前言:中文期刊网精心挑选了土壤重金属污染分析范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
土壤重金属污染分析范文1
关键词 模糊综合评价;主成分分析法;扩散微分方程模型
中图分类号TG1 文献标识码A 文章编号 1674-6708(2012)71-0069-02
1 问题重述
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出.对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查.为此,将所考察的城区划分为间距1km左右的网格子区域,按照每平方公里1个采样点对表层土(0cm~10cm深度)进行取样、编号,并用GPS记录采样点的位置.应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据.另一方面,按照2km的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:
1)分析该城区内不同区域重金属的污染程度;
2)通过数据分析,说明重金属污染的主要原因;
3)分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
2 模型假设
1)假设各元素浓度的测量准确无误;
2)假设重金属元素是从高浓度到低浓度扩散;
3)假设重金属元素向3个方向上的扩散系数相同,且不受降雨等外部因素影响。
3 模型的建立和求解
3.1问题一:模糊数学模型[1]
传统评价方法仅仅考虑了重金属污染物浓度超标的情况,未考虑重金属本身的毒性作用,这就有可能掩盖有些浓度低但毒性大的有毒物的污染作用,因此,采用基于双权重因子的模糊数学模型综合考虑重金属浓度和毒性作用进行评价更为全面合理.根据模糊评价的原理、步骤及查得的土壤重金属污染程度分级标准及生物毒性指数(如表1)进行求解。
表1 土壤重金属污染程度分级标准及生物毒性指数
模型的求解过程具体如下:根据附表一实测数据各区各重金属元素求得的平均值和表2的数据,计算各重金属元素对应于各土壤重金属环境质量等级的隶属度函数,得到关系模糊矩阵。如功能区一经计算后得到的关系模糊矩阵为:
由附表1实测数据和表2数据得到功能区一各个重金属参评因子的权重
根据功能区一的模糊关系矩阵和对应的权重系数可得出功能区一对评价等级的隶属度,再根据最大隶属度原则,确定各样品的污染程度,此即为土壤环境质量分级。
其他四区的具体做法和功能区一样,在这里不再赘述,结果见下表。
表2 模糊综合评价结果
3.2问题二:主成分分析数学模型
八种重金属元素在五个功能区的分布不同,对区内重金属污染的影响也不同,故该模型采用主成分分析法建立,通过SPSS软件分别得到五个功能区的主成分值,进而得到各功能区污染的主要因素.
3.2.1 主成分值
表3 城区主成分值
1)主成分一中各因子的载荷值比较大的是Cu、Pb分别为75.6%、76.4%;
2)主成分二中各因子的载荷值都较小。
因为工业生产原料和工业污染里含有大量Cu、Pb元素,因此可认为对整个城区而言重金属污染的主要原因是工业废物。
表4 生活区主成分值
1)主成分一中各因子的载荷值比较大的是Cd、Cu、Pb分别为78.4%、72.9%、80.3%;
2)主成分二和三中各因子的载荷值都较小。
因子变量在Cd、Cu、Pb上有较高的载荷,是因为城市垃圾中含有的Cd、Cu、Pb、Zn平均含量分别为9、350、330和780(mg/kg),主成分因子在Zn上的载荷不高,可能是因为Zn的毒性系数较低的缘故,另外Cu、Pb还可能来自于工业污染,Pb可能来自于尾气排放。
表5 工业区主成分值
1)主成分一中各因子的载荷值比较大的是Cr、Cu、Pb、Zn分别为91.6%、86.8%、85.8%、85.9%;
2)主成分二中各因子的载荷值都较小。
土壤重金属污染分析范文2
关键词:兰州;土壤;重金属;污染评价
中图分类号:X53文献标识码:A文章编号:16749944(2013)12013703
