数学建模分析范例6篇

前言:中文期刊网精心挑选了数学建模分析范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数学建模分析

数学建模分析范文1

近年来,全国大学生数学建模竞赛迅速发展,为国家培养了大批应用型人才。但由于各地区教育水平不同、相关部门对竞赛的重视程度不同,导致各地区组织学生参加大学数学建模竞赛的规模不同,在该项赛事中取得的成绩差异比较显著。2013年全国大学生数学建模竞赛评选出的奖项有:赛区优秀组织工作奖9个,本科组高教社杯奖1个,专科高教社杯奖1个,本科组MATLAB创新奖1个,专科组MATLAB创新奖1个,本科组IBMSPSS创新奖1个,专科组IBMSPSS创新奖1个,本科组一等奖共273名,本科组二等奖共1292名,专科组一等奖共44名,专科组二等奖共211名[1],但成绩相对于参赛区分布不太均匀。分析各地区在2013年全国大学生数学建模竞赛中取得的成绩,明确各地区数学建模发展状况的差异和特点,将有利于相关部门从宏观上了解我国大学生数学建模竞赛的整体发展现状,分类制定相关政策[2-3],从而充分发挥数学建模的重要作用。

1建立综合评价指标体系

全国大学生数学建模竞赛现状的一个重要方面就是全国大学生数学建模竞赛获奖情况。依据全国大学生数学建模竞赛设置的奖项,遵循可比性原则,参考文献[4-5],选取x1-x7共七项评价指标,具体如下:x1:本科组高教社杯、MATLAB创新奖和IBMSPSS创新奖获奖情况;x2:本科组一等奖获奖数;x3:本科组二等奖获奖数;x4:专科组高教社杯、MATLAB创新奖和IBMSPSS创新奖获奖情况;x5:专科组一等奖获奖数;x6:专科组二等奖获奖数;x7:年度竞赛优秀组织工作奖获得情况。说明:鉴于本科组与专科组的高教社杯、MAT-LAB创新奖和IBMSPSS创新奖三类奖项每年只有一个队获奖,且基本不可重复获得(参见历年大学生数学建模竞赛获奖名单)故将其合并作为一类。

2数据资料依据

2013年全国大学生数学建模竞赛获奖名单,按指标对各个赛区的获奖情况统计如表1所示。

3R型聚类分析定性分析

七项指标之间的相关性。编写MAT-LAB程序如下:>>clc,clear>>symxy;>>x=xlsread(‘shuju.xls’);%将上表中的数据保存到MATLAB中WORK文件夹excel文件shu-ju.xls中,并将其赋于x>>y=corr(x)%输出七项指标间的相关系数矩阵(如表2所示)>>d=pdist(y,’correlation’);%计算相关系数导出的距离>>z=linkage(d,’average’);%按类平均法聚类>>h=dendrogram(z);%画聚类图(如图1所示)>>T=cluster(z,’maxclust',5);%把变量划分为5类>>fori=1:5tm=find(T==i);tm=reshape(tm,1,length(tm));>>fprintf(’第%d类的有%s\n’,i,int2str(tm));>>end程序输出:第1类的有4;第2类的有56;第3类的有7;第4类的有23;第5类的有1。即:若将指标分为5类,则指标1、4、7各为一类,指标2、3为一类,指标4、5为一类。

4Q型聚类分析

4.1选取5个指标的分类从R型聚类分析分出的5类指标中各选一个,即选取5个指标体系,对33个参赛地区进行聚类分析。首先对变量数据进行标准化处理,采用欧氏距离度量样本间相似性,选用类平均法计算类间距离。在MATLAB命令窗口输入下列程序:>>symsxy;>>x=xlsread(’shuju.xls’);%将上表中的数据保存到MATLAB中WORK文件夹excel文件shu-ju.xls中,并将其赋于x>>x(:,[3,5])=[];%删除数据矩阵的3,5两列,即使用变量1,2,4,6,7>>x=zscore(x);%将数据标准化>>s=pdist(x);%每一行是一个对象,求对象间的欧式距离>>z=linkage(s,’average’);%按类平均法聚类>>h=dendrogram(z);%画聚类图(如图2所示)>>T=cluster(z,’maxclust’,3);%把样本点划分成3类>>fori=1:3;tm=find(T==i);%求i类的对象tm=reshape(tm,1,length(tm));%变成行向量>>fprintf(’第%d类的有%s\n’,i,int2str(tm));%现实分类结果>>end程序输出:第1类的有11318第2类的有2345678910111216171920212224252627282930313233第3类的有141523即:第一类:北京,福建,湖南;第三类:江西,山东,四川;第二类:其它地区。

