对数学建模的认识范例6篇

前言:中文期刊网精心挑选了对数学建模的认识范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

对数学建模的认识

对数学建模的认识范文1

    应用数学来源于生活又高于生活。因此在进行中职数学课堂教学的过程中,教师可以适当引入生活中实际教学案例,从学生日常生活中可以接触到的内容出发,提升学生的数学应用意识。在该部分内容教育的过程中,教师要对生活数学教学的方法及内容进行合理深化,尽可能多得从各个方面、各个角度分析、处理问题,提升学生的数学应用能力。教师可以通过建立“问题情境-问题模型-解释应用”教学大纲,对教学问题进行多层次编排,提升学生数学应用意识。教师要加强对数学应用角度处理问题的效果,从不同层次对数学应用进行阐述,确保学生深入了解和认识数学应用。要培养学生应用实践能力,为学生创建应用环境,注重培养学生的数学应用意识,提升学生亲身实践的质量。例如,当前公园中票价10元一张,但是春节临近,为了满足游客的需要,公园在原票的基础上推行一种个人年票(个人年票从购买日起,可供持票者使用一年)。年票分A、B、C三类:A类每年120元,持票进入公园后无需买票;B类每年60元,持票进入公园后需要买2元票;C类每年40元,持票进入公园后需要买3元票。(1)当每年你准备花80元在购票上,请问你该选择哪一种最为优惠?(2)当你每年到公园多少次选取A类票价最为合适?

    2通过数学建模,提升学生数学应用能力

    数学建模是当前中职数学发展中的重要内容。通过数学建模可以有效提升学生自身的数学知识运用能力,能够有效改善学生应用数学技术质量,确保数学教学又好又快发展。在对数学建模教学内容进行应用的过程中,教师要从课本中对最基础的教学题型进行全面讲解,为学生数学建模应用奠定坚实的基础。教师要对学生的语言转化能力进行提升,从初级数学题中对数学建模思想及建模方法进行提炼,在教学过程中潜移默化提升学生对数学建模的认识,培养学生数学建模的能力。教师要在教学完成后对学生中的实际教学问题进行总结,应用“实际一理论一实际”教学模式,从实际问题出发,对各项数学问题进行解决和处理,逐步构建完善的数学建模构架。教师要引导学生向数学建模方向发展,在日常教学中适当锻炼学生的数学建模能力,提升学生对数学问题及数学模型的转变化归效果。要确保学生能够对自身的检验效果,对各项数学计算方式及结果进行评价,保证学生不断完善和提升。

对数学建模的认识范文2

关键词:初中数学;创新思想;建模理论

随着我国科教兴国战略的推进,教育体制的创新与改革对教学提出了新的要求。初中数学建模理论的引入,为数学课堂开辟了崭新的平台。利用数学建模思想,将实际问题展示给学生,让学生运用已经掌握的数学理论和知识,对其进行抽象概括,提炼出解决问题的方法。

一、数学建模思想的意义

教育的目标是培养学生的能力,对数学教师来说,将问题转换成数学模型的过程就是培养学生创新思维能力的过程,对于学生运用数学知识解决实际问题具有重要的意义。作为教育史上新的理论——建模理论,为数学课堂的教学带来了新的要求。建模本身就是一种对数学知识的应用过程,其内容取材于生活实际问题,其方法来源于已掌握的数学理论和方法,它通常需要学生具有敏锐的观察力、科学的思维能力和丰富的想象能力,它是对学生的智力和心理品质的综合考量。特别是数学建模竞赛的开展,不仅仅是对学生数学潜能的进一步挖掘,也是对学生积极探索知识的态度的充分考验,对于塑造学生的积极性、主动性、耐挫性等优良品质具有重要的作用。

二、数学建模教学应遵循的几个原则

1.数学建模过程中对问题的数学化要求

问题是数学建模的基础,也是数学建模所要解决的对象,只有将具体问题转换为数学化的模型,将文字语言转换为数字符号,才能使问题解决。这期间,需要在日常教学中注重对学生的阅读理解与想象能力进行培养,使学生从阅读中寻找线索,从理解中构建数学模型。