1引言
随着城市生活废弃物和工业“三废”排放日益增多,土壤重金属元素逐渐蓄积[1],给人体健康带来潜在的危害[2]。国内外学者对此进行了很多研究[3~5],有关研究表明,蔬菜对重金属的富集量比其他作物要大得多,在被污染土壤种植的蔬菜中有毒物质的含量大于土壤的3~6倍[6]。加强对蔬菜基地土壤重金属污染的调查和研究是当前进行农业生态环境保护的重要任务,也是实现农业可持续发展的关键。
本文选择了兰州市五区三县的蔬菜生产基地作为调查对象,测定蔬菜基地土壤中重金属的含量,对结果进行了差异性分析和聚类分析,旨在为无公害蔬菜基地建设和重金属元素污染控制提供指导依据。
2实验部分
2.1研究区域概况
兰州处在东经102°30′~104°30′、北纬35°5′~38°之间,位于中国陆域版图的几何中心。兰州现辖城关、七里河、西固、安宁、红古五区和永登、榆中、皋兰三县,全市总面积13085.6 km,其中市区面积1631.6km。兰州属中温带大陆性气候,气候温和,市区海拔平均高度1520m,年均气温11.2 ℃,年均降水量327mm,全年日照时数平均2446h,无霜期180d以上。
2.2样品的采集与测定
选择兰州市五区三县内各一个有代表性的蔬菜基地,每个蔬菜基地设8个样点(图1)。采集土壤时,在较大面积地块内采用对角线形法或“S”形法多点采集,采样深度为0~20cm和20~40cm,在每个样品点周围采集4~5个子样,组成一个混合样,再用四分法分出1kg土样,贴好标签,带回实验室[7~9]。
土壤样品在室温下自然风干,过100目筛,然后准确称取0.5g用于测定土壤中的重金属含量。对采集的土壤样品进行相应的预处理后,用pH仪测定土壤的pH值,用电感耦合等离子发射仪(ICP-AES)对土壤中的锌、铅、铜、铬、砷含量进行测定[10]。
2.3数据统计分析
采用单因素方差分析(ANOVA)对不同区域和不同土壤层次之间的差异性进行显著性分析,利用最小显著性差异(LSD)多重比较方法,在95%的可靠性下对不同土壤层次和不同区域之间两两的差异性进行比较分析。
2.4系统聚类法
分层聚类法(HCM)是将研究对象的多个样品各自视为一类,并将几个样品认作同类,计算它们的相互之间的距离或相似系数,把距离最小或相似最大的样品合并为一类,再计算所得类与其他类的距离或相似系数,并将距离最小或相似最大的样品合并为一类,如此逐步进行类的合并,直至所有的样品归为一类为止。通过聚类分析可以对蔬菜及土壤重金属进行科学地分类,从而准确地对污染土壤和蔬菜进行评价,其结果可以验证因子分析的结论。
3结果与讨论
3.1兰州市蔬菜基地不同深度土壤中重金属含量的差
异性分析兰州市城关区蔬菜基地土壤中Pb含量无显著差异,Zn和Cr含量无显著性差异,Cu含量表现出一般显著性差异,As含量表现出显著性差异,Pb、Cu和As在0~20 cm深度的含量显著高于20~40 cm深度的含量。
兰州市七里河区蔬菜基地土壤中Pb、Zn和Cu含量表现出显著差异,Cr和As含量表现出极显著性差异,Pb和As在0~20 cm的含量显著高于20~40 cm的含量,Zn、Cu和Cr在0~20 cm的含量显著低于20~40 cm的含量。
兰州市安宁区蔬菜基地土壤中Pb和Cr含量表现出一般显著差异,Zn和As含量表现出显著性差异,Cu含量表现出极显著性差异,Pb和Cr在0~20 cm的含量显著高于20~40 cm的含量,Zn、Cu和As在0~20cm的含量显著低于20~40cm的含量。
兰州市西固区蔬菜基地土壤中Pb含量表现出一般显著差异,Zn、Cu、Cr和As含量无显著差异,Pb在0~20 cm的含量显著高于20~40 cm的含量。
兰州市红古区蔬菜基地土壤中Pb和Zn含量无显著差异,Cu含量表现出一般显著性差异,Cr含量表现出显著性差异,As含量表现出显著性差异,Cu、Cr和As在0~20 cm的含量显著高于20~40 cm的含量,Pb和Zn的含量无显著差异。
