥感技术在矿产预测工作流程图如图1所示:

主要是对遥感数据(ETM+、SPOT5)进行辐射校正、PAN波段数据与多光谱数据进行融合处理、天然假彩色合成、几何校正、大地配准与镶嵌等。然后制作国际标准分幅图像,对其格式转换后与地形数据进行叠加显示,以人机交互方式对各种矿山地质环境现象进行解译,最后将解译结果提供野外验证。

1.几何校正与大地配准。在地形图上采集控制点对遥感数据进行几何校正,在1∶100000地形图上采集控制点对ETM+数据进行校正;在1∶50000地形图上采集控制点对SPOT5数据进行校正。每景图像采集控制点数25~36个,且均匀分布于图像内,控制点残差控制在1个像元以内,将图像配准至大地坐标。

2.数据融合。针对遥感图像不同光谱和不同分辨率的特点,融合处理主要集中于象素级与特征级融合,可将来源于不同传感器的遥感图像的优势集中起来,减少数据的冗余度,增强图像的清晰度,提高解译的精度和准确性,针对多分辨率遥感数据图像融合的方法比较多,主要有色彩空间变换如HIS、Lab、CN以及KL变换、小波变换等方法。对不同的数据组合、不同地形情况、不同区域及不同的研究目标使用的融合方法各异。针对本项目以突出矿山地质环境状况的特点,利用HIS融合方法,对ETM+的7、4、3波段与PAN波段组合,SPOT5的4、2、1波段与PAN波段组合进行融合处理的结果图像能较好反映矿山地质环境各要素。

3.图像镶嵌。由于研究范围较大,跨17景ETM+图像,部分矿区存在跨越多景遥感图像,给解译时带来不便。需要对跨图幅影像进行镶嵌,镶嵌时为了使图像满足以下条件:(1)信息丰富;(2)色调和谐;(3)镶嵌的几何精度高。

4.图像剪裁。为了方便解译、控制精度精度、解译成果的拼接等工作,在矿山比较连片的地区,需要将整景图像或镶嵌图像按按1∶100000或1∶50000国际标准图幅制作分幅图像。

5.格式转换。将制作的国际标准分幅图像存储为*.TIF格式,然后转换为MAPGIS内部图像格式*.MSI格式,以便于人-机交互解译。影像与1∶100000或1∶50000地形图能完全叠合,因此在上面解译的结果与地形图叠合比较好,给野外检查验证带来方便。

三、遥感技术在贵州矿产资源开发找矿方面的应用实例

位于云贵高原东部的贵州,系隆起于四川盆地与广西、湘西盆地或丘陵之间的高原山区。在长达10多亿年的地质演变历史中,具有良好的成矿地质条件,造就了当今贵州矿产资源丰富、分布广泛、门类较全、矿种众多的优势格局。贵州素以“沉积岩王国”著称,是矿产资源大省。沉积矿产中以煤、磷、铝、锰为优势,具有“量大质优”的特点。

在发现的矿产中,有包括能源、黑色金属、有色金属、贵金属、稀有稀土分散元素、冶金辅助原料非金属、化工原料非金属、建材及其它非金属、水气等九大类矿产在内的76种,不同程度地探明了储量。在已探明的储量矿产中,依据保有储量统一对比排位,贵州名列全国前十位的矿产达41种,其中排第一至第五的有28种,居首位的达8种,列第二、第三的分别为8种与5种。尤以煤、磷、铝土矿、汞、锑、锰、金、重晶石、硫铁矿、稀土、镓、水泥原料、砖瓦原料以及多种用途的石灰岩、白云岩、砂岩等矿产最具优势,在全国占有重要地位。而且人均与国土单位面积占有矿产资源潜在经济价值量,都高于全国平均水平,远高于邻近省区市占有水平。从开发利用角度论,贵州矿产资源具有资源比较丰富、优势矿产显著;分布相对集中、规模大、质量较好、主要矿产资源潜力大、远景好;共伴生矿产较多;资源丰歉不均,部分矿产短缺等五个方面的主要特点。

(一)煤矿的遥感找矿模式

1.石炭系煤。(1)含煤地层的识别:由于该套地层顶底板都是碳酸盐岩,因此,分布在喀斯特地貌区,呈条带状展布的非喀斯特地貌即流水侵蚀地貌,是快速、准确地判读大塘期含煤岩系的最直接标志;(2)地貌标志:由于含煤岩性及其顶、底板岩层在物质属性及侵蚀作用上的差异,常常沿含煤岩系形成走向次成谷。

2.二叠系煤。(1)含煤地层的识别:含煤岩系是间于上覆三叠系碳酸盐岩与下伏峨眉山玄武岩及下二叠统碳酸盐岩中的一套地层,因此,分布在喀斯特地貌区,呈条带状展布的非喀斯特地貌――流水侵蚀地貌,是判断晚二叠世含煤岩系的标志;(2)地貌识别标志:在山盆期地貌保存良好的地区,该套非可溶岩层除发育规模较小的走向次成谷外,还常常与其上下碳酸盐岩形成垄(脊)―槽(谷)组合地貌;在乌江期地貌发育区,该套非可溶岩层常形成规模不等的走向次成谷。