2.数学建模过程中要突出学生的主体地位

学生是课堂教育实施的主体,在教学过程中居于主角地位。在数学建模过程中,教师应该及时鼓励学生进行大胆的尝试和探索,在问题论述中多读、多想、多议,引导学生主动参与到探究问题的合作讨论中,通过不断渗透建模思想,激励学生集思广益总结出数学建模的规律。

3.数学建模过程中要把握适应性原则

在数学建模过程中,教师要对教学内容进行适当延伸和扩展,既要联系旧知识,又要适当拓宽知识渠道,与课堂教学实际相适应,确保数学知识的连贯性与过渡性。

4.数学建模过程中要注重渗透数学思想方法

数学思想方法是进行数学建模的精髓,它是学生构建数学模型的基础和支柱。由于面对千变万化的实际问题,只有科学地运用各种数学思想和方法才能从众多的实际问题中捋顺对应关系,如消元法、配比法、等价转换法、归纳类比法等。只有充分运用数学的知识和技能将数学思想转化为数学模型才能实现对数学建模的内化和掌握。

三、数学建模教学中的重点环节

1.积极创设数学问题情境,激发学生建模热情

结合学生的认知特点和对数学知识的掌握情况,从学生的实际出发适当选编问题作为学生建模的基础,并为学生在建模过程中提供必要的指导和充分的交流,以激发学生的建模热情。

2.概括问题,从问题中抽象出数学化模型

建模的过程就是对实际问题进行概括抽象的过程,通过对问题的交流、探讨与整理,抽象出数学化的式子或方程。在数学化的过程中,教师应作出及时调控,以便于学生从观察、猜测中形成正确的思路与方法。

3.对数学模型进行探究分析,形成数学素养

数学模型的建立过程,需要通过启发和指导,使学生获得对数学知识、思想和方法的真实体验,并从课题的分析和总结中受到数学素养的熏陶。

4.利用数学知识解决实际问题,享受成功的喜悦

问题的解决总是伴随着成功的体验,数学模型的建立为实际问题的解答打开了智慧的大门,学生在运用知识的过程中体验到了方法的重要和思想的威力。

总之,运用数学思想和方法建立数学模型是学生综合运用数学知识来解决现实问题的重要途径,它不仅需要学生具有较强的阅读理解能力,还需要学生对所掌握的数学知识进行分析、综合、比较、归纳,全面提升了学生的数学意识,提高了学生的探索能力和观察能力。

数学是一门高度抽象、逻辑性强的应用性学科,它不仅需要学生密切关注生活,从问题着手寻找线索,激发自己的学习潜力,锻炼思维能力,还需要学生将知识进行分析综合归类。更重要的是,数学建模在数学课堂的推广,为学生真正领略数学的奥妙与真谛创造了平台,提供了机会。

参考文献:

[1]余志成.中学数学建模序列化教学的理论与实证研究[D].江西师范大学,2006.

对数学建模的认识范文3

一、精拟建模问题

问题是数学建模教与学的基本载体,所选拟问题的优劣在很大程度上影响数学建模教学目标能否实现,并影响学生对数学建模学习的态度、兴趣和信念。因此,精心选拟数学建模问题是数学建模教学的基本策略。鉴于高中学生的心理特点和认知规律,结合建模课程的目标和要求,选拟的建模问题应贴近学生经验、源自有趣题材、力求难易适度。

1.贴近学生经验

所选拟的问题应当是源于学生周围环境、贴近学生生活经验的现实问题。此类问题的现实情境为学生所熟悉,易于为学生所理解,并易于激发学生兴奋点。因而,有助于消除学生对数学建模的神秘感与疏离感,增进对数学建模的亲近感;有助于激发学生的探索热情,感悟数学建模的价值与魅力。

2.源自有趣题材

所选拟的问题应当源自富有趣味的题材。此类问题易于激起学生的好奇心,有助于维护和增强学生对数学建模课程的学习兴趣与探索动机。为此,教师应关注学生感兴趣的热点话题,并从独到的视角挖掘和提炼其中所蕴含的数学建模问题,选取学生习以为常而又未曾深思但结论却又出乎意料的问题。

3.力求难易适度

所选拟的问题应力求难易适度,应能使学生运用其已具备的知识与方法即可解决。如此,有助于消除学生对数学建模的畏惧心理,平抑学生源于数学建模的学习压力,增强学生对数学建模的学习信心,优化学生对数学建模的学习态度,维护学生对数学建模的学习兴趣。为此,教师在选拟问题时,应考虑多数学生的知识基础、生活背景及理解水平。所选拟的问题要尽量避免出现不为学生所熟悉的专业术语,避免问题过度专业化,要为学生理解问题提供必要的背景材料、信息与知识。