兰州市榆中县蔬菜基地土壤中Pb和As含量表现出显著差异,Zn含量表现出一般显著性差异,Cu含量无显著差异,Cr含量表现出极显著性差异,Pb和Cr在0~20 cm的含量显著高于20~40 cm的含量,Zn和As在0~20 cm的含量显著低于20~40 cm的含量。
兰州市永登县蔬菜基地土壤中Pb和Cr含量无显著差异,Zn和Cu含量无显著性差异,As含量表现出一般显著性差异,Zn、Cr和As在0~20 cm的含量显著高于20~40 cm的含量,Pb和Cu的含量无显著差异。
兰州市皋兰县蔬菜基地土壤中Pb和Cu含量无显著差异,Zn含量表现出一般显著性差异,Cr和As含量表现出极显著性差异,Zn和As在0~20 cm的含量显著高于20~40 cm的含量,Cr在0~20 cm的含量显著低于20~40 cm的含量,Pb和Cu在土壤不同深度间的含量无显著差异(表1)。
3.2兰州市不同区域蔬菜基地土壤中重金属含量的
差异性分析在0~20 cm土层土壤中,Pb的含量在不同区域表现出极显著差异(F8,64=74.99,p
Pb、Zn、Cu、Cr、As的含量在20~40 cm土层土壤中,Pb的含量在不同区域表现出极显著差异(F8,64=34.85,p
3.3兰州市蔬菜基地土壤重金属的聚类分析
对所调查的兰州市五区三县的蔬菜基地土壤重金属含量进行聚类分析,可以将五区三县分为三大类,即城关区聚为一类,其土壤重金属含量高于其他各区县,七里河区聚为一类,其土壤重金属含量低于城关区而高于其他各区县,其他区县聚为一类,土壤重金属污染状况基本相同(图4)。
4结论
城关区Pb、Cu和As主要聚集在表层土壤;七里河区Pb和As主要聚集在表层土壤,Zn、Cu和Cr有下迁趋势;安宁区Pb和Cr主要聚集在表层土壤,Zn、Cu和As有下迁趋势;西固区Pb主要聚集在表层土壤;红古区Cu、Cr和As主要聚集在表层土壤;榆中县Pb和Cr主要聚集在表层土壤,Zn和As有下迁趋势;永登县Zn、Cr和As主要聚集在表层土壤;皋兰县Zn和As主要聚集在表层土壤,Cr有下迁趋势。
图4兰州市蔬菜基地土壤重金属含量的聚类分析 在0~20cm土层土壤中,Pb、Zn、Cu、Cr、As含量最多的区县分别是安宁区、七里河区、城关区、榆中县和城关区,在20~40 cm土层土壤中,Pb、Zn、Cu、Cr、As含量最多的区县分别是安宁区、七里河区、皋兰县和城关区。
通过对兰州市蔬菜基地土壤重金属进行聚类分析,可以将五区三县分为三大类,即城关区聚为一类,七里河区聚为一类,其余五区县聚为一类,反映了不同地区受重金属污染的相似组合,表明城关区和七里河区土壤受人类活动影响较大。
参考文献:
[1] 李天杰. 土壤环境学[M]. 北京: 高等教育出版社, 1995.
[2] 许炼烽. 城市蔬菜的重金属污染及其对策[J]. 生态科学, 2000, 19 (1): 80~85.
[3] Naidu R, Kookana S, Sumnerm E. Cadmium sorption and transportion variable charge soils [J]. Environmental Quality, 1997, 26(3): 602~617.
[4] Hu X F, Wu H X, Hu X. Impact of urbanization on Shanghai’s soil environmental quality[J]. Pedosphere, 2004, 14 (2): 151~158.
[5] Li J, Xie Z M, Zhu Y G, Naidu R. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zine mine [J]. Journal of Environmental Sciences, 2005, 17 (6): 881~885.
[6] 滕葳,柳琪,郭栋梁. 山东部分蔬菜产区12种蔬菜重金属含量的研究[J]. 食品研究与发展, 2003, 24 (5): 87~89.
[7] 黄功标. 福建省主要蔬菜基地土壤重金属污染状况调查与评价[J]. 环境整治, 2005,22(4): 39~41.