(二)磷矿的遥感找矿模式

1.晚震旦世磷块岩。(1)地层识别:首先,含磷岩系在空间上受岩相古地理控制,在省内主要分布于黔中地区。由于含矿的磷块岩层位于上震旦统碳酸盐岩系的下部,而这套碳酸盐岩系,上、下均为碎屑岩,故在参考区域地质资料基础上,可在TM影像上通过对碳酸盐岩的识别大致圈出其分布。(2)地貌识别标志:由于含矿层与其上下岩层在物质属性及侵蚀作用上的差异,常常沿含矿地层形成走向次成谷。

2.早寒武世磷块岩。(1)地层识别:同晚震旦世磷块岩一样,岩相古地理控制矿产的区域分布是明显的。含矿层识别主要依据地层层序的相互关系并结合影像特征予以区别。如在区域上下二叠统栖霞―茅口组碳酸盐岩影像上有较为突出的特征,岩溶地貌发育,碎斑状影纹图案,顺这套地层往下,一般可“清理”出下伏各组地层。如在织金一带,其下伏依次为下石炭统地层以及下寒武统和上震旦统含磷层位。(2)地貌识别标志:典型的岩溶地貌区,常形成峡谷及峰丛,山体较尖棱。

(三)铝土矿的遥感找矿模式

1.地层识别:含矿地层主要为下石炭统“九架炉组”,“九架炉组”分布于形态各异、大小不一的古喀斯特洼地中。

2.地貌识别标志:含铝岩系的底板、顶板均是主要由碳酸盐岩形成的喀斯特地貌,但其喀斯特微地貌仍有差异。顶板碳酸盐岩常常形成坡体相对高差较大的峰丛(林),且仍发育成走向比较清楚的山脊线;而底板碳酸盐岩则常常形成坡体相对高差较小的峰丛(林),且不存在山脊线。含铝岩系就产于这喀斯特微地貌的变化处。

四、结论

矿产资源是人类社会可持续发展的重要物质基础,没有矿产资源作保障,经济就不可能发展,人类社会就不可能进步,我国全面建设小康社会的宏伟目标就无法实现。因此,我们必须充分认识国情和省情,树立和落实科学发展观,要进一步加强矿产资源调查评价与勘查。本文结合贵州当地的矿产资源,利用遥感技术对其进行开发找矿、预测等的探讨,旨在提高矿产资源可供性,实施矿产资源可持续发展战略。

参考文献

[1]常庆瑞,蒋平安,周勇. 21世纪高等院校教材:遥感技术导论[M].科学出版社,2004.

[2]徐水师,谭克龙,曹代勇.中国煤炭资源遥感调查评价理论与技术[M].科学出版社,2009.

[3]童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用[M].北京:电子工业出版社,2006.

遥感应用技术范文3

【关键词】 低空无人机遥感技术 水利领域 应用

无人机是一种通过机载计算机程序或无线遥控设备进行操控的无人飞行器。作为一种微型空中遥感技术,无人机遥感技术将无人机作为空中平台,利用遥感传感器实现空间信息的采集,并利用计算机处理图像信息,再按照要求的精度完成图像的制作[1]。无人机系统具有成本低、结构简单、可完成有人驾驶飞机难以完成的危险任务等优点,已逐步投入实际应用中,必将成为未来航空遥感的主要技术。低空无人机遥感技术具备的显著优势,有效完善了传统卫星遥感技术存在的不足之处,极大程度上促进了水利相关领域的技术发展。

一、低空无人机遥感技术的发展与应用

早期的无人机主要应用在军事上,起靶机的作用,后来逐渐应用于侦查作战、民用等范围。随着计算机通讯技术的发展,以及高精度、轻重量、数字化的先进传感器的研发与应用,无人机的综合性能也得到逐步提升,其应用领域也得到了充分拓展,为遥感监测工作的开展提供可靠的支持与条件。

1.1低空无人机遥感技术的应用特点

作为空中遥感平台中一项微型的遥感技术,无人机具备以下几个方面的特点:

(1)低空无人机遥感技术将无人机作为空中平台,利用专用的照相机及无线视频传输技术采集相关信息,并利用计算机处理图像信息,再按照要求的精度完成图像的制作。

(2)在应用无人机的前提下,可根据需要的不同选择不同类型的遥感平台,为转场及起降等操作提供了便利。

(3)无人机采用改装后的CCD数字照相机进行遥感航拍,拍摄的影像为数字格式,还可利用无线视频传输技术或小型的数字摄像机摄制彩色,从而获取可靠的遥感信息。

(4)无人机飞行高度偏低,可获得分辨率较高的遥感影像,使得在小空间尺度上便可将地表的变化详细观察出来,并完成大比例尺的遥感制图。此外,高分辨率的航片影像还可有效解决卫星拍摄存在盲区、云量大而难以获得遥感数据等难题。

1.2低空无人机遥感技术的应用实践分析

目前,低空无人机遥感技术已在评估灾害、检测环境等方面得到了具体的应用实践。

(1)台湾大学空间信息研究中心的相关人员采用无人机,将低空大比例尺的图像拍摄下来,并开展异常提取操作,将桃源县的固体垃圾等进行解译,从而为执法调查环境污染情况提供了依据。