二、聚焦建模方法

数学建模方法是指运用数学工具建立数学模型进而解决现实问题的方法,它是数学建模教与学的核心,具有重要的教学功能。掌握一定的数学建模方法是实现数学建模课程目标的有效途径。为此,数学建模教学应聚焦于数学建模方法。

1.注重建模步骤

数学建模方法包含诸如问题表征、简化假设、模型构建、模型求解、模型检验、模型修正、模型解释、模型应用等多个步骤。数学建模教学中,教师应通过数学建模案例,注重对各步骤的基本内涵、实施技巧及各步骤之间的内在联系和协同方式进行阐释和分析,这是使学生从整体上把握建模方法的必要手段。有助于学生掌握数学建模的基本过程,有助于为学生模仿建模提供操作性依据,进而为学生独立建模提供原则性指导。

2.突出普适方法

不同的数学建模方法,其作用大小和应用范围也不同,譬如,关系分析方法、平衡原理方法、数据分析方法、图形(表)分析方法以及类比分析方法等均为具有统摄性和普适性的建模方法。教师应侧重对这些普适性的建模方法进行教学,使学生重点理解、掌握和应用。此外,分属于几何、代数、三角、微积分、概率与统计、线性规划等数学分支领域的建模方法等,尽管其普适性程度稍逊,但其对解决具有领域特征的现实问题却具重要应用价值,因而,教师也应结合相应数学领域内容的教学,使学生通过把握其领域特性及其所运用的问题情境特征而熟练掌握并灵活应用。

3.加强方法关联

许多现实问题的解决往往需要综合运用多种数学建模方法,因此,在数学建模教学中,应加强数学建模方法之间的关联,注重多种建模方法的综合运用。为此,应在加强各建模步骤之间联系与协调运用基础上,综合贯通处于不同层次、分属不同领域的数学建模方法,在建模各步骤之间、具体的建模方法之间、不同领域的数学建模方法之间进行多维联结,建立数学建模方法网络图,以使学生掌握数学建模方法体系,形成综合运用数学建模方法解决现实问题的能力。

三、强化建模策略

数学建模策略是指在数学建模过程中理解问题、选择方法、采取步骤的指导方针,是选择、组合、改变或操作与当前数学建模问题解决有关的事实、概念和原理的规则。数学建模策略对数学建模的过程、结果与效率均具有重要作用。学生掌握有效的数学建模策略,既是数学建模课程的重要教学目标,也是学生形成数学建模能力的重要步骤。因此,应强化数学建模策略的教与学。

1.基于建模案例

策略通常具有抽象性、概括性等特点,往往需要借助实例运用获得具体经验,才能被真正领悟与有效掌握。因此,数学建模策略的教学应基于对建模案例的示范与解析,使学生在现实问题情境中感受所要习得的建模策略的具体运用。为此,一方面,针对某特定建模策略的案例应尽可能涵盖丰富的现实问题,并在相应的案例中揭示该建模策略的不同方面,以为该建模策略提供多样化的情境与经验支持;另一方面,应对某特定建模案例中所涉及的多种建模策略的运用进行多角度的审视与解析,以厘清各种建模策略之间的内在联系。基于案例把握建模策略,将抽象的建模策略与鲜活的现实问题密切联系,有助于积累建模策略的背景性经验,有助于丰富建模策略的应用模式,有助于促进建模策略的条件化与经验化,进而实现建模策略的灵活应用与广泛迁移。

2.寓于建模方法

建模策略从层次上高于建模方法,是建模方法应用的指导性方针,它通过建模方法影响建模的过程、结果与效率。离开建模方法而获得的建模策略势必停留于表面与形式,难以对数学建模发挥作用。因此,应寓于建模方法获得建模策略。为此,应通过数学建模案例,解析与阐释所用策略与方法之间的内在联系与协同规律,使学生掌握如何运用建模方法,知晓何以运用建模方法,从而获得具有“实用”价值的数学建模策略。