[8] 魏为兴. 福州市主要蔬菜基地土壤重金属的影响评价[J]. 福建地质, 2007, 26(2): 100~107.
土壤重金属污染分析范文3
关键词:火焰原子 污染土壤 重金属
近几年,土壤污染情况受到了相关部门的重视,国土资源与环保局相联合,对突然遭受到的污染情况进行调查分析,重金属污染是调查中的关键内容。在分析过程中,通过火焰原子吸收分光光度对土壤中的重金属元素进行分析。
1、试验中土壤样品
本次实验主要针对土壤中的铜、锌、铬、铅、镉重金属元素进行测定。
1.1土壤样品的采集
在某工厂排污口附近农田进行土壤样品采集。在完成土壤采集工作后,将土壤放置在风干盘中,将样品分为2.5±0.5cm左右的簿层,放置一段时间,在其达到半干状态后,对其进行压缩处理,将压缩后样品中的植物残体和碎石捡出。利用尼龙筛(孔径0.84mm)对样品进过滤,然后对样品进行充分搅拌,直到搅拌均匀为止,通过四分法从中取两份,对样品进行充分细磨,直到样品能够全部都通过尼龙筛(孔径0.15mm)为止。
1.2消解样品
利用消解罐盛放样品,向消解罐中加入硝酸、高氯酸、氢氟酸,分别为6mL、2mL、3mL,完成加入后,混匀[1]。然后将消解罐放入到消解仪器中。开启消解程序,进行约20min的消解,完成消解后,从仪器中取出消解罐,将其放在风机上,待完成冷却之后,将处理后的溶液转移到25mL的容量瓶中,进行定容后,摇匀,将溶液转移到比色管中,与此同时,要做好相应的空白消解操作。
1.3测定样品
依据土壤中重金属含量,确定是否需要对过滤后的溶液进行稀释,然后通过火焰吸收分光光度计对土壤样品中的铜、锌、铬、铅、镉重金属元素的含量进行测定。
2、 实验结果与分析
2.1确定测定条件
利用火焰原子吸收分光光度计对土壤中的重金属元素进行测定时,对于不同的重金属元素测定的条件有所不同,对5种重金属元素的测定的工作条件如表1所示。
2.2测定结果
ν寥姥品进行编号处理,1、2、3分别代表3个不同的采样点。在测定过程中,分别准确称取3个采样点土壤0.6g,为了方便对比分析,将每个采样点的样品取两个平行样[2]。通过1.2中介绍的消解方法对土壤进行消解,在具体分析过程中,发现土壤中锌的含量较高。因此,在具体操作过程中,要从滤液取出溶液2.5mL,将其移到25mL比色管中,然后利用1%HNO3溶液,对溶液进行稀释,直到刻度位置,完成稀释后,摇匀,从而确保最终测试结果的准确性[3]。在完成上述操作后,利用火焰原子吸收分光光度计对样品中锌的含量进行测定。剩余过滤液则直接通过火焰原子吸收分光光度计对样品中的铜、铬、铅、镉四种重金属元素的含量进行测定,最终的测定结果如表2所示。
中的数据可以发现,3个采样点,土壤中锌的含量都最高,其次为铜的含量。3号采样点铜含量较高,含量达到了1号、2号采样点中铜含量的2倍左右,1、2、3号采样点中的铬的含量相近。1、2、3号采样点,土壤中含量最低的重金属为镉。
3、结束语
现代土壤遭受到的污染较为严重,为了对土壤中的重金属含量进行合理分析,科学处理。在对土壤中重金属含量测定过程中,可以利用火焰原子吸收分光光度法,该方法在具体应用过程中,不仅操作简单,而且省时省力,在具体检测过程中使用的酸较少,因此对环境污染较小,是一种理想的检测方法。因此,应当对该方法进行应用与推广。
参考文献:
[1]杨江江,龙健,李娟,等.土壤中重金属元素形态提取方法的比较――以火焰原子吸收光谱法测定铜及锰含量为例[J].理化检验(化学分册),2012,10:1146-1149.