(2)日本减灾研究组织利用无人机携带雷达扫描仪及数码摄像机,并对正处于喷发状态的火山进行调查。无人机可以到达人们难以进入或非常危险的地区,将现场的实际状况进行快速获取,从而对当地的灾情进行评估[2]。

(3)我国成立的首个Quick eye空间信息应急服务中心,为我国无人机在应急遥感应用方面的尝试与典范。在两年不到的时间内,此服务中心已完成近10万km2的作业量,在1:1000成图、测绘及应急等领域得到了非常广泛的应用。

二、低空无人机遥感技术在水利相关领域中的应用分析

低空无人机遥感技术的具有非常高的分辨率与机动性,非常适用于水利相关领域,且在抗旱防汛、监测水域、监测水土保持以及水利工程建设管理等方面发挥着显著作用。

2.1在抗旱防汛中的应用

低空无人机遥感技术为一项重要的获取空间数据的方法,具有持续航行时间长、机动灵活、成本低、可在高危地区进行探测等多项优点。在日常的防汛检查工作中,无人机可不受交通限制,能在最短时间内赶往险区的上空,对蓄滞洪区的水库、地形地貌及堤防险段等进行立体查看,根据机载装置数据将影像信息实时传递,在向防洪对策提供可靠、准确信息的基础上,尽最大可能规避风险的发生。通过应用无人机抗旱防汛系统,政府相关部门可全面了解突发事件状况,并作出迅速反应,在降低工作难度的同时,充分保障参与抗旱防汛人员的生命安全。在抗旱防汛领域,低空无人机遥感技术能够确保政府部门在洪涝旱灾来临时,可及时、准确获取相应的灾情及应急信息,从而为领导的抗灾决策提供决定性的辅助信息。例如在2010年的舟曲泥石流灾害中,无人机小组立即作出响应,并及时采集受灾地区的遥感影像信息,为灾情的评估及有效治理提供了宝贵的数据支持[3]。

2.2在动态监测水域中的应用

人们的日常生活及工业生产均离不开水的支持。然而随着我国人口的急剧增长及工业的快速发展,合理开发利用水资源已成为迫切需要解决的问题,而水源开发的基础便是准确计算出河流分布及流域面积。然而由于之前技术水平有效,许多河流分布及流域面积等资料已难以将当前的状况准确反映出来。

动态监测水域的目的便是将地区内的水域变化情况调查清楚,通过完善水域调查、统计及占补平衡制度,从而使得水域资源信息为社会提供服务,进一步满足水域资源管理及社会发展的需求。在调查水资源中采用低空无人机遥感技术,可大大减少人力、财力的投入。同时,根据已有的水域监测可实现调查结果的更新,全面变更调查水域的权属界线及使用情况,采用计算机自动识别与目视解译的方法采集数据,编辑图形,准确获取水域的动态监测类型、权限及分布等信息,进而建立信息共享的水域动态监测管理系统等。此外,还可在航道开发及水利规划等方面利用无人机水域监测数据。

2.3在监测水土保持中的应用

目前,我国最主要的环境问题即为水土流失。在水土保持研究中,定量调查土壤侵蚀为其重要内容。无人机遥感由于具有动态、快速、经济等优点,已成为调查土壤侵蚀信息的重要方法。土壤侵蚀受到自然及人为多种因素的影响,过程十分复杂。其中,土壤侵蚀类型不同,影响因素也便不同,例如水蚀,可参考土壤侵蚀通用方程的各因子指标,同时考虑结合使用常规方法与遥感技术能否顺利获取,以及在GIS中是否便于存取、计算等。通常情况下选择地形、降水、植被覆盖程度、沟谷密度及侵蚀防治措施等项目,作为估算土壤侵蚀量的因子。此外,对比分析不同时期的土壤侵蚀强度,对水资源保护工程的治疗效果进行评估,从而为以后的水土保持工作提供合理指导。

无人机可对研究地区进行低空、低速拍摄,且拍摄的照片能将范围内水土流失的强度、实际状况真实反映出来,为土壤侵蚀的类型、程度,以及植被、地形、管理措施等侵蚀因子的属性提供了充足的数据源。利用低空无人机遥感技术采集的遥感影像信息可为区域内水土流失的发生特点及发展趋势提供有效帮助,为政府部门的水土保持工作提供便利的同时,促进水土流失治理工作的全面开展。

2.4在水利工程建设管理中的应用

水利工程建设管理工作涉及到水利工程安全监测及建设环境的影响分析等方面,而低空无人机遥感技术由于具备实施快、拍摄的影像分辨率高等优点,因而在水利工程领域可发挥出关键作用。水利工程的环境影响遥感监测工作内容包括因工程建设引起的生态变化、土地盐渍化、淹没范围等。利用无人机遥感机动灵活等特点,可向生态环境工程提供科学的数据及可靠的决策依据。此外,结合使用空间信息技术、无人机遥感影像及GPS系统,可顺利开展提防工程及大型水库工程的建设施工及管理工作[4]。

三、前景展望

近年来,随着社会经济的飞速发展以及全球气候的变化,水资源的供需矛盾也日益明显,这使得水利工程发展面临严峻挑战的同时,也为其带来了发展机遇。水利建设朝着信息化的方向发展推进,为水利的勘测、设计、建设、管理等各项工作提供了有力的支撑。而无人机由于起降方式机动灵活,且具有低空、自主的飞行方式,以及多数据快速响应的能力等优势,在水利检测、水域规划及水利建设管理等领域具有良好的应用前景。无人机可携带分辨力高的数码相机及摄像机等影像采集设备,进行实时水文数据的采集与回传,充分体现出应急性强、实效性高等优势,而这些优势正是现代化水利工程建设与管理工作的发展趋势。因此,对低空无人机遥感技术的特点及应用效果进行综合考虑,我们可以得知此项技术在我国水利相关领域中具有极为广阔的应用前景。

参 考 文 献

[1]金伟,葛宏立,杜华强,等.无人机遥感发展与应用概况[J].遥感信息,2012,12(01):88-92.