3.联结思维策略

思维策略是指问题解决思维活动过程中具有普适性作用的策略。譬如,解题时,先准确理解题意,而非匆忙解答;从整体上把握题意,理清复杂关系,挖掘蕴涵的深层关系,把握问题的深层结构;在理解问题整体意义基础上判断解题的思路方向;充分利用已知条件信息;注意运用双向推理;克服思维定势,进行扩散性思维;解题后总结解题思路,举一反三等,均为问题解决中的思维策略。思维策略是数学建模不可或缺的认知工具,对数学建模具有重要指导作用。思维策略从层次上高于建模策略,它通过建模策略对建模活动产生影响。离开思维策略的指导,建模策略的作用将受到很大制约。因此,在建模策略教学中,应结合建模案例,将所用建模策略与所用思维策略相联结,以使学生充分感悟思维策略对建模策略运用的指引作用,增强建模策略运用的弹性。

四、注重图式教学

数学建模图式是指由与数学建模有关的原理、概念、关系、规则和操作程序构成的知识综合体。具有如下基本内涵:是与数学建模有关的知识组块;是已有数学建模成功案例的概括和抽象;可被当前数学建模问题情境的某些线索激活。数学建模图式在建模中具有重要作用,影响数学建模的模式识别与表征、策略搜索与选择、迁移评估与预测。因此,应注重数学建模图式的教与学,为此,数学建模教学应实施样例学习、开展变式练习、强化开放训练。

1.实施样例学习

样例学习是向学生书面呈现一批解答完好的例题(样例),学生解决问题遇到障碍或出现错误时,可以自学这些样例,再尝试去解决问题。样例学习要求从具有详细解答步骤的样例中归纳出隐含其中的抽象知识与方法来解决当前问题。在数学建模教学中实施样例学习,学习和研究别人的已建模型及建模过程中的思维模式,有助于使学生更多地关注数学建模问题的深层结构特征,更好地关注在何种情况下使用和如何使用原理、规则与算法等,从而有助于其建模图式的形成。在实施样例学习时,应注重透过建模问题的表面特征提炼和归纳其所蕴含的关系、原理、规则和类别等深层结构。

2.开展变式练习

通过样例学习而形成的建模图式往往并不稳固,且难以灵活迁移至新的情境。为此,应在样例学习基础上开展变式练习,通过多种变式情境的分析和比较,排除具体问题情境中非本质性的细节,逐步从表层向深层概括规则和建构模式,不断地将初步形成的建模图式和提炼过的规则和模式内化,以形成清晰而稳固的建模图式。开展变式练习时,应注重洞察构成现实情境问题的“数学结构框架”,从“变化”的外在特征中鉴别和抽象出“不变”的内在结构。

3.强化开放训练

数学建模具有结构不良问题解决的特性。譬如,条件和目标不明确;“简化”假设时需要高度灵活的技巧;模型构建需要基于对问题的深邃洞察与合理判断并灵活运用建模方法;所建模型及其形式表达缺乏统一标准,需要检验、修正并不断推广以适应更复杂的情境;有并非唯一正确的多种结果和答案等等。鉴于此,数学建模教学中应强化开放训练,以促进学生形成概括性强、迁移范围广、丰富多样的建模图式。为此,应通过改变问题的情境、条件、要求及方法来拓展问题。即对简化假设、建模思路、建模结果、模型应用等建模环节进行多种可能性分析;将问题原型恰当地转变到某一特定模型;将一个领域内的模型灵活地转移到另一领域;将一个具体、形象的模型创造性地转换成综合、抽象的模型。在上述操作基础上,对建模问题进行抽象、概括和归类,从一种问题情境进行辐射,并以此网罗建模的不同操作模式,从而使学生形成关于建模图式的体系化认知,进而提升建模图式的灵活性和可迁移性。

五、活化教学方式

鉴于数学建模具有综合性、实践性和活动性特征,因而其教学应体现以学生为认知主体,以运用数学知识与方法解决现实问题为运行主线,以培养学生数学建模能力为核心目标。为此,应灵活采取激励独立探究、引导对比反思、寻求优化选择等密切协同的教学方式。