[2]黄明斌. 关于石墨消解火焰原子吸收法测定土壤中重金属分析[J]. 广东化工,2016,14:
165+157.
土壤重金属污染分析范文4
关键词:土壤重金属; 污染特点; 治理策略
1 引言
在环保领域对重金属污染的定义是能够使生物遭受显著毒性的金属,这些物质包括汞元素、铅元素、锌元素、钴元素、镍元素、钡元素等,有时候也包括锂元素与铝元素等等。一项来自研究机构的调查统计数据表明,近年来全球汞排放量达每年1.5万吨,铅排放量达每年500万吨,这些元素进入农田和城市,为所经地区的土壤带来严重的重金属污染,这些污染一方面能够影响地下水和农作物的品质,另一方面也通过食物链对当地居民产生不容忽视的影响。当前,如何进行土壤重金属污染的分析、评估、预防和治理,是一个世界性的问题,本文首先从土壤重金属的主要来源和土壤重金属污染的危害两个方面分析了重金属污染的现状,在此基础上进一步阐述了土壤重金属污染的空间差异以及污染整体的形态特征,最后深入论述了土壤重金属污染的预防以及修复策略。本文的成果对于环境保护和土地利用均有着比较好的理论价值和实践意义。
2 土壤重金属污染现状分析
2.1重金属来源分析
(1)交通运输
我国正在进行着大规模的城镇化建设,各类交通工具的数量近年来一直呈现出大幅攀升的态势,因此其排放的废气也逐年增加,导致土壤里重金属元素逐步累积,形成污染。以汽车为例,污染源包括尾气排放、汽油燃烧、轮胎磨损等,会逐渐排放出铅、汞、铜、锌等重金属元素,一方面对大气质量造成破坏,另一方面也导致土壤重金属超标。
(2)工业和矿产业
工业生产会排放出重金属元素,以烟尘或者废气废水的形式进入大气与土壤,而大气中的重金属则会逐渐沉降入土。工业生产中的废渣是更加主要的重金属污染来源,比如金属冶炼企业、电解铝企业、电镀企业等,在其日常生产排放的废渣中含有大量的重金属元素,如果在不经处理的情况下随意露天堆放,或者直接倾倒进土壤中,会为土壤带来极大的污染。
(3)燃煤释放
煤的燃烧会向大气中排放大量的污染物质,并逐渐沉降入土壤中。我国的燃煤企业,包括火力发电厂和钢铁企业等,会排放大量的汞金属,其中约三分之一的汞元素最终进入土壤。一些经济发达的大城市,汞元素的排放有其严重,这些污染能够为城市的环境质量和生态系统带来致命的影响。
(4)居民垃圾
居民如果将大量垃圾不加分类地堆放在户外,由于垃圾中存在不少未经处理的废弃物,例如电池等,将会使其中的重金属逐步渗透和扩散至周围的环境中,逐步导致土壤的重金属污染。
3 土壤重金属的污染治理策略
土壤重金属的污染的治理,可以从预防和修复两方面进行着手。
3.1重金属污染预防策略
控制污染,应从源头做起。因此在农村地区,应注重灌溉用水的质量,谨慎使用污水灌溉。在农田使用杀虫剂和肥料时也应合理用量,并且坚决杜绝汞含量超标的农药,也应禁止使用含镉化肥等对环境带来危害的农药和杀虫剂。对于城市地区的工业企业,则应严格控制对三废的排放。而居民区则应对废弃垃圾进行再回收利用或者分类处理。对于日益增多的交通工具,则应改善燃油质量、并积极鼓励以新型环保燃料代替传统燃油,从而减少废弃物的排放。
此外还应以完善的法规控制重金属排放。土壤污染已经被国际相关领域视为化学炸弹,是一个极其严峻而棘手的问题。只有通过立法的方式才能使污染的防范和治理进入可持续发展的轨道。而我国的环保法治进程目前尚需加速。举例来讲,当前有不少养殖户所购买的饲料里往往含有铜、铅等重金属,而禽类和畜类一旦食用并排出体外,便会对土壤形成污染,而我国当前并未将重金属列在畜禽养殖业污染物排放标准里,形成管理的漏洞。因此,亟需制定切合我国实际的法律法规进行重金属污染的防范。