[2]王青山.简述无人机在遥感技术中的应用[J].测绘与空间地理信息,2010,15(03):168.

遥感应用技术范文4

[关键词]无人机 特点 应用

[中图分类号] P237 [文献码] B [文章编号] 1000-405X(2014)-8-130-2

0引言

伴着科学技术的进步,作为获取遥感数据的新型手段,无人机遥感技术向着光谱信息成像化,雷达成像多极化,光学探测多向化,地学分析智能化,环境研究动态化以及资源研究定量化的方向发展,大大提高了遥感技术的实时性和运行性,使其向多尺度、多频率、全天候、高精度和高效快速的目标发展[1]。随着人们对地理环境的不断理解和对测绘需求的增长使得无人机与测绘的关系越来越紧密。无人机遥感技术体现了无人机与测绘的紧密结合同时也提供了更高效的测绘方式[2]。

1无人机遥感系统的组成

无人机遥感系统由空中控制系统、地面控制系统和数据后处理系统组成,如图1所示。

利用无人机遥感系统采集数据时,其工作流程为:根据遥感任务的要求对待拍摄地区进行航迹规划,在地面控制子系统中将规划好航线并载入到遥感空中控制子系统。无人机地面控制子系统按照规划的航线控制无人机的飞行,遥感空中控制子系统则按照预设的航线和拍摄方式控制遥感传感器进行拍摄;遥感传感器子系统将拍摄的数据进行存储,无人机平台则利用无线传输通道将飞行数据传输到地面的控制子系统;地面工作人员可以在地面监测无人机的飞行航线,必要的情况下,可以根据接收的数据更改本次飞行的计划,比如可以马上进行部分地区的补拍;拍摄结束后可以自动切入手控飞行,等待降落[3]。

2无人机遥感技术的优缺点

2.1无人机遥感技术的优点

2.1.1机动、灵活、快速

机动灵活,快速出击的响应能力是应急遥感工作的生命线。缺失了快速响应的能力,应急将无从谈起。无人机能够通过地面运输快速到达指定目标区域[2]。起降场地要求低(100-150m平整马路、平地甚至草地),不需要机场跑道,能够在15-30分钟内完成组装、调试、起飞。对于起飞场地无法寻找到,或者事故常发地点,可以通过车载、导弹或者地面方式从田间地头、空地、山坡、沙滩等多种地域直接发射,通过滑行和伞降的方式进行回收[4]。

2.1.2操作简单、安全性能好

无人机技术的不断成熟,其操作也越来越智能化、自动化。可以通过事先设制飞行路线,并在飞行中进行校对和调整以达到对目标的精确测量。无人机通过配备故障自动诊断及显示功能,如果发生故障,飞机会自动返航到起点上空等待排出故障[2]。

2.1.3体积小、经济

无人机因为轻小,运输、保存非常方便。无人机飞行费用低,可做超低空视距飞行,对操作员的培养比较周期相对较短。系统的保养和维修简便,同时不用租赁起飞和停放场地。飞行审批手续简单,无人机属于遥控飞行器,基本不用审批。

2.1.4数据处理速度快

无人机遥感技术数据处理速度快,及时性强。例如国内苏州武大影像信息工程研究院打造的数字摄影测量处理平台数字摄影测量网格(DPGrid),让无人机在处理数据的速度与效率上达到目前数字摄影测量处理速度的8倍以上。特别是大量的数据处理,传统模式一个月才能处理好的数据,借助该软件系统,几个小时内就可以解决。

2.1.5获取影像分辨率高

无人机遥感的最大优点是遥感影像分辨率高、成像效果清晰。无人机搭载的高精度数码成像设备,具备面积覆盖、垂直或倾斜成像的技术能力。无人机在200米左右的空中可以准确拍摄到地面上5厘米大小物体,而一般卫星航拍只能分辨地面50厘米的大小的物体,获取图像的空间分辨率极高,适于大比例尺遥感应用的需求。

2.1.6数据精确度高

无人机遥感影像数据处理后,可在电脑屏幕上显示平面和三维场景影像,鼠标点到哪里就能显示出坐标、高度等数据信息,相比传统技术,精确度很高。

无人机遥感技术除了以上的优势外,还具有航摄效率高;可即时重拍;飞行时间基本是有效拍摄时间;工作现场集中,便于统筹安排。同时无人机遥感航空摄影可以抵达许多载人飞行器无法到达的空域、高度或危险地区[6]。基于无人机低空遥感技术的高机动性、低成本和小型化、专用化特点,可广泛用于航空遥感、国土监察、城市规划、水利建设、林业管理、资源勘探、灾害勘查、环境监测、地图更新、以及农业、电力、交通、军事等领域。