1.激励独立探究

数学建模教学中,教师应首先激发学生独立思考、自主探索,力求学生找到各自富有个性的建模思路与方案。诚然,教师和教材的思路与方案可能更为简约而成熟,然而,学生是学习的主体,其获得的思路与方案更贴近学生自身的认知水平。因此,教师应给予学生独立思考的机会,激励学生个体自主探索,尊重学生的个性化思考,允许不同的学生从不同的角度认识问题,以不同的方式表征问题,用不同的方法探索问题,并尽力找到自己的建模思路与方案,以培养学生独立思考的习惯和探究能力。

2.引导对比分析

在激励学生探寻个性化的建模思路与方案基础上,教师应及时引导学生对比分析,归纳出多样化的建模思路与方案。为此,应将提出不同建模方案的学生组成“异质”的讨论小组,聆听其他同学的分析与解释,对比分析探索过程、评价探索结果、分享探索成果,以使学生认识从不同角度与层次获得的多样化方案。引导学生对比分析,既展现了学生自主探索的成果,又发挥了教师组织引导的职能,还使学生获得了多元化的数学建模思维方式。

3.寻求优化选择

在获得多样化的建模方案基础上,教师应继续引导全班学生对多样化的建模方案进行观察与辨析,使学生在思维的交流与碰撞中,感受与认知其它方案的优点和局限,反思与改进自己的方案,相互纠正、补充与完善,寻求方案的优化选择。引导学生寻求优化选择,不仅仅是求得最优化的结果,还是发展学生数学思维、培养学生创新意识的有效方式。在此过程中,教师应与学生有效互动,深度交流,汲取不同方案的可取之点与合理之处,以做出优化选择。

上述数学建模教学策略之间存在密切联系。精拟建模问题是有效实施数学建模教学的载体;聚焦建模方法是有效实施数学建模教学的核心;强化建模策略是有效实施数学建模教学的灵魂;注重图式教学是有效实施数学建模教学的依据;活化教学方式是有效实施数学建模教学的保障。在数学建模教学中,诸策略应有机结合,协同运用,以求取得最佳效果。

参考文献

[1] Werner Blum Peter L.Galbraith Hans-Wolfgang Henn.Mogens Niss.Modeling and Applications in Mathema-tics Education.New ICMI Study Series VOL.10.Published under the auspices of the International Com-mission on Mathematical Instruction under the general editorship of Michele Artigue,President Bernard,R.Hodgson,Secretary General. 2006.

[2] 中华人民共和国教育部.普通高中数学课程标准.北京师范大学出版社,2003.

[3] 李明振,喻平.高中数学建模课程实施的背景、问题与策略.数学通报,2008,47(11).

[4] 李明振.数学建模认知研究.南京:江苏教育出版社,2013.

[5] Mingzhen Li,Qinhua Fang,Zhong Cai, Xinbing Wang.A Study ofInfluential Factors in MathematicalMod-eling of Academic Achievement of High School Students.Journal of Mathematics Education.Vol4 No.1.June,2011.

[6] Mingzhen,,Hu Yuting,Li,Yu Ping,Zhong Cai.A Comparative Study on High School Students’ Mathematical Modeling Cognitive Features.Research in Mathematical Education. June,2012.

对数学建模的认识范文4

“概率统计”是一门具有实践性与理论性的重要学科,在不断发展的过程中已经成为数学科目不可或缺的组成部分,并且对此起到重要的作用。在根据课程的相关特点中,利用现代科学进行审视与组织,从而使数学概率统计中融入新鲜元素,在教学内容上引入有趣的应用题目,并且要对科学方法以及相关技术、概率统计知识进行联系。学生在运用“概率统计”知识的基础上们能够建立数学模式,对“概率统计”的知识也会产生兴趣爱好。除此之外,还能促进学生学习习惯的改变,变被动为主动,从根本上提高学习效率。将数学建模的思想积极融入到数学概率统计之中,能够在不打破传统知识的同时,应用案例进行解决。通常情况下,学习通过对案例的学习,能够亲自体验在使用概率统计知识进行数学建模的整个过程,从而加深对概率统计知识的认知与理解,促进学生的学习兴趣与学习习惯。从另一个角度而言,学生在努力学习数学概率知识的同时,能够真正做到“学以致用”,由于数学概率统计是一门重要且复杂的课程,在不影响到教学大纲的情况下利用多种手段进行教学,可以增强学生数学建模的基本能力,从根本上体现数学建模的思想。