3.2重金属污染治理策略
随着国际上对于土壤重金属污染的重视以及研究成果的和应用,在重金属污染治理方面有许多值得借鉴的策略,下面分别进行简述:
3.2.1 基于物理法的重金属污染治理
物理法治理又可以进一步分为以下几种方法:
一是热解吸法,这种方法以加热来把一些具有较强会发特性的重金属进行解吸和收集,再妥善处理或者合理利用。以汞元素为例,美国已经形成了比较成熟的基于热解析法的汞元素回收,并在现场治理中取得了较好的效果,使用此项处理方法的地域已经在汞含量方面达标。
二是电化法,这种方法以电解原理进行污染土壤的处理。在受到污染的土壤里设置石磨电极,并以1~5毫安的电流进行激励,从而在阴极收集到金属阳离子,并进行处理或者再利用。这种方法对于铅元素和二甲苯等物质的处理效果比较好。
三是洗土法,这种方法通过试剂与土壤里所含有的重金属物质发生反应,并最终生成可溶于水的金属离子,通过对提取液进行处理,得到重金属,再进行处理或者回收利用。这种方法非常适合于对铜金属、镍金属、铅金属和铂金属的回收处理。
四是玻璃化法,这种方法以电极对受到污染的土壤进行加热,从而使之进入熔化状态,在其最后冷却时,便会变成玻璃状态。这种方法尚在实验中,其成本较高,目前尚未得到的面积推广。
3.2.2基于化学法的重金属污染治理
这种方法在受到污染的土壤中按比例注入一定的化学试剂,从而改良土壤本身的性质,达到减轻重金属活性的作用,可以降低作物对土壤里重金属的富集效应。化学法治理主要指的是土壤添加物法,把一定充分的有机物料或者改良剂加入受污染的土壤之中,能够通过化学作用而使重金属离子沉淀,再对其进行收集,从而减轻污染;还可以通过化学试剂中的酸性物质与重金属元素反应,生成难溶于水的物质,从而使土壤污染得到减轻。这种方法适用于镍离子、锌离子等重金属物质的治理。
3.2.3基于生态工程的重金属污染治理
这种方法可以是在已经被重金属污染的土壤之上加厚一层正常土壤,或者把受到重金属污染的土壤全部挖除,也可以通过灌溉的方式,逐渐使受污染土壤中的重金属物质渐渐迁移到地层深处等,也能对土壤污染起到一定的作用。
3.2.4基于生物的重金属污染治理
这种方法可以通过植物或者微生物等来修复土壤质量。某些植物的根系可以吸收被污染土壤中的重金属,例如蜈蚣草被证实可以有效降低土壤中砷的含量;微生物则可以通过细胞转化作用使被污染土壤中的重金属沉淀或者氧化,从而使其对土壤的影响显著降低。
4 结束语
在世界各地,尤其是经济较为发达的地区均存在着较为严重的土壤重金属污染,重金属的来源是多方面的,当前,学界和环保组织对重金属的污染一般聚焦于污染程度的定性描述和分析。事实上怎样才能实现对重金属污染源进行量化分析,同样对治理逐渐严重的土壤污染有着不容忽视的作用,因此量化分析将是重金属污染研究的发展方向。当前,我国尚未构建完善的城市和农村地区土壤重金属污染的监控网络,因此并不能及时准确地检测土壤重金属污染状况,也难以为土壤重金属污染的治理提供必要的依据。只有制定出严格而适用的土壤重金属评价标准,才能有利于土壤的保护,从而推动经济的可持续发展。■
参考文献
[1]高晓宁.土壤重金属污染现状及修复技术研究进展[J].现代农业科技.2013(09)
[2]郭翠花,黄淑萍,原洪波,等.太原市地表土中五种重金属元素的污染检测及评价[J].山西大学学报(自然科学版),2010,18(2):222-226.
[3]史贵涛,陈振楼,李海雯,王利,许世远.城市土壤重金属污染研究现状与趋势[J].环境监测管理与技术,2012,18(6):9-12.
[4]凌辉,谢水波,唐振平,刘岳林,周帅.重金属污染土壤的修复方法及其在几类典型土壤修复中的应用[J].四川环境.2012(01)
土壤重金属污染分析范文5
>> 重金属废水污染及其治理措施 重金属废水污染及其治理技术研究 浅谈重金属废水污染及其处理方法 重金属废水污染防治技术研究及分类 重金属污染治理修复技术 突发性重金属废水污染事故处理菌剂的开发 浅析含重金属离子的废水治理技术的研究进展 土壤重金属污染及其治理方法研究 土壤重金属污染现状及其治理进展 食品中的重金属污染及其检测技术 重金属污染的治理 浅析土壤重金属污染与修复技术 浅谈重金属“镉”的水污染应急处理技术 土壤重金属污染及其防治 植物修复技术治理土壤重金属污染的机制研究进展及其应用前景 重金属治理方案浅析 浅谈电镀重金属废水治理技术的现状及展望 浅析土壤污染中重金属污染修复技术的选取 水体重金属污染危害及治理技术策略探究 关于对土壤重金属污染及治理技术的探讨 常见问题解答 当前所在位置:l###
[6] 陈程,陈明,环境重金属污染的危害与修复.业务探讨:55.
[7] 吴瀛.含重金属离子废水治理技术的研究进展[J].科技资讯,2010,(24):153.
[8] 于晓莉,刘强.水体重金属污染及其对人体健康影响的研究[J].绿色科技,2011,(10):123-126.
[9]李宁杰.白腐真菌对废水中Pb2+的去除及稳定化机理的研究[D].湖南大学,2015.
[10] 刘爱明,杨柳.大气重金属离子的来源分析和毒性效应[J].环境与健康杂志,2011,28(9):839-842.
[11] 杨晔,陈英旭,孙振世等.重金属胁迫下根际效应的研究进展[J].农业环境保护,2001,20(1):55-58.
[12]陶秀成.环境化学[M].北京:高等教育出版社,1999:109―132.
土壤重金属污染分析范文6
关键词:重金属土壤污染治理途径
现阶段我们国家的资源能源短缺,如何高效合理的运用这些资源,是我们面临的重要问题。现代社会工农业发展及其迅速,重金属对土壤的污染越来越严重,如何合理利用有限的土地资源,在原本土地资源匮乏的状态下又增加了一大难题。土壤中重金属含量过高,对动植物的生长会产生极大的影响,而且对人类的身体健康也会产生威胁。如何对重金属污染的土壤防护治理,我们对其进行了研究。
一、重金属引起土壤污染的综合情况
重金属引起的土壤污染说的是在外界重金属的影响下,土壤中大部分原有的成分逐渐消失,而重金属所占的比例不断增加,影响了土壤的正常使用并且给影响了正常的生态平衡。使土壤污染的重金属的种类繁多,对土壤污染比较主要的几个金属是Fe、Mn、Cu、Zn、Cd、Ni等,这类金属的密度都比较大。
重金属对土壤的破坏是从多个方面来衡量的。当然土壤中所含的重金属含量越高那么对土壤的污染就越严重。但是也与土壤中重金属存在形式和重金属在土壤中占有的比例也是分不开的。重金属在土壤中主要的存在形态有三种:水溶态、交换态和残存态。其中水溶态和交换态的生存活性比较强,毒性比较大。而残存态的重金属相对来说活性毒性就小很多了。当重金属在离子交换态的状态下的话,那么它的活动毒性是最强的,易被土壤中的植物吸收。或者与其他物质发生反应产生新的存在状态。
二、重金属对土壤污染的危害分析
(一)植物方面的危害
土壤的重金属污染对植物的危害是非常大的。对其危害主要体现在植物根和叶的变化。被重金属污染的土壤使植物在营养成分的吸收上不能得到保证。植物不能从土壤中吸收营养反而吸收了重金属后,与植物体内的某种物质发生反应产生有害的物质。这样就会导致植物不能正常的生长。也有可能导致植物的一部分发生坏死。如果污染严重植物吸收不到养分,那么就会使植物停止生长直至死亡。