2.2无人机遥感技术的缺点

2.2.1飞行不够平稳

由于其体积小、重量轻,高空飞行易受风力的影响,飞行姿态不及有人驾驶飞机平稳,常出现飞行航线漂移,飞行轨迹呈曲线的情况[5]。这就使得拍摄的影像航向重叠度和旁向重叠度不规则,影像间的重叠度相差加大[7]。

2.2.2影像数据倾角大

与传统航空影像相比,无人机遥感影像数据倾角大而无规律,给连接点的提取和布设带来困难。并且无人机应用于外业勘察时,难于建立野外实测地面控制点。这些特点给无人机影像的几何校正处理带来了困难,进而影响到图像镶嵌和信息的有效提取[5]。

2.2.3对GPS的依赖性

许多无人机系统都比有人驾驶飞机更依赖于GPS系统。例如,某些无人机必须依靠GPS的定位才能起飞。另一些无人机的编程则要靠GPS来实现自动返回。如果说GPS很容易受到动能和电子干扰时,那么同样无人机也会面临相应的干扰,从而无法保证数据采集的准确性。

2.2.4对通信系统的依赖性

无人机都要依靠卫星通信系统来实施指挥与控制以及将传感器搜集到的数据发回地面进行处理。与GPS一样,通信卫星也容易受到各种干扰,包括动能和噪音干扰。而这些干扰能大大降低无人机、地面控制站和信息处理中心之间的卫星通信数据率。总之,无人机比有人驾驶飞机更依赖于通信资源,尤其是使用多传感器来执行情报、监视和侦察任务的无人机。

3无人机遥感技术的应用

近几年,新疆第一测绘院与中科院新疆生态地理研究所展开无人机遥感系统项目的合作,实施了昌吉、克州、阿勒泰、伊犁、阿克苏等地部分区域的1:1万地形图测绘任务,完成航测外业测图626幅,航测内业测图415幅,测绘覆盖面积约1.5万平方千米;先后完成了塔城市城市规划地形图测绘工程、甘肃嘉峪关至新疆乌鲁木齐西站GPS控制测量工程、南疆二线电力测量工程、克拉玛依油田建设测绘工程等一批测绘项目。制作完成了各种比例尺数字正射影像图、数字高程模型、数字地面模型、数字地表模型、三维点云等,结束了测量人员翻山越岭、耗时极长的原始地质测绘、工程测量工作[7]。

同时新疆第二测绘院于2012年初利用无人机遥感技术完成奎屯市部分区域无人机影像图的生产制作,成图面积达23平方千米,影像分辨率为0.10米,采用中国测绘科学研究院的PixelGrid软件制作。此次奎屯市部分区域无人机正射影像图的顺利完成,加之前期已经完成的新疆生产建设兵团105团场无人机影像图、鄯善无人机影像图的反复试验生产,标志着新疆在无人机低空航摄及后续影像加工处理方面的技术已趋于成熟,将来可以在无人机应急保障、快速获取影像图方面提供新的测绘服务[8]。

4结语

无人机遥感系统是卫星遥感和航空遥感的有益补充[9],具有高分辨率图像和高精度定位数据获取能力,是当今重要的遥感数据来源。随着国家援疆工作的大规模展开,新疆迫切需要加快基础建设,特别是地图测绘、城镇化建设、新农村建设、城市化改造、应急、反恐防暴、防灾救灾、环境监测、矿产资源与开发、土地利用与调查等领域急需现势性强的大比例尺地形图及正摄影像图数据成果,为当地的社会、经济建设提供快捷方便的高分辨率影像测绘保障服务[10]。利用无人机遥感技术进行的航空摄影测量,将从关键技术上保证精度满足大比例尺成图要求,从而推进新疆当地地理信息化建设进程。

The characteristics and application of

UAV Remote Sensing Technology

LI He-qing1,LIU Jun-yan2

(The Xinjiang Uygur Autonomous Region Transportation Planning Survey and Design Institute,Urumqi830006,China)

(Xinjiang Agricultural University science and technology academy,Urumqi830091,China)

Abstract: With the development of UAV Remote Sensing Technology,Remote sensing aerial data has become an indispensable part of the information industry,Characteristics and application of the UAV remote sensing technology are briefly described。

KeyWords: UAV,Characteristic,Application

参考文献

[1]朱京海,梁婷,徐光,刘家斌,问鼎. 无人机遥感技术在环境保护领域中的应用进展[J].环境保护科学,2013,39(4):97-100.

[2]范承啸,韩俊,熊志军,赵毅.无人机遥感技术现状与应用[J].测绘科学,2009,34(5):214-215.

[3]洪宇,龚建华,胡社荣,黄明祥.无人机遥感影像获取及后续处理探讨[J].遥感技术与应用,2008,23(4):462-466.

[4]韩杰,王争.无人机遥感国土资源快速监察系统关键技术研究[J].测绘通报,2008(2):4-6.

[5]吴荣华,周茂春,申依薇.无人机遥感数据处理探讨[J].江西测绘,2012,92(2):53-54.

[6]王青山.简述无人机在遥感技术中的应用[J].测绘与空间地理信息,2010,33(3):100-104. [7].谷国涛,吴良才.无人机遥感技术数据特点及其应用[J].科技向导,2011(35):57-58.