4.2选取7个指标的分类考虑到指标2与指标3,指标5与指标6具有一定的独立性,若七个指标体系全部取用,将33个地区分为4类,程序输入如下:>>symsxy;>>x=xlsread(’shuju.xls’);>>s=pdist(x);>>z=linkage(s,’average’);>>h=dendrogram(z);%画聚类图(如图3所示)>>T=cluster(z,’maxclust’,4);>>fori=1:4tm=find(T==i);tm=reshape(tm,1,length(tm));>>fprintf(’第%d类的有%s\n’,i,int2str(tm));>>end程序输出:第1类的有116第2类的有6710151927第3类的有23489111213141718202223242528第4类的有521262930313233即:第一类:北京,河南;第二类:辽宁,吉林,江苏,山东,广东,陕西;第四类:内蒙古,海南,,青海,宁夏,新疆,香港,澳门。4.3选取本科层次指标的分类只考虑本科层次取得的成绩,即选用指标1,2,3,对33个参赛地区进行聚类分析,从而明确掌握其本科阶段的差异,则有:输入程序:>>symsxy;>>x=xlsread(’shuju.xls’);>>x(:,[4,5,6,7])=[];>>x=zscore(x);>>s=pdist(x);>>z=linkage(s,’average’);>>h=dendrogram(z);%画聚类图(如图4所示)>>T=cluster(z,’maxclust’,3);>>fori=1:3;tm=find(T==i);tm=reshape(tm,1,length(tm));>>fprintf(’第%d类的有%s\n’,i,int2str(tm));>>end程序输出:第1类的有11318第2类的有101115161719222327第3类的有2345678912142021242526282930313233即:第一类:北京,福建,湖南;第二类:江苏,浙江,山东,河南,湖北,广东,重庆,四川,陕西;第三类:其它地区。4.4选取专科层次指标的分类只考虑专科层次取得的成绩,即选用指标4,5,6,对33个参赛地区进行聚类分析,从而明确掌握其专科阶段的差异,则有:输入程序:>>symsxy;>>x=xlsread(’shuju.xls’);>>x(:,[1:3,7])=[];>>x=zscore(x);>>s=pdist(x);>>z=linkage(s,’average’);%画聚类图(如图5所示)>>h=dendrogram(z);>>T=cluster(z,’maxclust',4);>>fori=1:4;tm=find(T==i);tm=reshape(tm,1,length(tm));>>fprintf(’第%d类的有%s\n’,i,int2str(tm));>>end程序输出:第1类的有14第2类的有1523第3类的有41927第4类的有1235678910111213161718202122242526282930313233即:第一类:江西;第二类:山东,四川;第三类:山西,广东,陕西;第四类:其余各地区。

5结束语

数学建模分析范文2

关键词:高中数学;建模;常见类型

1.高中数学与建模

高中阶段是一个学生学习生涯中的关键阶段,在这一阶段开展卓有成效的数学教学,对于帮助学生养成良好的思维习惯和学习习惯而言十分重要。从一个学生学习的整体发展上看来,在高中数学教学的过程中,帮助学生养成良好的学习习惯,帮助他们树立正确的数学思维方法显然十分重要。建模的思想是高中数学教学过程中每一个阶段都非常强调的思想。学生在学习的不同阶段,都能正确认识到自己需要掌握的建模思维路径,这对于学生正确理解和接受高中数学相关知识而言非常重要。从宏观上看来,学生在高中学习阶段就掌握正确的建模思想,对于他们进入到大学之后从事高等数学的学习而言,也是非常有好处的。在培养学生数学建模的有关思想的时候,高中数学老师应该占据主导地位。应该从宏观入手,给学生卓有成效的指引。为了达到这一目标,老师应该和学生密切配合,以让学生了解和领会数学建模相关知识和技能为目标,对学生开展卓有成效的数学教学。