(二)生物方面的危害
土壤对生物方面的影响也很大。它是许多微小生物和动植物生活的家园。土壤中存在着多种微小生物,微生物的多样性使土壤保持一个良好的状态。如果土壤受到重金属污染,土壤中生物所需的影响成分大大减少,在土壤中生存的微生物和小动物们的生命也会受到威胁。这样对土壤的状态也会产生严重的影响。
(三)土壤酶方面的危害
土壤酶是一种生物催化剂,其能够综合反映出土壤的肥力及活性状况。由于土壤的物理、化学性质及生物活性会显著的影响到土壤酶的活性,因此土壤环境一旦遭受污染,就会严重影响到土壤酶的活性。例如重金属元素Hg能够较为敏感的抑制土壤中脲酶,因此一旦土壤中的Hg超标,则土壤中所包含的脲酶也会显著的降低。
(四)人身健康方面的危害
土壤中重金属的超标对生物的影响非常大,对我们人的身体方面的危害那就更不用说了。如果吸收了过多的土壤中的重金属,身体所承担的后果都是难以人们承受的。大量的Cd元素会使人体的器官产生病变,对骨质生长产生极大的影响;吸收过量的Pb元素,会使人体的免疫机制不工作,容易生病:吸收过量的Ni元素可以使人们的鼻子和肺部感到不适,严重的还会导致鼻癌和肺癌。土壤中重金属超标严重的影响着人们的身体健康,对于土壤重金属污染方面我们要高度重视起来。
三、对于土壤重金属污染的防治修复措施分析
(一)物理修复
主要使用的物理修复技术有三种,分别是电动修复、电热修复和土壤淋洗。电动修复对土壤环境要求比较高,就是给土壤通电像电池一样,让土壤中的重金属离子做定向的移动,把含量超出标准的离子进行处理。但是不能大规模的处理。电热修复就是给土壤进行加热,使重金属离子在达到一定温度的情况下从土壤中分离。但是该种修复技术对土壤会产生极大的危害。土壤淋洗修复技术指的是向土壤中加入淋洗液,让重金属在淋洗液的作用下转换成液态的形式,然后对液态的重金属进行回收,对其进行相应的处理。这种方法发现的比较早,技术方面相对于电动修复和电热修复来说比较成熟,运用的比较多。
(二)化学固定修复
化学固定修复的方法就是在被重金属污染严重的土壤中加入一些能与重金属产生反应的一些有机元素,让重金属离子与之产生物理化学反应,改变其原有的活性,使其沉淀、发生氧化等。这样就会降低重金属土壤对动植物和微生物的危害。因为突土壤中超标的重金属元素是不相同的,所以也要根据重金属元素的性质再向土壤中添加物质。虽然这种修复方法在操作上面比较简单,但是对土壤中的重金属元素不能彻底处理。只是改变了其原有的性质,并没有从土壤中清除,所以也有可能再一次的污染土壤。
(三)植物修复
还有一种修复技术是植物修复。在被重金属污染的土壤中种植植物。有一些种类的植物可以把土壤中重金属物质吸收到体内,清除土壤中的重金属元素。这种修复技术运用的比较广泛,因为不用投入太多的成本,只需种植超富集植物就可以了。而且对生态环境还不会造成影响。因为这类植物可以免疫重金属的危害,吸收到体内后可以适应重金属元素的存在。也不会影响该类植物的生长。该类比较常见的植物有香草、芥菜等。而且在不断的研究中也发现了许多植物中都有这个特性,对重金属污染土壤的改善也有了很大的帮助。
四、结语
城市化进程的加快及工业生产等导致土壤中重金属污染现象十分严重,严重制约了土壤的高效利用。由于重金属元素的种类较多,在选用防治措施的时候,一定要因地制宜,结合土壤中重金属污染的具体情况,合理选用治理修复技术,最大程度的降低其危害,同时降低对周边环境的二次污染,确保土壤的肥性,促進农业的快速发展提供良好的土壤基础。
参考文献:
[1]曾跃春,刘永林.探析土壤重金属污染的修复技术与治理途径[J].工程技术:全文版,2016,(12).