[7]齐彬.新疆首次引入无人机用于国土监测防灾减灾[N].中国新闻,2010-3-12.

[8]朱建辉.新疆二院用无人机技术提升应急保障能力[N].中国测绘报,2012-2-7(3).

遥感应用技术范文5

关键词:道路选线设计,遥感技术,测量,资源利用

中图分类号: S611 文献标识码: A

引言

“3S”是遥感(Remote Sensing,RS)、地理信息系统(Geogrphic Information System,CIS)和全球定位系统(Global Positioning System,GPS)的有机结合,三者又统称为遥感技术。随着空间技术、信息技术、计算机技术的快速发展,遥感技术也日渐成熟,已成为现代社会持续发展、资源调查与合理规划利用、环境监测、自然灾害动态监测与防治等工作中的重要技术手段,广泛应用于工业、农业、交通、军事、通讯等各个行业[1]。目前,遥感技术又以其精确、方便和强大的数据处理功能等优点,应用于资源管理、道路设计等领域。

20世纪90年代初期,卫星定位系统技术的民用化推动了遥感技术在道路选线中的应用。目前,遥感技术的应用主要体现在以下几个方面:RS主要是在远离目标的情况下,高效的获取大面积的地面信息或者在大范围的工程规划、设计中使用遥感数据及进行方案的可行性选择等;GIS对传统选线作业流程可进行一定的协助处理,并提高工作效率;GPS则被大量用于控制测量。

1遥感技术的应用

1.1 RS在道路选线中的应用

RS技术是利用航片或卫星照片上含有的丰富的地表信息,通过立体观察后,经过计算机的自动预处理、识别、解疑等过程,从而获得与路线相关的地质、水文、建筑等地物信息。通过这种方式获取的地物信息具有视域广、整体性强、影像逼真、信息量大、宏观、直观的特点,对地形、地貌、植被等信息的反映也最为直接。在道路选线阶段,由于各阶段工作所依据的基础资料及数据内容要求的深度和精度不同,具体的工作方法与详略程度也有所不同,主要优点有:

1)在项目的预可行性研究阶段,主要是利用航测遥感技术的优势,在大面积范围内进行方案研究、论证和比选。

在项目的可行性研究阶段,遥感技术的应用多以大比例尺遥感图像为主,加深对工程地质判释、调绘工作,采取综合勘探手段,获取所需的工程地质及水文地质资料。

3)在初测阶段,遥感图像、航摄相片先于大比例尺地形图,为各有关专业提供了沿线地区的自然模型。另外,遥感技术可以使工作人员避免不良工程地质现象影响路线方案的选择,为以后的施工创造良好的便利条件。20世纪90年代末,甘肃省境内的高速公路建设已由平原微丘区向山岭重丘区转移,山区地形、地质条件更为复杂。为了提高复杂地形、地质环境下的公路勘察设计水平,加快工作速度,减少不良地质危害,做好前期路线方案比选和优化,甘肃省交通规划勘察设计院有限责任公司从1999年开始在刘寨柯、白银、宝鸡、天水等山区高速公路勘察中广泛的采用了遥感技术,不但减少了野外工作的盲目性,减轻了劳动强度,而且提高了调绘质量和进度,为按时提交设计文件提供了保证。该地区的项目工程地质勘探情况和调绘成果得到了专家和业主的一致好评。

1.2 GIS在道路选线中的应用

随着“数字地球”这一概念的提出和人们对它的认识不断加深,从二维向多维动态以及网络方向发展是地理信息系统发展的主要方向,也是地理信息系统理论发展和诸多领域的迫切需要,如资源、环境、城市等。它是计算机技术和信息化发展的共同产物。

GIS是以地理空间数据库为基础,在计算机的支持下,对空间相关数据进行采集、管理、操作、分析、模拟和显示,并采用地理模型分析方法,适时提供多种空间和动态的地理信息,为地理研究和地理决策服务而建立起来的计算机技术系统。GIS在道路前期规划中发挥着重要作用,如:在拆迁过程中,我们可以在电子地图上准确地定出占地线宽度,计算出占地亩数,还可以算出占用的麦地、水塘等需拆迁工程量,大大减少了工作人员不必要的时间损耗并提高了工作效率,让传统的图文作业凭借计算机的处理,使图文密切的结合,以可视化的方式进行。

1.3 GPS在道路选线中的应用

GPS(全球卫星定位系统)作为新一代的卫星导航和定位系统,不仅具有全球性、全天候、连续性、实时性的精密三维导航与定位能力,而且还具有良好的抗干扰性和保密性。

GPS在道路测量中的应用主要有以下几方面:布设各等级的路线带状平面控制网;桥梁、隧道平面控制网;航测外业平面高程控制测量;密林、密灌地区路线控制测量等。特别是近年来,随着载波相位差分GPS技术的发展,高精度实时动态GPS定位技术在道路工程中的应用受到了极大的关注。例如机载GPS在航空摄影测量中的应用、实时动态定位(RTK)技术在道路施工放样中取得了不错的成果。