二、教学方法得以改进,促进开放式学习方式的形成

(一)改变传统教学模式,探索新型教育方式通过实践证明,传统的教学模式与方式无法适应社会的需要,不能满足现代化的教学要求,因此无法在传统教育模式中取得满意的教学效果。通过将数学建模融入到数学概率统计之中,可以在传统的教学模式中融入新鲜元素,并且结合相关案例,采用启发式教学模式进行教学,实现由浅入深、由难到易,使学生掌握数学概率统计的基本概念以及相关方法,从而对数学学习产生兴趣,变被动学习为主动学习,从根本上加深学生对数学概率统计知识与建模思想的认识与理解。

(二)改变传统学习方式,建立开放型学习形式在数学概率统计的教学内容上,认可教师不可以按照传统的教学模式作为基本模式,不能按照教科书进行照本宣科。众所周知,数学建模是没有固定模式的,在进行数学建模时,要积极利用各种方式、各种技巧,因此,教师在对学生传授相关知识的同时,要积极引导学生如何学习,如何正确的使用建模技巧,并且要让学生对问题发生的背景以及过程进行探索,从根本上提高学生的自主创新能力。除此之外,在对习题进行处理时,学生也不能局限于比较充分的问题上,要不断引用条件不充分的问题进行研究,并且要自己动手对材料、信息,对数据进行分析,建模,并且还要对较为抽象的问题进行具体化,从而增强自身对学习的兴趣与能力。此外,教师要不断开展讨论课,让学生积极发表自己的建议,对问题的见解进行回答,加强与同学之间的交流与学习,从而使学生在开放型学习环境中不断成长。

三、改善教材中的理论学习,加强实践学习

在学生的实践活动之中,为了能够使学生对知识有所了解,那么教材僬侥设计有关学生训练的习题。一般而言,数学概率统计中的教材在教学内容的处理上过于理论化,对习题的次序与搭配却不符合学生的基本特点,甚至有部分教材在设计的习题中难度过高,从而导致学生在学习中遇到困难,对数学概率统计与数学建模失去兴趣。从实际角度而言,数学概率统计作为数学教材,习题是非常重要的,大量的习题可以锻炼学习的逻辑性与思维型,因此,在对数学教材进行编写时要按照由浅入深的基本原则,对练习题进行分门别类的编写,从而满足不同层次与不同对象的基本需求。在现有的数学概率统计习题之中,还需增加比较有趣、与生活有关的系统,并且该类习题要对数学建模的思想进行体现。与此同时,在教材中还应该添加应用性强的概率案件与统计案件,比如像数据的统计、数据的拟合等,让学生能够学会数学建模,在丰富学生课余知识的同时,也在一定程度上提高了学生的应用能力。

四、结语

对数学建模的认识范文5

一、数学教材设计存在缺陷 

现行高中数学教材将数学建模内容散布于各数学知识教学单元内容之中。此种课程设计固然便于学生及时运用所学数学知识解决实际问题,但却存在诸多弊端。将数学建模内容分置于各数学知识教学单元的课程设计遮蔽了数学建模内容之间所固有的内在联系,致使教师难以清晰地把握高中数学建模课程内容的完整脉络,难以准确地掌握高中数学建模课程内容的总体教学要求,难以有效地实施高中数学建模课程内容的整体性教学。而学生在理解和处理数学知识教学内容单元中的具体数学建模问题时,既易受到应运用何种数学知识与方法的暗示,也会制约其综合运用数学知识方法解决现实问题。从而势必影响学生运用数学知识方法建立数学模型的灵活性与迁移性,降低数学建模学习的认知弹性。 

二、高中数学建模课程师资不足 

许多高中数学教师缺少数学建模的理论熏陶和实践训练,致使其数学应用意识比较淡漠,其数学建模能力相对不足,从而制约了高中数学建模教学的效果。高中数学教师所普遍存在的上述认识偏差、实践误区以及应用意识与建模能力方面的欠缺,严重阻碍了高中数学建模课程目标的顺利实现。 

三、学生学习数学建模存在困难 

相当多数高中学生的数学建模意识和数学建模能力令人担忧。普遍表现为:难以对现实情境进行深层表征、要素提取与问题归结;难以对现实问题所蕴涵的数据进行充分挖掘、深邃洞察与有效处理;难以对现实问题作出适当假设;难以对现实问题进行模型构建;难以对数学建模结果进行有效检验与合理解释等。 