2.高中数学建模中的几种常见类型

2.1方程模型在整个高中阶段,方程的思想一以贯之的,而从高中数学建模的角度上看,方程模型也是一个重要的数学建模模型。从方程本身的思维逻辑路径上来看,它是一种正向思维,就是利用本身题目描述的等量关系,将所需要求解的未知数当做一个等式中的已知情况进行考虑,这样做可以帮助学生跳过相对繁琐的逆向思维路径,尽量减轻解决问题过程中的思维负担,这种方式能够帮助学生用更加简便的方法来解决更加复杂的问题。事实上,随着学生学习数学内容难度的提高,很多学生和老师都不约而同的发现,他们在进行有关数学问题的求解的时候,常常已经离不开方程的方法和思想了,用传统意义上的逆向思维求解已经不能满足有关需求了。例如:张三和李四两人同时从A地出发到B地,张三的速度是5千米每小时,李四的速度是6千米每小时,最后李四比张三早到了两个小时,问A地到B地的距离是多少?分析:上述题目非常完备的体现了方程的思想,已知的条件不足以帮助学生逆向思维推出结论,因此老师在教学的过程中为了让学生更好的理解题意,也为了能够更加顺利的讲解题目,应该着重考虑引入方程的思想,让学生借助方程建模中的正向思维来理解有关知识。具体而言,应该充分认识到,上面题目中提到的已知条件可以构成两个式子,其中涉及到两个参数,一个是总距离x,一个是总时间y,题目中两个人的运动速度是不变的,由于李四一直在行走,所以第一个式子是x/y=6,第二个式子是x/(y+2)=5,由这两个关系式可以指导,总距离为60千米,李四的时间为10个小时,张三的时间为12个小时。2.2不等式模型与以往阶段的数学学习不同的是,高中阶段的数学教学往往不单纯一种想等的关系,而是要通过一些数字和逻辑关系来构建一种或者几种数量之间的关联,并且通过已知的等量关系来计算并选择真正符合实际需要的计算结果。不等式思想的建立,是一个高中生本身数学思想和数学思维形成过程中所不能绕开的一个阶段。数学这门学科描述的是数量的关系,以此为逻辑起点可以认为,在数学的世界,既然存在等量关系,就一定有不等关系,学生们如果在头脑中建立起这样的思维的话,就会从更高的程度和层次上认识数学,在面对和解决数学问题的时候,思路就会更加开阔。例如:第一次东西买了X件,花了Y元,后来商品降价,买120个的话可以省80元,消费者为此多买了10件,一共花了20元,可知第一次购物至少花了10元,求问他第一次购物最少买了几件?分析:上面题目非常清晰地体现了不等式的思想,题目中给出的已知条件并不是完全意义上的等量关系,在建模过程中,需要引入不等式的概念,教会学生从不等式中要结果。通过解析,可以得出以下两个式子:(X+10)*(Y-80/120)=20;另外还有一个是不等式,即Y≥10。同时考虑到X、Y都因该是正数,所以可以得出结论,X≥5,第一次至少买5件。2.3数列模型数列是高中数学中的重要组成部分,在高中数学建模教学的过程当中,数列建模的有关理念不应该被绕开。数列本身描述的是一组前后相继的数字之间的逻辑关系。数列理念的灌输,是为了帮助学生拓宽看待和解决问题的思路,为了帮助学生能够从更高的层次和角度上看待和解决缺乏等量关系必要条件的数学问题。应该认识到,很多时候,在解决数学问题上,学生们无法获得必要的等量条件,而数字之间的逻辑关系——例如数列,事实上提供的是一种数字之间的非等量关系,非等量关系的建立,事实上是为学生提供一种或者几种已知条件,已知条件的获得,最终能够帮助学生解决题目中的问题。例如:某地植树量每年增长的绝对数量一定,是a,已知2010年的树木的保有量是2万株,2012年是2.2万株,求问到2016年,地区的树木保有量是否会达到3万株?以上题目是非常简单的等差数列建模案例,要解答这个题目,只需要求出每年净增量为0.1万株,可知2010道2016年是6年时间,净增加为0.6万,到2016年树木的保有量一共为2.6万,因此到2016年,全地区的树木保有量不会超过3万。

3.结语

高中数学建模思想的应用应该与学生的实际学习紧密联系,高中老师应该沿着这个方向下功夫、做工作。

参考文献:

[1]李卓林:推进高中数学课程科学化开展的策略.[J].武汉教育学院学报,2013(8):15-16

数学建模分析范文3

培养学生数学兴趣的同时,更注重数学学习与生活的紧密联系注重数学知识的生发过程和用数学知识、方法解决实际问题的教学。如用解直角三角形知识求电梯的长,测算国的高,通过研究足球队员射门来探索圆周角定理及推论,从三角形全等、相似来测算河宽、山高……使学生感受到生活中处处有数学,数学来源于生活,应用于生活,创造生活,激发学生更多地了解生活,理解数学,在“车轮为什么是圆的?”、“水井为什么彻成圆口的?”、“五角星为什么那么美丽?”的问题中学习数学,体验生活中的数学价值。丰富学生的生活世界,开阔他们的认知领域,更有助于激发他们学习数学的热情、应用数学的信心和创造数学的潜能。

二、文学语言与图形语言、表格语言、符号语言的相互转化

全面理解数学信息,把握问题本质数学信息的展现形式很多:文学语言,图形语言,表格语言,符号语言等,学生对冗长复杂的文字信息因其繁难而不深入地阅读理解,心沉不下去,脑想不到位;对一些图表信息因直观而粗浅地了解,未弄清其本质内容;对那些简炼的数学符号信息更是一眼扫过,图未读懂,字未看清,浮于表面,走不出解决问题的第一步,久而久之,学生见题生畏,畏而退缩,形成应用题难解的思维障碍。在解决数学问题的过程中要善于培养学生的观察理解及信息整合能力,各种语言相互转化,理解把握问题的本质。

1.把枯燥难解的文字语言转化为直观简洁的图表信息,便于学生理解问题本质。

2.用语言符号清楚再现图表信息,深入本质认识问题。

3.图文并茂,数形结合把握数学信息。很多数学问题是需要图文并茂,直观与抽象结合,数与形结合呈现问题本质,才能找到解决问题的突破口。

三、紧扣问题类型及数量关系

数学建模分析范文4

【关键词】数学建模;实际问题;问题设计

从定量的角度分析和研究一个实际问题,在充分了解事物信息、内在发展规律的基础上,运用数学符号和数学语言表述出来,再通过计算得到的结果解决问题并接受实际的检验,这一过程即为数学建模。数学建模思维是在人们长期的探索过程中得到的一种比较有效的解决实际问题的方法,是数学学科与其他学科相互融合的结果,具有灵活性、实用性的特点,即其建模方法并不是一成不变的,而是根据实际问题有所不同。因此,在运用数学建模思维解决实际问题的时候,不能固守一种方法,而要具备敏锐的观察力、想象力和创造力才能更好地将建模思维运用到解决实际问题当中。

一、大学数学教学中数学建模思维应用的现实意义

大学数学教学中数学建模思维应用的现实意义主要有以下三点:弥补当前大学数学教学存在的缺陷;激发学生的学习兴趣;培养复合型人才。大学数学教学中建模思维的应用可以弥补当前大学数学教学存在的弊端,由于大学教材内容的不足,我国大学数学教师在开展教学活动时,根据教材内容制定教学计划与教学目标,对于数学模型与数学建模方面的知识很少涉及到,局限于几何物理方面的知识,使学生的数学建模思想缺乏。教师以灌输式为主要的教学方法,向学生传授太多的理论知识与解题技巧,学生独立思考问题的机会太少,运用数学建模思维解决实际问题的能力严重不足。大学数学教学中建模思维的应用可以激发学生的学习兴趣,偏理论的教学内容让学生失去学习数学兴趣,或认为大学数学学习没有多大意义,通过应用建模思维将实际问题引入到课堂中来,可以在很大程度上激发学生的学习兴趣,使学生参与到课堂教学当中。大学数学教学中数学建模思维的应用可以提高学生的综合素质,为社会培养一批高素质的复合型人才。数学建模思维主要是培养学生将数学建模与实际问题相结合、数学语言的标的、思维方式和创造力等方面的能力。

二、建模思维在大学数学教学中的具体应用

(一)联系生活中的数学应用案例

当前,在针对数学这类的应用性比较强的学科当中,都需要联系生活中的具体案例来对某一个知识点进行讲解,数学建模思维的最终目的是为了解决实际生活中的问题,因此,联系生活的实际案例与建模思维相互是增强学生建模思维的重要手段。教师应当寻找知识点与现实生活的联系,将实际案例融入到课堂教学当中,让学生明白现实生活中的哪些问题可以通过建模来解决,不仅可以强化学生对数学建模思维的应用能力,还可以加深学生对知识的理解能力。以某产品销售为例,首先要提出问题,比如产品的销售速度与销售量,其次要建立一个能够反映产品销售速度与销售量的数学模型,最后通过模型计算得出产品的销售速度与销售量,指导产品的销售行为。

(二)问题设计精益求精

建模思维应用的目的之一就是培养学生的思维能力、创造力和想象力,而要想实现这一目标,首先要设计合适的问题让学生通过建模来进行解答。问题设计应当遵循精益求精、循序渐进的原则,根据学生的实际水平设计出不同难度的问题,避免出现问题太难活太简单的情况,使建模思维无法收到应有的成效。教师要对建材内容进行筛选,选择性地融入建模思维,分阶段完成教学任务,由易到难地对每一个阶段进行问题设计,引导学生逐步解决问题。

(三)与其他学科的相互融合

在引用建模思维的时候,如果能够与其他学科相互融合,避免在数学课堂上的纯数学问题,将有利于激发学生的学习兴趣,加深对两个学科的知识理解能力,有效提高学生对知识的综合运用能力。以物理学科为例,在讲授微分方程时,可以穿插“材料拉升过程的δ―ε图”这一知识点,使用LRC回路方程求解,可以降低学生在学习与电路分析有关的知识时的难度。

三、结束语

数学建模思维在大学数学教学中的充分应用需要相关的教学工作者长期努力,才能有效培养学生的建模思维,达到理想的教学目标。在实际的教学活动中,教师应当运用多种方法将数学建模思维运用到课堂中来,并结合实际的案例充分培养学生解决实际问题的能力,这是长时间内相关的教学工作者应当不断努力的方向。

参考文献:

[1]张仕清. 在大学数学教学中渗透数学建模思想的思考[J]. 廊坊师范学院学报(自然科学版),2012,01:103-106.

[2]袁月定. 在大学数学教学中渗透数学建模思想的策略研究[J]. 考试周刊,2012,69:55-57.

[3]崔丽英. 浅谈在大学数学教学中渗透数学建模思想的途径[J]. 科技信息,2013,26:126-127.

数学建模分析范文5

【关键词】数学建模教材改革教学目标创新能力

【中图分类号】G642【文献标识码】A【文章编号】1006-9682(2010)3-0026-02

一、数学建模的教学

1.数学建模的教学现状

数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,数学建模教学和竞赛已是高等院校的教学改革和培养高层次的科技人才的一个重要方面,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路是我们的重要任务。

全国有600多所学校开设了数学建模课程,有200多所学校只开设了数学建模讲座,有200多所学校增设了数学建模竞赛培训课。每年全国有30个省市(包括港澳)1000多所学校,15000多个队参加数学建模竞赛,参加人数45000人,是目前高校学生最大的课外活动。

2.存在的问题

数学建模方面的教材举不胜举,每部教材都有其各自的特点。然而与此同时,很多教材也存在一些问题,一些教材在内容上安排不当,与其他课程缺乏系统的匹配和整合。在数学建模的求解技巧方面下了功夫,但却忽略了模型建立的过程,忽略了多学科的横向交叉联系,一些内容与其他内容有重叠现象。这样做的后果,不仅使学生丧失了学习的热情和兴趣,而且重要的是学生解决实际问题的能力得不到应有的锻炼与提高。本问卷调查的目的是想通过问卷调查了解高等院校在进行数学建模教学和数学建模竞赛培训时,重点进行了哪些内容的教学?还需要增加哪些内容?介于数学建模教材比较多,我们以赵静、但琦编写的《数学建模与数学实验》教材为基础,为配合数学建模教学研究项目,笔者调查了我国部分高等院校对该教材使用的相关情况,对结果进行分析和研究,提出了相应对策,旨在为本教材内容改革提供一些参考数据。

二、数学建模教材讲授情况

此次调查的内容主要包括:哪些学校使用了我们的教材,教学过程中使用参考资料情况,讲授中主讲哪些内容,以及建模竞赛获奖情况等方面。调查采用问卷的形式,通过向各高校发送E-mail进行,本次调查共发送问卷120份,收回问卷72份。现对调查结果分析如下:

1.课程开设情况

在回收的问卷中,学校层次大多是普通院校(92%)。调查结果显示,有83%的院校采用了我们的教材,其中使用第三版的占58%,另外17%的作为参考资料使用(见表1)。表明我们的教材反应良好,被多所学校数学建模与数学实验课程或大学生数学建模竞赛辅导作为教材选用,且使用最新版次的居多。

注:表中百分数=选择该项的院校÷问卷调查总院校数(以下表中百分数均同此公式)

回收问卷中所有院校均开设了数学建模课程,通常以必修课、选修课和培训课的形式来开设,当然有些院校根据专业的不同,同时以两种以上的形式来开设。经统计有50%的院校将《数学建模》作为必修课程,有75%的院校作为选修课,另外还有42%的院校开设为培训课。其中,同时开设三种形式的院校占17%(见表2)。由此可见,数学建模课程在各个院校中都有着举足轻重的作用。

另外在问卷中调查了选修课及培训课课时的设置情况,统计结果如下(见表3):选修课时在30、40的院校均占33%,课时在50或60以上的院校均占17%,而培训课40以上课时的院校占50%,25%的院校设置30课时,仅有25%的院校设置课时在20课时以下。由此看来,数学建模课程以及数学建模竞赛活动受到了大多数院校的重视。

2.教材中讲授内容情况

教材承载的是由教学目标所确定的内容,但不完全等同于教学内容,教材还要注意课程理论的统一性和逻辑性,兼顾人们认识事物由浅入深的规律。问卷中针对教材需要删减或修改的章节进行了调查,结果见表4。

结果显示:线性规划、整数规划、非线性规划、微分方程、最短路问题、插值与拟合是建模竞赛中的热点问题,历年的建模竞赛试题中出现最多的便是优化问题。因此,70%以上的高校选择这些章节作为主讲内容;而50%的院校建议删除组合数学章节,20%的院校选择把差分方程和数据的统计描述两章删除;大多数高校建议修改线性回归、MATLAB入门、动态规划等章节;大多数高校建议把涉及到优化问题的章节合并在一章中讲解;把涉及图论问题的章节作为一章来讲授;把微分方程、差分方程合并成一章(见表4)。

在问卷中关于第四版是否需要增加两章内容:一是综合评判(包括层次分析法;模糊综合评判;灰色综合评判),二是预测模型(包括灰色预测;指数平滑法;神经网络;组合预测),经统计有95%的院校认为需要增加。最近几年建模题型不断有新的变化,评价和预测模型显得异常重要。

问卷中关于本书是否还需要增加哪些软件(如:是否需要介绍统计软件SPSS、图论软件等)进行了调查,经统计有90%的院校认为不需要。其实LINGO、MATLAB两个软件基本可以解决数学建模里面所有模型的求解,学生掌握不了过多的内容。

三、教材内容改革方案

1.关于教材内容

教材是实现教学目标的基础,课程知识体系最终要通过教材表现出来。《数学建模与数学实验》[1]教材集数学知识、数学建模和数学实验为一体,既简要介绍一些最常用的解决问题的应用数学知识,又联系实例介绍应用相应的数学知识建立数学模型,并用合适的数学软件包来求解模型。本教材更注重应用数学知识以及软件的使用,被多所学校数学建模与数学实验课程或大学生建模竞赛辅导作为教材选用。但是基于上述分析,还存在一些需要修改的地方,结合上述问卷调查情况,经多方论证,改革后的教材体系具有下述特点:

(1)在知识体系下,不仅考虑自身内容的系统性,而且要注意与其他课程的衔接和匹配。应剔除重叠部分内容,添加常用的模型。修改如下:差分方程作为微分方程的一种解法,可与之合并作为一章,仅做一个简单介绍,并编写matlab程序求解;线性规划、整数线性规划、无约束优化和非线性规划合并为一章;最短路、匹配、旅行推销员问题以及最大流问题四章可合并成两章;而数据的统计描述和分析作为仅有的统计方面知识,将被保留,与线性回归合为一章。为适应近几年建模题型的不断变化,增加两章:综合评判模型以及预测模型;删除组合数学章节。

(2)各部分具体内容的表述与传统教材有所不同。需改动部分主要有:①第一章作为课程的引入,应添加一些学生感兴趣、较简单的初等模型,如椅子能否放稳?商人过河等模型。而人口模型属于微分方程模型,应放在第八章。②在线性规划部分的例子需做斟酌,选取适当的例子,无需过多;③第八章微分方程第一节的例子,应修改为人口模型和兰切斯特模型,这些模型涉及实际问题,以之为背景引入相关知识,更容易引发学生的兴趣和热情。

(3)每章均按模型、理论、求解、案例的格式编写。采用问题导向型的论述模式,以实用型为主,兼顾理论系统。以实际问题为背景,引入相关概念,并建立模型,进而运行几何或其他直观手段说明求解的基本思想,结合例题演示求解过程,并尽可能对计算结果给予有实际意义的解释。与此同时,理论体系的完整性,论述的严谨性仍给予一定程度的关注,一些重要的原理和结论要做比较深入的讨论和必要的推导论证,并突出讲解算法的思路脉络。需修改的章节有:第四章整数规划,添加用LINGO工具箱求解整数规划,添加建模案例;第七章动态规划,增加模型求解程序或求解实例,添加建模案例。

2.关于软件

教材[1]选择了LINGO和MATLAB两个软件,MATLAB提供了强大的求解工具包,界面清晰、操作简单。LINGO软件程序简单,对求解优化问题极其有用。教材中已介绍了MATLAB入门知识,需增加LINGO入门,包括灵敏性分析等相关知识。LINGO可以求解大规模问题,有利于学生以后解决实际问题。针对我们期望的章节格式,每一模型都要有软件求解方法或者是求解实例,因此第七章动态规划需增加求解程序。

与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,因此,数学建模的教学本身应该是一个不断探索、不断创新、不断完善和提高的过程。而教材是实现教学目标的基础,课程知识体系最终要通过教材表现出来。科技在不断的进步,在各个兄弟院校的相互支持、相互讨论下,我们的教材也应与时俱进,不断创新,不断完善和提高。

参考文献

1 赵 静、但 琦.数学建模与数学实验.北京:高等教育出版社,2003.6

2 姜启源.数学模型.北京:高等教育出版社,2004.4

3 韩中庚.数学建模方法及其应用.北京:高等教育出版社,2005.4

4 朱道元.数学建模案例精选.北京:科学出版社,2005.5

5 陈理荣.数学建模导论.北京:北京邮电大学出版社,2002.8

数学建模分析范文6

关键词:数学建模;思想;金融领域;应用

一、数学建模思想内涵

数学模型是一种基于数理逻辑和数学语言而构建的工程或科学模型。数学建模便是在这样的数学模型基础上,依据特定事物的固有特征或者该事物数量的依存关系,运用数理逻辑或数学语言而概括出的一种数学结构。简而言之,就是在实际问题的处理中,通过建立数学模型,将待解决的抽象问题进行简化,并应用某些“规则”、“方式”建立其变量、参数间的确定数学模型。最终通过求解该数学模型,在验证与不断解释结果的过程中,反复推断和推敲,从而确定所得结果是否可用于解决所需要解决的问题,并不断进行深化。通过数学模型解决的问题,其所需要表达的内容是定量也可以是定性的,但待解决的问题必须是以定量的方式进行提现。所以,数学建模思想下,解决问题的方式大多偏向于定量的形式。

一般而言,一门学科运用数学能力分析解决问题的深浅程度,决定了该门学科领域的发展水平。伴随现代计算机技术的不断更迭发展,数学式解决问题的思维方法已全面渗透到社会生活的各个领域。而当这些问题需要定量或定性分析时,则无可避免需要运用数学的建模思维方式,向待研究对象进行预测、分析与决策。数学建模作为运用数学思想解决实际问题的桥梁,通过这样的方式方法才能真正将之应用到实际的生产生活中。现如今,在经济金融领域的分析中,数学建模思想也成为解决问题不可获取的重要工具。在如今经济全球化发展的时代,金融领域分析中数学建模思想的应用也愈加重要。

二、金融领域分析融入数学建模思想的必要性

(一)培养符合社会发展的金融型人才的需求

对于刚接触金融领域经济知识的高中生而言,数学建模思维的养成,更应当注重实际问题的解决与应用能力。因此,数学建模思维可以广泛应用在各个社会科学领域中,而其中金融领域分析思维的不断发展,更是离不开数学建模思维的引入。从最初的发现问题到分析、推敲、解决、展望等各个环节的应用中,历经的环节无不要求中学生需要有强有力的分析整合能力,以及求解应用的能力。而这样的过程都可以提高中学生对于金融领域的分析感悟能力,并进一步提升解决金融问题的能力。

(二)中学数学建模思维建立的重要性

实际的中学教育中,数学思维的培育除理论的应用外,这种思维对于解决社会经济金融等问题有着至关重要的作用。而现阶段,很多学生认为高中阶段数学教育内容偏难,这也只是很多学生渐渐失去对数学课程的兴趣,课堂氛围非常糟糕。这样的情况直接致使部分高中生,由于数学建模思维能力的缺失,导致在进入大学学习金融方向专业知识的时候,显得尤为吃力。为此,现今中学教学的授课中,可以将枯燥的数学学习结合到学生感兴趣的金融领域,更利于提高学生对数学的学习兴趣,最终达到帮助高中生建立數学建模思维根基的目的。

(三)提升中学生综合素质的必然要求

高中生的数学教育中,对于金融领域思维的培养融入数学建模思维,除丰富高中学生课外活动外,还进一步有利于培养高中学生的综合素质。通过数学建模,高中生的分析判断、逻辑思维、分析整合能力可得到更深入的提升,同时通过现代信息技术,将这样的能力融入到金融分析领域,更加有利于高中生自身立体思维及金融经济思维能力的培育。最终通过提升创造力、洞察力、表达力等各类能力,不断提升高中学生的综合素质。

三、金融分析领域数学建模思想的培养及提升途径

(一)明确数学思想和方法重要意义,培养数学学习热情

数学建模思想是运用数学规律,来分析与解决各类实际问题的一种思维。为此,在实际的学习中,高中生在明确并掌握教师课堂教授知识的前提下,要不断对这些知识进行实际的挖掘与灵活应用,并可以解决一些实际生活中遇到的金融经济问题,进而在问题的不断解决中,明确数学建模思维的重要性,进而不断经历其自身对于数学课程学习的兴趣与热情。与此同时,高中生也可在实际问题的解决中,引经据典,透过经典案例的实地解决方式来不断分析经济金融问题,进而总结出独属于自己的金融数学思维方式。

(二)深入挖掘数学教学内容,充分融入金融分析领域

数学学科的发展具体意义上而言,更是数学建模的发展。数学学科中涉及的很多概念、公式、定义都可称之为数学模型,可以说数学学科史的发展就是一个数学不断建模的过程,并且这样的过程都是来源于实际生活中的种种问题。因此,高中生在平时的数学知识学习中,更要重视每一个概念的形成过程,不断建立属于自己的数学建模思维,并充分重视分析数学与现实生活联系,在实际的金融经济领域分析中,将复杂的经济发展问题,简化为数学问题,且能用恰当数学语言,结合已知的信息计算方法表达出来,用通俗易懂的方式最终呈现出来,达到让大多数人明白的目的。

(三)明确案例学习重要性,加强自身分析整合能力

一般而言,经济金融领域的不断发展,必然会产生一些较为经典的金融分析案例。就此,高中生在课堂教师讲解的情况下,私下也可查找并进一步分析这些案例背后深藏的数学分析能力,并通过自己的整合,构建出属于自己的构建数学建模思维。一般而言,教师倾向于选择一些和实际生活结合较为紧密的案例,进行讲解和训练,极为重视学生实际问题解决能力的培养。在此基础上,高中生就应在吸收课堂知识的前提下,通过培育自身学习能力,不断加强自身综合素质与金融领域的分析整合能力。

参考文献: 

[1]李培德.试析数学建模思想在高等数学教学中的应用[J].职业,2012(23):116-117. 

[2]王芬,夏建业,赵梅春,等.金融类高校高等数学课程融入数学建模思想初探[J].教育教学论坛,2016(1):156-157. 

[3]李华,赵建彬.我国金融数学教学工作改进分析[J].河南科技,2012(5):46-46.