静态GPS测量采用相位差分可以达到cm甚至mm级精度,但缺点是经过事后处理才知道结果。而RTK通过实时处理即能达到cm级精度。实时动态(RTK)定位技术是指载波相位实时动态差分定位,它是GPS发展的最新形式,是以载波相位观测值为根据的实时差分GPS(GPS-RTK)技术,该系统由基准站和流动站组成,建立无线数据通讯是实时动态测量的保证,其原理是取点位精度较高的首级控制点作为基准点,安置一台接收机作为参考站,对所有可见GPS卫星进行连续观测,流动站上的接收机在接收卫星信号的同时通过无线电传输设备接收基准站上的观测数据,计算机根据相对定位的原理实时计算显示出流动站的三维坐标和测量精度,这样用户就可以实时监测待测点的数据观测质量和基线解算结果的收敛情况,根据待测点的精度指标,确定观测时间,从而减少冗余观测,提高工作效率。

RTK技术将彻底改变道路测量模式,能实时得出所在位置的空间三维坐标,这种技术非常适合路线、桥、隧勘察,它可以直接进行大比例尺地形图测绘、实地实时放样、中桩测量点位测量等。

用实时GPS动态测量可以完全克服这种需要内业解算完成之后才可以得到测量点坐标的缺陷,它只需在沿线每个碎部点上停留1~2 min,即可获得每点的坐标、高程。结合输入的点特征编码及属性信息,构成带状所有碎部点的数据,在室内即可用绘图软件成图。由于只需要采集碎部点的坐标和输入其属性信息,而且数据采集速度快,因此降低了测图难度,既省时又省力,非常实用。

2最新的RTK技术在道路设计中所具备的功能

布设导线控制点,加密国家坐标网。根据路线总体走向,参照地形图,选择导线控制点。

定线。根据所采集的重要地物、控制点的坐标,绘制平面草图,利用HrCAD等路线设计软件与其他AutoCAD辅助设计系统配合进行纸上定线,确定直线方向、偏转角度、曲线要素等,并计算道路中线逐桩坐标,生成路线文件。

中线放样及其他相关测量。将中桩点坐标输入GPS手簿,采用实时动态模式,将基准站立于导线网点上,用移动站读取路线成果数据进行实时放样。在放样时也可实时定位任意桩号或显示当前点至放样中线的垂直距离,非常便于加桩点及其他点位的放样。中基平测量、路线平面图绘制、横断面测量、构造物调查、防护工程及拆迁调查等相关测量可与中线放样分组同时进行。

3 结 语

道路选线涉及到的因素很多,是个复杂的综合过程。从以上分析我们可以看出,基于3S技术的道路选线,虽然存在不少问题,但它具有传统选线方法很多没有的优势。RS为道路选线提供所需的海量的现实性、准确性、丰富性信息;GPS能提高精度的、准确的勘测数据;GIS强大的空间分析和地理模拟能力;这样在道路选线的过程中,工作人员就可以尽快选择出最优路线,既提高了勘探的精度,又能大大缩短工期,减少外业工作量,提高工作效率,减少投资。随着3S技术本身的不断发展,其在林区道选线过程中必将发挥更大的作用。事实上,随着工程勘察设计新技术研究的进一步深入,遥感技术在工程勘察设计中的作用也越来越重要,并将逐渐成为道路选线设计必不可少的方法和手段。

参考文献:

[1] 苏广实.“3S”技术及其应用领域探讨[J].广州教育学报,2006,(6):57-59.

[2] 曹 健,何东坡,王森岭.GIS技术在道路选线中的应用[J].测绘与空间地理信息,2005,(6):103-104.

遥感应用技术范文6

关键词:遥感技术;地基测绘;GPS-RTK技术

中图分类号:P2文献标识码: A

前言

随着地基测绘技术的不断发展,数字地籍测绘已经在地籍测量中得到了广泛的应用,并且在数据采集的过程中实现了数字化的发展,并且在成图上也实现了数字化,其利用全站仪点呢过测量仪器对地籍图进行编制,从而采集有效的数据,从而快速的生成图,建立地籍数据库,并且输出面积的汇总表,对地籍数据进行动态的管理,通过地籍测绘,可以直接为某些工程提供有力的数据的基础,有利于城市的建设。目前遥感技术和计算机技术的有效结合,将其在地籍测绘中进行应用并取得了较好的效果,不仅有效的提升了经济效益,同时也使社会效益得以进一步提升,具有极其重要的意义。

1.遥感技术

遥感技术是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质以及其变化的综合性探测技术。遥感系统的组成部分主要有遥感器、遥感平台、信息传输设备、接收装置及图像处理设备等。通过在遥感平台上装设遥感器,从而实现对图像的拍照、扫描等,所以遥感器可以是照相机、扫描仪、微波辐射计及合成雷达等。遥感影像数据是值地表得光谱特征通过大气层的传播,被航空或航天的传感器接收,记录表达为光谱数据,或者在感光介质上直接反映成为像片数据。遥感信息不断获取率高、信息丰富、有着明显的动态性、周期性,而且其传送特点是采用数字记录方式进行。在大范围的更新和核查土地利用现状时充分利用遥感技术,不但能够对土地利用状况信息及时了解之外,而且还能能够更新、管理、分析年度土地利用变更情况。不同种类的地表覆盖,表现为不同的地物特征,最终反映成为不同色度值、亮度值的遥感资料,为计算机的自动分类和作业者准确的目视判读创造了条件,从而达到提高调查工作的效率和效益的目的。制作卫星遥感数字正射影像图(DOM),其原理是依据其自身的特点,应用专业的遥感软件对原始的遥感影像进行辐射校正和几何校正,达到消除位移误差和各种畸变,最终得到的卫星遥感数字正射影像地图包含地理信息和各种所需专题。遥感技术主要包括卫星遥感和航空遥感两个方面,作为地形图测绘的重要手段航空遥感在实际已经得到了广泛的应用,而卫星遥感影像在测图工作中同样取得了较好的效果。

2.遥感技术在地籍测绘中的应用

2.1、动态监测

不断的成熟,特别是遥感技术、地理信息系统及GPS等高科技技术的应用,更有效的提高了土地测绘的水平,更易于土地测绘工作的开展。在地籍测绘中运用遥感技术,有效的实现了动态监测,其能够随时监测到土地的变更、土地调查和土地的动态信息,从而有效的掌握相关土地调查资料,实现对土地的有效利用。而且通过计算机技术可以将难以识别的对象进行信息处理,从而以可识别的文字和图像表现出来,更易于对相关数据信息进行记录,合理对监测周期进行确定,通过对土地利用变化情况进行全新的监测,并将不同时期的数据进行对比,从而得出最好的信息。随时对土地利用变化情况进行监测,可以更好的实现对土地利用情况的核查,进行土地总体规划,决策者提供科学、可靠的数据资料。通过动态监测,可以及时发现土地利用中违法情况,及时进行上报并查处,更便于对土地进行管理。

2.2、测绘地形图

在测绘生产过程中,应用立体摄影测量方法较为普遍,其通过遥感技术来获取地面的三维信息。雷达卫星的全天候,全天时,不受夜暗和云雾等恶劣天气影响的特性,随着雷达遥感快速发展的同时,因此,合成孔径雷达(SAR)在立体摄影测量中的应用也逐渐开始广泛。然而,由于斑点和噪声的原因,因此,合成孔径雷达的使用受到了一定程度的影响。但是,伴随着雷达技术快速发展的同时,为获取地面三维信息干涉合成孔径雷达技术(INSAR)提供了全新的方法,就是利用干涉雷达技术的提取来制作地形数字高程模型(DEM)。此方法大大改进了获取数字高程模型(DEM)的传统模式。

2.3、遥感技术

遥感技术在地籍测量中的应用主要体现在其观测、探测、监测方面的功能。相比较传统的测绘方法,该技术的优势体现在成像速度快、精度均匀等方面,通过利用大比例尺航空遥感图像,解决投资成本。并且随着数字化技术的推广和应用,给地籍测绘带来了数字化数据,对实现了自动化成图。动态遥感监测技术在地籍测绘中的应用主要表现在以下几个方面:

(1)数据选取:结合卫星影像,遥感技术可以提供更为精确的数据,同时结合相关土地利用图和高分辨率卫星影像,更有利于提高监测的精度。

(2)数据处理:利用遥感技术获得数据,结合计算机技术,可以转化为供人们识别的信息,最终通过修正,可以制作各种所需的地籍图件和表册,供土地相关部门参考。

(3)变化信息的提取:遥感技术在地籍测绘中最重要的应用就是提取土地面积、土地尺寸等资料发生变化时的信息量。并且通过研究这些信息量的变化趋势从中找出变化规律,为土地管理部门的整体土地规划提供依据。

(4)监测精度评定:利用统计学的相关知识,对遥感数据进行分析和归纳,可以有效的评价遥感技术质量,验证测绘信息的精确度。

(5)对卫星成像所获得图像进行一些纠正,可以为土地资源管理部门提供影像地籍图,有效地提高了工作效率。

2.4、GPS-RTK技术

建设用地中的土地勘测定界是实地确定土地使用界线范围,测定界桩位置,测量使用界线范围内各类土地面积并计算用地面积等测绘技术工作,它为各级政府的国土资源部门审批土地、地籍管理提供依据和基础资料。建设用地勘测定界的工作程序为:审查用地文件及有关图件―现场踏勘―图上红线设计―实地放样―复核测量―面积量算―绘制建设用地界图―填绘建设用地管理图―资料整理―归档,经反复实地踏勘、图上设计、权属调查后制定放样数据。利用GPSRTK技术进行勘测定界放样,能避免解析法和关系距离法放样等放样方法的复杂性,同时也简化了建设用地勘测定界的工作程序,特别是对公路,铁路等大型工程更为有效。

结束语

由于地籍测绘自身的复杂性和专业性,在进行测绘的过程中,必须要注意使用高科技的测量手段。遥感技术随着计算机技术的发展和完善逐渐完善,在地籍测绘的过程中应用也越来越广泛。遥感技术不仅仅可以使得地籍测绘工作变得更加高效便利,其测量的结果也越来越准确,从而有效的提高了经济效益和社会效益。随着遥感技术的不断发展和成熟,在地籍测绘的过程中应用水平也一定会有所提升。

参考文献

[1]唐艳力.遥感测绘技术在测绘工作中的应用探讨[J].河南科技,2014,01:26.

[2]冯炎,黄荣,许颖杰.遥感技术在农村地籍测绘方面的应用研究[J].中国西部科技,2013,11:27-28.