1.编写独立成册的高中数学建模教材。将高中数学建模内容集中编写为独立成册的高中数学建模教材。系统介绍数学建模的基本概念、步骤与方法并积极吸纳丰富的数学建模素材且对典型的数学建模问题依步骤、分层次解析。 

2.加强高中数学建模专题的师资培训。 

高中数学教师是影响高中数学建模课程实施的关键因素。他们对数学建模的内涵及其教育价值的理解、所具有的数學应用意识和数学建模能力水平等均会在某种程度上影响高中数学建模教学的开展与效果。目前高中数学建模师资尚难完全胜任高中数学建模课程的教学,绝大多数高中数学教师在其所参加的新课程培训中并未涉及数学建模及其教学内容。因此应有计划地组织实施针对高中数学建模专题的教师培训。 

3.探索高中学生数学建模的认知规律。 

对数学建模的认识范文6

【关键词】高等数学 建模思想 实例教学 渗透研究

高等教育的发展、素质教育改革模式的转变,对学生的应用能力提出更高要求。数学作为高等院校重要基础课程之一,在数学研究的抽象性与技术性上,如何将数学知识与实践应用相结合,凸显数学的应用能力。解决实际问题,从问题的起始状态、中间状态、目标状态上来全面审视数学认知,并从数学的抽象思维、逻辑思维和建模思想上来解决具体的综合问题。以建模为依托,从数学概念、定理、数学思维方法上来探究数学与客观世界的关系,并从建模实践中来表征数量关系与图形关系,旨在从建模实践中验证数学的应用价值。

一、数学建模与为什么引入建模思想

从概念来看,模型是基于结构的、对抽象事物的形象化表示。数学模型是基于符号的对客观世界的抽象性、简化性数学结构,建模的过程也是对实际问题抽象、简化、确定变量、参数,并从数量间的关系上求解数学问题。在高等数学教学实践中,将建模思想渗透到数学概念中,并从数学的建模应用中来强化理论知识与实践的联系,帮助学生从数学知识中增长数学素养,提升数学综合素质。因此,建模思想与高等数学的渗透是十分必要的。其作用主要表现:一是建模思想有助于增强学生对数学的探索兴趣。从建模的形成来看,数学建模来源于实际问题,是从现实问题的抽象、简化中形成数学模型,并结合数学解题方法来求解问题,达到对数学建模与现实实践的融合。因此,建模思想的实践性,可以有效激发学生的探索欲和好奇心,并从数学解题实践中强化对数学思想和方法的运用。同时,建模思想中的问题情境,将数学知识的分析上满足学生的求知兴趣。二是建模思想注重数学理论知识与实践应用的结合。从数学建模中,对于生活中的问题,可以用数学分析的方法来解决。数学分析的过程,就是对数学理论与实际衔接的过程,从具体的数学模型中来解决遇到的问题,让学生能够从发挥数学知识中增长解题能力,补充数学理论与应用的鸿沟。三是建模思想有助于培养学生的数学思维。对于数学知识,通常需要从条件的分析、具体的运算及逻辑推理中获得数学求解;同时,在对数学符号、数学方法的运用中,从真实事物中来概括和抽象数学模型,将实现对现代教育体系的丰富,也给数学教学提供了生动素材。四是建模思想有助于增强学生的数学素质。高等教育中的数学教学,不仅要注重数学解题能力的养成,还有从数学知识、数学兴趣、数学意识上,引导学生利用数学思维方法来观察事物,解决实际问题。

二、数学建模思想与高等数学的融合研究

(一)建模思想在高等数学概念、定理中的渗透

建模思想作为理论与实践的联系方式,在对数学概念讲解中,利用建模思想来拓宽学生对数学的认知,从客观事物的数量关系中来构建数学知识间的数学模型。如对于定积分的定义讲解中,如何从建模思想与概念关联中引导学生理解问题的实质。可以导入如下问题情境,将某车的运动轨迹为例,求解变速直线运动的路程。对于该问题的设置,让学生从“无限细分化整为零”来理解速度变化,再从局部入手,来探讨直线代曲线后的近似算法,最后从无限积累聚零为整取极限,来全面认识和理解微积分的基本思想,从而获得路程的数学表达式为:S。也就是说,对本实例,从路程S的构成上可以利用微积分思想,来构建对应的数学模型,I= ,从而得出定积分的基本定义。

(二)建模思想在数学课堂教学中的具体应用

高等数学不同章节不同知识点在教学中,利用具体的教学实例,从数学模型中来导入课堂,凸显数学问题与现实实际的关联度,并从中来渗透建模思想,增强学生从建模思想中拓宽知识的应用范围,提升课堂教学的趣味性,还能够从问题的分析和解决中促进学生想象力、思维力和创造力的养成。如以某游客登山旅游为例,第一天上午9点从山脚出发,下午5点达到山顶;第二天从上午9点下山,对于是否存在某一个景点,,满足游客在两天的同一时刻到达。对于本题在研究中,首先从问题的假设中来进行模型构建。设甲乙二人同时相向出发,走同一条路,一个上上,一个下山,必有两人相遇的某一点。其次,从甲乙二人的行走路程分别计作S,则S=s1(t)和S=s2(t)。然后,我们假设s1(0)=0,s2(0)=S,s1(T)=S,S2(T)=0,S为单程距离。对该题进行模型构建,假设函数f(t)=s2(t)-s1(t),从函数的连续性上来看,f(0)=S>0,f(T)=-S

(三)建模思想在课后作业中的渗透

数学来源于生活,数学所关系的问题具有普遍性和真实性,对于实际问题的导入,要贴近学生的需求,引导学生从数学建模中增强科研意识和探索精神。课外作业也是高等数学渗透建模思想的重要内容,从课堂知识的延伸、课程教学内容的理解、消化和巩固上,围绕数学分析方法和理论知识,从实际问题的构建中引导学生解决实际问题。如通过对学生进行分组,构建小组协作,从建模知识的合作、体验和实践中完成作业,让学生从作业参与中强化团结、协作精神。如构建某一课题,设置一块不平的地面,能否找到一个合适的位置保持桌子的四脚平稳着地。对于本题在假设上,首先确定四个脚着地将构成一个严格的长方形;其次对于地面高度不存在间断,即不存在类似台阶的地面。由此可知,在构建数学模型中,首先以桌子的中心为原点建立坐标系,当长方形桌子进行旋转时,对角线连线与X轴所成夹角为θ。由此可以设置四个脚到地面间的距离分别为hA(θ),hB(θ),hC(θ)和hD(θ),同时,对于任意一个θ,都得满足hA(θ),hB(θ),hC(θ)和hD(θ)至少有三个为零。由此可见,对于hA(θ),hB(θ),hC(θ)和hD(θ)作为θ的连续性函数,对于桌子的问题可以进行数学模型转换。假设:hA(θ),hB(θ),hC(θ)和hD(θ),满足hi(θ)≥0,且i=A,B,C,D。对于任意一个θ,都有函数hA(θ),hB(θ),hC(θ)和hD(θ)中的三个总为零。由此可以证明θ存在,且满足hA(θ)=hB(θ)=hC(θ)=hD(θ)=0。对本题进行探讨和总结可知,对于连续函数的根的存在性即是本题研究的问题。对于模型假设与建模思想的渗透,主要从桌子的四个脚构成严格的四方形,且满足地面高度不存在间断。所以,本题的思维空间更大,而解题方法也存在多样化。三、结语

对于高等数学与建模思想是融合,还可以从考试环节入手。对于传统考试内容的设置,开放型题型相对较少,而对于高等数学建模思想的渗透,往往可以通过开放型题型的导入中,来考察学生对数学知识的理解和数学思想的掌握能力。需要强调的是,对于高等数学建模思想及方法的运用,也需要结合学生的学习实际,能够从数学知识的学习和数学应用能力的分析上,凸显基础知识的作用,适当渗透数学应用能力和创新能力,把握好知识间的“实用性”和“严谨性”要求。对于数学建模思想要突出主旨,实例清晰,能够从理论和实践中恰当的拓展学生的思维,促进数学建模思想与高等数学教学的有机协同。总之,数学模型是建模的基础,也是构建数学语言表述现实世界数量关系和图形关系的桥梁,通过对数学建模思想的渗透,将数学知识与运算法则,与具体的数学问题建立关联,从数学知识的结构化、模型化中来深化数学思想,构建完备的数学能力培养体系。

参考文献: