流体力学基本理论范例6篇

前言:中文期刊网精心挑选了流体力学基本理论范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

流体力学基本理论

流体力学基本理论范文1

[关键词] 模块化 分层次 力学 课程体系

力学既是一门重要的基础学科,又是一门在绝大多数科学技术和工程领域具有重要作用的技术学科,特别在现代工程技术的发展与进步中起着重要作用。力学课程是工科院校中一类重要的基础课程。我校力学课程包括“理论力学”、“材料力学”、“工程力学”、“结构力学”、“弹性力学”及“工程流体力学”等。为了适应国民经济建设的发展对人才的需要,满足高等教育改革的要求,在“厚基础、宽口径、强能力”的思想指导下,以工程技术为背景,突出工程实践能力和创新精神培养,拓宽知识面,增强适应性。以培养学生的创新精神,培养创造性人才为核心,建立与之相适应的力学课程教学体系。

中国地质大学(北京)关于修订本科培养方案的原则意见中提出,新的培养方案要深化通识基础课和学科基础课的教学改革,实施分级或分层次教学。力学类课程作为学科基础性课程和专业基础课程在培养方案中起着承上启下的作用,但不同专业对力学类课程的要求不同,为此建立模块化结构的多层次力学课程体系,为满足不同专业的需要提供选择,达到提高教学效率的目的。

一、力学类课程单元模块的设置

力学类课程单元模块的设置要围绕为专业服务这个核心,课程体系构建要形成以能力培养为目标的课程功能模块;要以能力为中心构建力学类课程分层次教学体系,加强学生在分析和运用等方面能力培养,提高综合素质。课程单元模块的设置要做到统一性和多样性相结合,形成方向特色课程模块,满足不同专业学生个性发展和适应能力的需要,同时与专业发展、学科建设相互交叉,扩展学生知识面,使学生能形成合理的知识结构,增强学生适应能力和创新能力,提高学生综合素质。

以能力培养为核心,首先要按照“必需够用”的原则来设置课程单元模块,单元模块要突出应用性;其次要将力学知识与专业知识结合起来,增强力学知识的适应性,使知识能转化为能力;最后要加强学生创新能力的培养和拓展,强化能力水平的渗透性,让知识和能力“迁移可用”。根据以上原则,结合我校情况,共设置了22个模块,主要内容如下:

静力学(16学时):最基础的一个模块,要求掌握静力学基本理论、受力分析、力系的合成(简化)、力系的平衡及应用。

运动学(16学时):包括点的运动学和刚体运动学,重点是点的复合运动和刚体的平面运动。

动力学(16学时):重点是刚体和刚体系统的动力问题,包括动力学普遍定理及应用和动静法。

分析力学基础(16学时):属于扩展模块,主要内容为虚位移原理及应用、动力学普遍方程及应用、第二类拉格朗日方程及应用。

振动力学基础(16学时):专题模块,主要内容为单自由度系统的自由振动、衰减振动、无阻尼受迫振动及有阻尼受迫振动。

基本变形(32学时):重点研究杆件在轴向拉伸与压缩、剪切与挤压、圆轴扭转、梁的平面弯曲时的内力、应力、强度、变形、刚度计算等,本模块含实验4学时,包括材料力学性能测试和电阻应变测量技术的应用。

应力状态强度理论及应用(16学时):包括应力状态理论、常用强度理论及组合变形强度计算,此外将压杆稳定和动载荷与交变应力并入这一模块,含实验2学时。

能量法及静不定系统(16学时):属于扩展模块,包括能量法及应用、简单静不定系统。

静定结构(16学时):结构力学基本模块,含体系的几何组成、静定结构内力和位移计算。

超静定结构(1)(16学时):包括力法解超静定结构、位移法解超静定结构。

超静定结构(2)(16学时):力矩分配法、矩阵位移法、影响线及内力包络线。

结构动力学(16学时):结构力学扩展模块,包括结构动力分析、结构稳定性计算、结构的极限载荷3个专题。

弹性力学基本理论(16学时):弹性力学平面问题和空间问题的基本理论。

弹性力学基本解法(16学时):弹性力学平面问题基本解法(含直角坐标和极坐标),柱体弹性扭转、板的弹性弯曲。

弹塑性基本理论(16学时):应力分析理论、应变分析理论、应力与应变关系理论。

弹塑性基本方法(16学时):厚壁圆筒的弹塑性分析、柱体扭转的弹塑性分析、板的弹塑性弯曲、塑性极限分析理论及应用。

线弹性断裂力学(24学时):线弹性断裂力学理论及应用、复合断裂理论及应用。

弹塑性断裂力学(8学时):弹塑性断裂力学理论及应用。

损伤力学(8学时):损伤力学理论及应用。

工程流体力学基础(16学时):流体静力学、流体运动学、流体动力学基础。

工程流体力学应用(16学时):流体力学在工程的应用,含实验4学时。

有限元法基础(16学时):有限元素法的基本理论。

二、根据单元模块构建分层次课程体系

为构建适应不同专业的分层次力学课程体系,首先要与各专业负责人沟通,了解各专业培养目标中对力学课程的要求,在合理设计学生知识、能力、素质结构的基础上,力求科学地处理各单元模块及教学环节的关系,通过整体优化,改善课程结构,增强教学效果。同时要注意理论教学与实践教学的有机结合,密切注意学科前沿的发展和学生创新思维和创新能力的培养。对不同专业学生,要考虑到因材施教的问题。

课程内容要做到精而实。要对原有课程重新进行内容的融合、叠加、拆分和渗透,删除不必要的交叉和脱离实际的内容、增加与需求相适应的内容。将教学内容有机地组合成一种“有效、实用”的新型单元模块,在确保教学目标的前提下,实施课程内容的整合,将知识与技能组成灵活的教学单元,以提高课程设置的实用性,实现最佳教学效果。

在设置单元模块和与专业结合的基础上,根据21个模块可以方便灵活地组成不同层次、适应不同专业的力学课程,如工程力学课程:

工程力学A(48学时)=静力学(16学时)+基本变形(32学时)

工程力学B(64学时)=静力学(16学时)+基本变形(32学时)+应力状态强度理论及应用(16学时)

工程力学C(64学时)=静力学(16学时)+基本变形(32学时)+工程流体力学基础(16学时)

其中,工程力学A适应我校对力学要求不高的理工科专业,如材料科学与工程、地质学、海洋科学等。工程力学B和C适应要求稍高的安全工程、资源勘查与工程、地球物理、地下水科学与工程、石油工程等专业。对于要求更高的勘查技术与工程、土木工程、机械设计制造及其自动化、地质学基地班,可选择理论力学和材料力学,或者固体力学基础。

理论力学A(48学时)=静力学(16学时)运动学(16学时)+动力学(16学时)

理论力学B(64)=静力学(16学时)运动学(16学时)+动力学(16学时)+分析力学基础(16学时)或振动力学基础(16学时)

材料力学A(48)=基本变形(32学时)+应力状态强度理论及应用(16学时)

材料力学B(64)=基本变形(32学时)+应力状态强度理论及应用(16学时)+能量法及静不定系统(16学时)

固体力学基础A(48)=基本变形(32学时)+弹塑性基本理论(16学时)

固体力学基础B(64)=基本变形(32学时)+应力状态强度理论及应用(16学时)+弹塑性基本理论(16学时)

对土木工程、勘查技术与工程、机械设计制造及其自动化、安全工程专业,后续课程可选择结构力学、弹性力学、工程流体力学等课程。

结构力学A(32学时)=静定结构(16学时)+超静定结构(1)(16学时)

结构力学B(48学时)=静定结构(16学时)+超静定结构(1)(16学时)+超静定结构(2)(16学时)

结构力学C(64学时)=静定结构(16学时)+超静定结构(1)(16学时)+超静定结构(2)(16学时)+结构动力学(16学时)

弹性力学(32学时)=弹性力学基本理论(16学时)+弹性力学基本解法(16学时)

弹性力学及有限元(48学时)=弹性力学基本理论(16学时)+弹性力学基本解法(16学时)+有限元法基础(16学时)

工程流体力学(32学时)=工程流体力学基础(16学时)+工程流体力学应用(16学时)

对于要求更高的高年级学生或研究生可选择弹塑性力学、断裂力学等课程。

弹塑性力学(48学时)=弹塑性基本理论(16学时)+弹性力学基本解法(16学时)+弹塑性基本方法(16学时)

弹塑性力学及有限元(64学时)=弹塑性基本理论(16学时)+弹性力学基本解法(16学时)+弹塑性基本方法(16学时)+有限元法基础(16学时)

断裂力学(32学时)=线弹性断裂力学(24学时)+弹塑性断裂力学(8学时)

断裂及损伤力学(32学时)=线弹性断裂力学(24学时)+损伤力学(8学时)

以上列举了部分课程,根据单元模块还可组合成其它课程,供不同专业在设置培养方案时选择。由于可选择范围宽、层次多,该方案受到我校各专业修订培养方案负责人的好评。

三、分层次力学课程体系构建应注意的问题

1.力学课程体系要以“必需、够用、有效、实用”为度

由于我校未设置力学类专业,所以力学类课程要注重为专业基础和专业课服务。力学课程体系构建要紧密结合理工科专业的发展,重点放在如何利用力学知识分析、解决工程问题的能力上。在课程设置中坚持以能力为本,探索培养学生工程意识与相应的实践能力、综合运用能力相结合的分层次力学课程教学体系。达到为专业培养目标服务。

2.制定切实可行的教学大纲是保证教学质量的前提

教学大纲是根据课程在培养方案中的地位、作用以及课程性质、目的和任务制定的课程内容、体系、范围和教学要求的基本纲要。它是实施教育思想和教学计划的基本保证,是进行教学质量评估的重要依据,也是学生学习的指导性文件。结合新课程体系的构建,制定符合各专业要求、切实可行的教学大纲是保证教学质量的前提,也是进行教学研究与改革的基础。

3. 师资队伍建设是课程体系改革得以顺利开展的重要保证

流体力学基本理论范文2

关键词:教学质量;保障体系;工程流体力学

中图分类号:G642.3 文献标志码:B 文章编号:1674-9324(2012)12-0035-03

工程流体力学是热能与动力工程专业的重要专业基础课,也是矿业工程、安全工程、矿物加工、环境工程等许多专业的重要专业基础课。具有基础知识涉及面广、基本概念多、内容抽象等特点,是一门理论性和实践性均较强的课程,不但理论抽象,而且直接面向工程实践。在工程流体力学的教学过程中,学生普遍认为“这门课难学”。其客观原因主要体现在三方面:一方面是工程流体力学涉及的知识比较多,如材料力学、大学物理、高等数学等;另一方面是工程流体力学课内容比较抽象,学生理解起来相当困难;最后还由于工程流体力学工程背景强,学生普遍缺乏实践知识。为提高工程流体力学课程的教学质量,我们从构建教学质量保障体系入手。根据全面质量管理的理论和课程教学质量保障体系的功能及影响因素的分析,高校课程教学质量保障体系应由五个系统构成[1]。教学质量保障系统,就是把对教学产生重要影响的教学管理活动有机地联结起来,形成一个能够保障和提高教学质量的系统化、结构化、持续化的整体,其实质是不断探索如何以更合理的方式管理学校的人才培养活动,以有效地满足社会对高等教育不断增长的各种要求[2]。

根据课程建设情况,制定了图1的课程教学质量保障体系。

一、课程教学质量控制系统

工程流体力学课程教学质量保障体系的核心是其教学质量控制系统,主要包括教师队伍建设、教材建设、教学大纲修订、理论教学、实验教学和考试方式改进等。

青年教师的培养是师资队伍建设的重点。青年教师学历层次高、基础扎实;其不足是讲课内容与生产实际及后续课程结合较少,讲课时还不能收放自如。为此,安排青年教师边上课、边助课。实践证明,助课是一种培养年轻教师上好课的必要环节。教材是教学内容的主要载体,我们根据专业特点编写了一套符合专业培养目标、具有特色的高质量教材和辅助教材。针对能源与动力类专业本科教学要求,并兼顾其他相关专业的教学需要,2002年出版了《工程流体力学》第一版。该教材在江苏省教育厅的资助下,进行整体优化、精简、补充,突出工程背景和工程应用,作为江苏省高校立项精品教材,于2010年出版了第二版。为使学生更好掌握工程流体力学的内容,2007年,出版了配套学习辅导教材《流体力学学习辅导与习题解答》。该教材作为工程流体力学课程的配套学习辅导教材,受到学生的欢迎,取得了良好效果。同时,为满足《工程流体力学》双语课程教学需要,在参考国外原版教材的基础上,结合我校的实际情况,于2010年出版了英文版《工程流体力学》教材,完善了我校《工程流体力学》教材体系。为提高教材质量,特邀美国肯塔基大学Jimmy Smart教授参与了教材的编写工作,并对整本教材进行审阅、修改。在理论教学过程中,充分利用教师因素和学生因素[3]。教师是教学过程的组织者,在教学过程中发挥主导作用。通过实例让学生理论联系实际;通过实例来吸引学生的学习兴趣,加深印象。实验教学是理论联系实际的主要环节,开放的实验模式在对学生的基本实验技能掌握,知识的综合应用,创新意识、创新精神和开拓能力的培养方面起着重要的作用[4]。我们的实验教学以能力培养为重点,包括动手能力、观察能力和分析问题能力。从1999年起,我校将实测实验、演示实验和计算机模拟实验融为一体,极大地改善了实验手段。工程流体力学课程配套了16学时的综合实验课,学生可根据个人情况,选择合适的时间进行实验。为学生创造了一流的、开放的实验室课外学习基地,有利于培养学生的创新意识和动手能力。热能与动力工程专业本科生多次在全国大学生节能减排社会实践与科技竞赛中获奖,与工程流体力学综合性、设计性实验的锻炼是分不开的。考试成绩是衡量教与学效果的一个主要指标,确保考试的严肃性和公平性,并使考试成绩能够如实反映教与学的效果。从学校的情况来看,还是以笔试为主,主要是考核学生对基础理论的掌握情况,是检验教学质量的主要手段,也是验证教学效果的主要途径[5]。考试的目的是为了了解学生对本课程知识体系的掌握情况,不能单靠死记硬背来检验学生对知识的掌握程度,考试内容要注重学生对基本理论的理解和运用上。使学生把学习的重点放在对基本理论和基本概念的应用和理解上,避免死记硬背式的学习方法。而计算题则突出对解题步骤的要求,按步骤给分,没有步骤就不给分。目前,我们正在积极开展工程流体力学习题库和试题库建设。在同时开课班级较多的情况下,采取统考的形式,使考、教分离,使考试能够更好地检查教与学的质量和效果。

二、课程教学质量信息收集与处理系统

课程教学质量信息收集与处理系统包括领导听课、教学检查、督导检查、学生信息员、学生评测等,目的是从不同侧面收集课程教学的相关情况,对课程教学质量进行监控。

领导听课主要是学院和系领导,通过听课了解工程流体力学课程的教学情况,解决教学问题。教学检查包括开学初、期中、期末教学检查,掌握教学信息,稳定教学秩序。教学督导员的工作以听课为主,督导员可随时对课堂教学、实验教学等进行听课检查、指导。为提高教学质量、加强教学管理、促进教学相长,我校2009组建了校、院两级学生教学信息员小组。学生教学信息员覆盖了全校所有的专业和班级,能全面地反映同学们在学习工程流体力学课程过程中发现的问题及建议,及时反映教学管理、教师教学中存在的问题。为更好地搞好工程流体力学课程建设,我们通过大范围调查问卷和小范围收集学生个人对工程流体力学课程的意见等方式,及时掌握学生对工程流体力学课程的意见和建议。调查问卷内容包括课程课时设置是否合适,教师教学方式安排,学生是否主动发言,学生对授课老师的要求,课程所使用的教材,课程作业量是否合适等。我们建立的这个教学质量信息收集系统,目的是多渠道、科学地收集有关工程流体力学课程教学质量的信息。本系统还有一个功能就是对这些信息进行科学的、合理的、公正的处理。信息收集和处理是为了诊断和评价,为了推进教学质量的逐步提高,为了帮助教师改进教学,促进学生、教师、管理人员三者之间围绕学校的办学目的、课程教学目标建立更为密切的关系,协调工作。

三、课程教学质量信息反馈系统

课程教学质量信息反馈系统包括教务处反馈、督导组反馈、教学秘书反馈、任课教师反馈和学生信息员反馈。我校常年承担工程流体力学课程教学的主讲教师6人,经常承担工程流体力学课程教学任务的教师6人。根据教务系统要求,每次课程结束后,每个学生均必须对本课程教学过程以及任课教师作出评价,并由教务处反馈给学院和教师。我校本科教学督导组分为学校和学院两级。督导组分别为学校、学院的教学改革工作提供咨询。通过听课、座谈、访问、征询、专题评估等各种方式对教学过程进行监督,并及时提供信息和反馈意见。在制定本科人才培养方案,教材建设,课程体系、教学内容改革,教学实践改革,教学管理以及教师教书育人,学风建设等方面提出意见和建议。教学秘书的工作涉及本院的全部教学工作,是连接各方面教学活动的桥梁和纽带,具有承上启下、协调左右、沟通信息和改善关系的作用。由于教学秘书非常熟悉教学管理、教学环节,又同时接触教师和学生。因此,通过教学秘书反馈的对于课程的意见和建议,对提高工程流体力学课程教学质量具有非常重要的作用。工程流体力学任课教师根据其教学过程的切身体会,对教与学两方面情况均比较熟悉。任课教师的反馈对于课程教学质量的提高具有直接的促进作用。教师还可通过教学例会及时反馈教学中的信息,解决教学中存在的问题。学生教学信息员小组是完善通畅的教学信息网络和健全教学检查、反馈、监督机制的重要手段,是学生和学校教学管理部门之间有效的信息沟通渠道。学院通过信息员反馈、学生测评、毕业生信息反馈等及时了解并解决教学问题。课程教学质量信息反馈系统通过以上多种渠道收集反馈意见,经过诊断和评价后,将结果反馈给教师,目的是帮助他们改进教学方法、提高教学质量。在我们的工程流体力学精品课程网站上,还有师生互动平台,学生可以将他们的意见和建议直接反馈给教师,教师也可以将其建议直接返回给学生。

工程流体力学是一门理论性和实践性均较强的课程,为切实提高其教学质量,构建了教学质量保障体系。该教学质量保障体系以课程教学质量控制系统为核心,通过教学过程信息收集、处理,并将意见和建议进行反馈,达到改进教学方法、提高教学质量的目的。

参考文献:

[1]张扬,尹红,李孟辉.高校课程教学质量保障体系的构建探析[J].高等农业教育,2010,1(1):46-48.

[2]张永玲,李风岐,王安东.以教学评估为基础建立质量保障体系[J].山东工业大学学报社会科学版,1999,4(51):78-80.

[3]邓艳梅.大学英语教学质量保障体系的分析研究[J].吉林省教育学院学报,2010,26(242):57-58.

[4]赵扬,王凤华.开放实验教学模式下的教学质量保障体系[J].实验室研究与探索,2010,3(29):100-102.

流体力学基本理论范文3

油气储运工程专业是研究油气和城市燃气储存、运输及管理的一门交叉性高新技术学科。

主干学科为工程流体力学、油气储运工程学。

本专业培养具备工程流体力学、物理化学、油气储运工程等方面知识,能在国家与省、市的发展计划部门、交通运输规划与设计部门、油气储运管理部门等从事油气储运工程的规划、勘查设计、施工项目管理和研究、开发等工作的高级工程技术人才。 业务培养要求:本专业学生主要学习油气储运工艺、设备设施方面的基本理论和基本知识,受到识图制图、上机操作、工程测量、工程概预算的基本训练,具有进行油气储运系统的规划、设计与运行管理的基本能力,创造与创新的新世纪人才。

主要课程为工程力学、工程流体力学、工程热力学、传热学、物理化学、泵与压缩机、电工与电子技术、油气管道设计与管理、油气集输、油库设计与管理、油气储运工程最优化、技术经济学等。

(来源:文章屋网 )

流体力学基本理论范文4

【关键词】精品课程建设 工程流体力学 教学改革

为了进一步深化教学改革,加强课程建设,浙江工商大学建立了校级预选精品课程及责任教师制,为校级精品课程、省级精品课程以及国家级精品课程奠定良好的基础。而环境科学与工程学院的《工程流体力学》于2006年即被选为校级预选精品课程,目前正以校精品课程的标准进行建设。

一、课程建设的指导思想

精品课程建设是本科教学的一项重要的基础性工作,代表着学校的办学特色和学科专业优势,是学校重点专业建设、培养高层次专门人才、开展科学研究、解决经济建设和社会发展过程中重大问题的重要基础。各学院必须充分认识到校级精品课程建设的重要性和迫切性,切实采取措施。加大课程体系优化和课程整合的力度,加快教学内容、方法和手段的改革,抓紧课程教学队伍建设,造就一支结构合理、教学水平高、教学效果好的课程教学队伍,努力使这些课程进入相关专业领域的全省乃至全国先进行列。

二、精品课程建设的主要任务

1.围绕经济建设和社会发展中的问题,根据社会经济发展及产业结构调整的需要和学校课程发展规划,坚持优化学科专业结构,提高专业人才的培养质量。

2.利用学科专业具备的科研、教学等基础条件,以专业人才培养模式改革为切入点,以专业课程建设为核心,以加强课程教学基本条件建设为保障,提高学校课程的整体教学质量。

三、精品课程建设的实施方法

1.强化教师的学科意识和团队精神

在工程流体力学的教学改革中,采用多名教师协作教学,形成教学梯队,加强团队协作。形成新的教学模式。针对课程的结构,学院成立了课程教学课题组,聘用不同专业背景的教师担任这门课程的讲授任务,从而形成有专业特色的课程教学团队。在团队建设中。形成了老中青三个层次的教学骨干,共有教师7人,其中3位教师主讲,2位小班讨论,2位辅导,具有博士学位教师5人,占教师总数的71%;副高职以上3人,占教师总数的43%;40岁以下教师6人,占到教师总数的85.7%;形成了较为合理的学历结构、年龄结构和学缘结构。课程负责人孙培德教授长期从事工程流体力学教学,具备良好的师德和较高的学术造诣,人才培养成绩显著,教学经验丰富,教学效果良好,同时言传身教培养年轻教师开展工程流体力学课程的教学工作,使得课程教学队伍教学水平大幅度提高,教师之间团结协作精神好。团队成员承担各种教学研究课题并发表多篇教改论文,解决学生的创新能力与工程能力培养问题。对环境工程专业与工程流体力学课程的教学改革起到积极引导和促进作用。

授课教师分工协作,分别负责基础理论知识、能量水力计算以及工程实际应用三部分的内容,突出理论知识的系统性和完整性,同时又增加了部分讨论内容提高学生的学习兴趣,通过教学与科研结合,将任课教师的科研经历及最新学术成果溶入教学中,对教学过程起到深化作用。在教学过程中。根据每位教师的知识体系结构和专业背景的不同,配合不同的课程教学内容进行讲课,发挥团队合作精神,避免授课内容重复以及内容讲授不完全等问题,将课程内容完整化,统一化。

2.改革工程流体力学教学内容

我校是一所以商科为特色,经、管、理、工各学科共同发展的教学研究型大学,以应用型专门技术人才为培养目标,生源来自全国各地,就业面宽。《工程流体力学》作为环境工程专业的一门专业基础课,以研究流体(液体和气体)平衡和机械运动规律为核心,通过各教学环节的学习,使学生掌握流体运动的基本概念和计算方法,并能应用流体力学的基本理论,加上实验数据以及数值模拟或经验公式来解决工程中的实际问题;培养学生分析问题的能力和创新能力,为学习后续课程,从事工程技术工作和进行科学研究打下必要的基础。

从2001年环境工程00级学生首开“流体力学“课程,采用北京大学出版社出版的《流体力学教程》,随后,为了更适应工商管理类大学工科学生的授课需求。从2002年环境工程01级学生开始,课程名称改为“工程流体力学”,教材采用西南交通大学出版社出版的《水力学教程》,随后几年至今。课程教材从第一版更新为第三版,增加了边界层理论简介、有压管路中的水击现象等内容。具体的知识模块课时分配计划为:

第一章 绪论

4学时

第二章 流体静力学

6学时

第三章 流体动力学基础

6学时

第四章 水头损失

6学时

第五章 有压管道的恒定流动

8学时

水力计算可视化教学与讨论

2学时

3.完善教学条件和网络教学

(1)可视化教学

组织力量编制《工程流体力学》ppt课件、课堂全程实施多媒体课件教学,利用水力计算可视化教学软件以动画形式演示本课程部分内容。例如,第三章水动力学基础部分流线和迹线、元流和总流、恒定流与非恒定流、均匀流与非均匀流、渐变流与急变流等概念非常抽象、易混淆,在教学过程中,我们通过可视化仿真软件,以动画形式将各种的流动形态形象展现在学生面前,原本抽象的概念变得清晰易懂,深受学生欢迎。

(2)扩充性资料

为激发学生的学习兴趣,促进学生自主学习,向学生推荐了一些与本课程相关的参考书目、国内外期刊等扩充性资料,以便学生获取与本课程相关的知识信息。包括一些参考书目:①清华大学水力学教研室编,水力学,北京:人民教育出版社,1980 ;②年,水力学,北京:中国建筑工业出版社。1998。修订版,2002;③陈文义,张伟主编,流体力学,天津:天津大学出版社,2004;④禹华谦主编,水力学学习指导,成都:西南交通大学出版社,1999。以及一些与环境工程专业相关的外文专业期刊:EnvironmentalScience & Technology, Water Research, International Journal for Numerical antiAnalytical Methods in Geomechanics,Intemational Journal of Environmental Pol-lution, Chemosphere,Journal of Hazardous Materials. Applied Catalysis B: Envi-ronmeatal, Chemical Engineering Science. Chemical Engineering Journal.省略/,观看该课程完整的教学文件和多媒体课件,进行预习和复习,并可通过在线答疑解决问题,较好地满足了课程所需。

4.提高课程教学方法及手段

本课程的重点和难点主要在于流体连续介质的理论模型、公式推导应用以及实际环境工程实践中的应用,如实际液体恒定流能量方程式的应用、管路沿程阻力系数变化规律的确定、管网计算等。因此,要解决学生难掌握理解的办法主要是在实际教学中,采用多种教学方式和手段,突出重点,化解难点,使学生全面理解与掌握流体力学的理论与方法。

(1)以课堂讲授为主,突出理论知识的系统性和完整性,同时根据本课程特色及在教学过程中发现的问题,本课程组老师正组织力量自编教材,将水力计算可视化教学及国内外最新的研究动态整合到新教材体系中,满足环境类专业流体力学课程的教学需要。

f2)对课程的核心概念体系进行提炼,理清概念间的逻辑关联,由简单到复杂,由具体到抽象。让学生建立起清晰的理论概念,并通过大量的例题来加深学生对基本原理的理解和计算公式的运用。并在课程网站上进行试题自测,考试题目从试题库中随机抽取,并与人为修正相结合,实现教考分离。

(3)开展实验教学。目前,我们通过购买流体力学仿真软件,首先在网上实现各种流体力学实验的模拟操作,包括伯努力方程实验、雷诺实验、流体流动阻力测定实验、毕托管测速实验、局部阻力实验、孔口与管嘴实验、离心泵性能曲线测定等等,使学生了解这些实验的基本流程、操作步骤、数据处理,为今后实际实验操作提供良好的基础。

(4)教学结合科研。将任课教师的科研经历及最新学术成果溶入教学中,对教学过程到了很好的深化作用。该教学方法与手段使学生在毕业设计时。能应用本课知识进行设计,培养了学生的创新精神和实践能力。

(5)开展“大班教学,小班讨论”教学模式。不定期举办课外讲座(如流体力学与日常生活、流体力学在环境工程中的应用等),进行小班讨论,也可进行网络教学及对话,使教学手段等丰富,教学过程更深化。

四、精品课程建设的近期规划

1.建设新教材体系,编写与本课程配套的精品教学及实验教材,自主开发仿真教学软件,建设工程流体力学教学实验室。

2.进一步完善丰富网络教学。提供该课程国内外相关知识内容、专业资料,通过现有网站,促进国内外同类课程间交流,扩大我校《工程流体力学》课程的社会影响力。

3.力争成为校级精品课程。达到省级精品课程的水平,并完善成为环境工程专业领域的全省乃至全国精品课程。

流体力学基本理论范文5

[论文摘要]论文结合教学实践,提出了以传统教学模式为主、以现代化教学手段为辅的教学方法。结合实例讲清楚基本概念,够用为度重点突出理论公式的应用是常规教学应遵循的模式,并与多媒体辅助教学手段有机地结合起来,力求课堂教学的形式和方法多样化,既能保证课堂信息量大,又能避免单纯多媒体授课的不足,达到提高教学效果、提升教学质量的目的。

一、前言

《流体力学》是研究流体所遵循的宏观运动规律以及流体和周围物体之间的相互作用规律的科学,它建立在现场观测、实验室模拟、经典理论分析、数值计算基础上,具有严谨的理论性、原理的抽象性、概念多、方程推导繁杂等特点,对学生具备高等数学知识及综合分析与处理问题能力的要求较高,因而大部分学生觉得该课程抽象、枯燥、难懂,普遍缺乏对流体力学理论的感性认识,都有某种程度的畏惧感,导致教师难教、学生难懂成为较普遍的现象。

我校机械设计制造及自动化、过程装备与控制工程、土木工程、安全工程、采矿工程、环境工程、矿物加工工程、建筑环境与设备工程、工程力学等专业的学生都须具备不同程度的流体力学知识和技能,它是各专业后续课程如:液压传动、水力学、流体机械、空气调节、传热学等课程的基础。

为此,作者通过教学实践,就多样化的教学方法、更新的教学内容、引入高科技的教学手段等方面进行探讨,以期提高《流体力学》的教学质量。

二、以传统课堂教学为主

《流体力学》的课程体系分为基本理论、基本应用和专门课题三大知识模块,它要求学生具备扎实的微积分知识、力学知识等。学生在接触流体力学课程伊始,对抽象的理论理解速度慢,对枯燥的公式及其推导过程容易厌烦,因而《流体力学》的教学应该以传统教学方法为主。因为在传统的课堂教学中,学生获取知识主要是听教师讲课,通过板书教师细致耐心地阐述概念、推导公式、突出重点、强调难点,以学生容易接受的讲课速度,留给学生更多的思考和消化的时间,再配合上教师的表情、手势、师生之间的互动,会达到很好的教学效果。

(一)结合实例,讲清楚基本概念

流体力学的概念多、现象多,且很多概念和现象比较抽象,难以理解,诸如:拉格朗日法、欧拉法、流线、迹线、边界层等。因而利用身边的实例对这些抽象的概念进行讲解,例如在讲授描述流体运动的两种方法——拉格朗日法和欧拉法时,学生们很难理解。为了将概念通俗化,上课时笔者以城市公共交通部门统计客运量所采用两种方法为例:①在每一辆公交车上安排记录员,记录每辆车在不同时刻(站点)上下车人数,此法类似于拉格朗日法的质点跟踪,它与迹线的定义对应;②在每一公交站点安排记录员,记录不同时刻经过该站点车辆的上下车人数,此法等同于欧拉法,与流线的定义对应。

在讲解伯努利方程原理的时候,例举1912年“豪克”号铁甲巡洋舰与同行疾驶“奥林匹克”号远洋轮相撞的船吸现象,让学生清楚掌握流体的压强与它的流速有关,流速越大,压强越小;反之亦然。

概念是公式推演的基石,没有准确的概念,后续的公式推演几乎难以为继,清晰的概念会使公式的讲解和推演变得更加简易。利用浅显易懂的生活实例来阐述抽象的概念及其之间的内部联系和区别,教师易教、学生易懂,将会达到事半功倍的效果。

(二)以用为度,重点突出理论公式的应用

伯努利方程是能量守恒定律在流体力学中的具体应用,是流体静力学和流体动力学的基础,始终贯穿着整篇教材。在讲解该理论公式的时候,先从容易理解的静力学平衡微分方程推导开始,强调公式所依据的原理是牛顿第二定律,假设条件是平衡、理想、静止的流体,重点引导学生如何理解公式各项的几何意义和物理含义,掌握公式的实际应用。这样学习到后面的动力学伯努利方程时,先易后难、循序渐进,学生就觉得不会那么深奥。在讲解相对平衡的流体压强分布规律时,就要求学生必须掌握推导过程,因为它在解决一般平衡流体内部的压强分布规律及其对固体壁面的作用力问题时非常重要。而对于连续性方程和动量方程的学习,只强调记住结论和理解公式中各个物理量的含义。这样做,有效地避免了大量公式繁琐的推导给学生带来的畏难情绪,也能够做到以用为度、重点突出。

不可否认,依靠粉笔与黑板的教学条件、以教师为主体的传统教学模式,教学形式单一,教学手段不先进,教学效率不高,适应不了课程教学学时少、受教育学生数增加的情况。

三、以现代化的教学手段为辅

当前以计算机多媒体技术为主的现代化教学手段已经普遍地应用于高校的教学中。制作教学用的视频、多媒体软件、电子课件等素材,作为课堂教学有力的辅助教学手段,可以在有限的时间内,利用图文并茂的信息传播方式,将课程内容及有关背景资料以影像、图片等形式,直观地传播给学习者,将流体力学中抽象的概念和理论具体化、形象化,激发学生学习兴趣,使得学生能够从感性认识开始,逐步上升到理性认识,进而能够达到运用知识解决问题的能力。

结合流体力学精品课程的建设,教学团队制作了流体力学多媒体电子教案,并在教学过程中不断完善,逐步取得了良好的教学效果。在设计与制作多媒体课件时,遵循课堂教学的基本规律,既发挥传统板书教学中容易带动学生思路、逐条在黑板上书写的特点,在课件制作中根据讲解的进度逐条展现公式条目等内容,同时又将难以理解、难以用语言描述的拉格朗日法和欧拉法、流线、边界层和紊流等抽象概念和流动现象,以多媒体的方式在课堂上直观地呈现出来,帮助学生建立清晰的印象。教学团队收集、制作了大量的多媒体素材,例如在讲解雷诺判据的时候,制作了雷诺实验的FLIASH素材,以动画的形式向学生展示了流体流动的两种不同状态,以及流态判据—雷诺数与流动速度、管径、流体种类有关系。运用多媒体辅助手段表达后,能够帮助学生很好地理解课程的重、难点,提高教学效率。利用多媒体技术,还可以制作需占用大量时间板书和不易通过板书表述的内容,提高了教学效率。

多媒体教学的内容一定要做到提纲挈领、重点突出,有所为有所不为。多媒体技术没有好坏之分,只有合理使用与不当使用之别。但是实践应用中,发现有的教师完全抛弃以往的黑板式教学模式,离开多媒体手段就上不了课;有的教师将教材内容全部照搬到了课件中,自己就成了的幻灯片放映员,“照机宣科”;有的教师制作的多媒体课件过分追求课件的美观性,界面过于华丽,淡化了教学重点;也有的教师忽略学生对课件内容理解消化的时间,致使学生的思维跟不上教师讲解的速度,降低了教学效果。上述现象将会造成一种新形式的“满堂灌”,只不过是由“人灌”变成“机灌”而已。

四、总结

流体力学作为一门专业基础课程,其重要性不言而喻。传统教学模式能够将前后知识贯通,突出重点,化烦就简、引入实例形象阐述概念原理,促进知识的系统化进程;多媒体教学能将难于理解的知识通过图文、音像生动地显现出来,帮助学生理解性记忆。借助于先进的教学手段,将多媒体辅助教学手段与传统教学方法有机地结合起来,力求课堂教学的形式和方法多样化,既能保证课堂信息量大,又能避免单纯多媒体授课的不足,才能提高教学效果、提升教学质量。以上是笔者在流体力学教学实践中的体会,愿与同行共同切磋。

基金项目:2009年安徽省教育厅《流体力学》精品课程

[参考文献]

[1]许贤良,王传礼,张军等.流体力学[M].北京:国防工业出版社,2006.

流体力学基本理论范文6

针对工程流体力学课程当前存在的问题,结合CDIO工程教育模式,从理论和实践之间的关系、学风建设、教师身份转换以及考核机制方面进行改革,重点加强对学生主动学习能力,工程应用能力和团队合作能力的培养。实践表明,实施CDIO工程教学改革达到了预期的人才培养目标,也对其他课程的教学改革具有参考意义。

关键词:

CDIO工程教育模式;工程流体力学;教学改革;三级项目

0引言

随着中国工业化进程的不断推进和“再工业化”战略的提出[1],我国需要一大批有着扎实的专业知识、具备良好工程能力的工程师人才。应用型本科院校承担着培养创新能力和工程能力人才的重任。如何使毕业生具备良好的自主学习能力、团队合作意识、系统分析和动手能力,已成为我国高等工程教育改革的重点和难点。CDIO是一种强调创新与工程实践的新型高等教育模式,其核心是将教学与工程实践紧密结合,以满足企业对工程人才知识结构和工程能力的需求,解决传统工科高等院校在人才培养中出现的重理论教学轻实践问题。按CDIO模式培养的学生,学习迁移能力、理论联系实践能力强,具备自主学习能力和“终生学习”的习惯,深受社会与企业欢迎[2,3]。工程流体力学是力学的一个重要分支,侧重在生产生活上与气体和液体相关的工程实际应用,它不追求数学上的严密性,而是趋向于解决工程中出现的实际问题[4]。要求学生对试验研究、理论分析和数值计算有深入的理解,才能对实际工程问题进行定性、定量分析。将CDIO教学模式引入工程流体力学的课程教学改革中,更有利于提高学生的工程实践能力和水平。

1工程流体力学课程存在的问题

1.1理论教学困难

随着教学计划改革的进行,工程流体力学课程的教学计划课时由传统的50课时缩减为目前的32课时。其中,教学学时为26课时,实验学时为6课时,学时少,内容多,学生理解困难。

1.2学生学习主动性差

传统课程理论性较强,需要熟练掌握的公式复杂,内容较为抽象,学生存在理解困难、理论与实践脱节等问题。同时实验环节学生的参与度很低,看多于做,更谈不上思考和理解。

1.3考核方式单一

传统的笔试考核方式造成了学生学习依赖心里严重,学习迁移能力差等问题。只在乎基本理论的死记硬背和卷面考试,面对实际问题无从下手,难以判断学生对课程的掌握情况。

2CDIO工程教育理念

CDIO工程教育模式是由麻省理工学院和瑞典皇家工学院等四所大学组成的跨国研究团队于2001年创立的新型的工程教育模型。CDIO即构思(Conceive)、设计(Design)、实施(Implement)和运行(Operate),包括了三个核心文件:1个愿景、1个大纲和12条标准[5]。根据工程师应具备的能力以逐级细化的方式表达出来,为工程教育改革提供了系统全面的指导,代表了当代工程教育的发展趋势。CDIO工程教育模式从2005年引进我国以来,取得了令人瞩目的成就。燕山大学作为教育部机械类、电气类的CDIO工程教育模式研究与实践课题组试点的第一批高校之一,积极推进CDIO工程教育改革进程。自2008年春季学期开始实施基于CDIO模式的教学改革以来,已经培养了七届毕业生,积累了丰富的教学改革经验,并不断进行创新,为CDIO工程教育模式在中国的发展做出了一定的贡献。

3规划调整基于现代工程环境下的“工程流体力学”课程体系

传统的工程流体力学教学体系已经不能满足当今社会对工程人才素质的需求。基于CDIO思想构建的新的课程体系,加强了对学生基础知识积累和运用的要求,强化工程实践环节,重视对学生动手能力的培养。同时,重点介绍工程流体力学的最新科学技术领域和工程领域的发展,以构建新型多层次课程教学体系。在实际改革进程中,要强调基础素质的培养,采用课堂理论教学、课下多层次实验和三级项目相结合的方法,注重与学生之间的交流与反馈,将基于CDIO的课程教育改革平稳、有序地进行[6]。

4基于CDIO的课程具体教改内容

4.1理论教学环节改革

针对工程流体力学学科基础性强,理论难度大,应用范围广的特点,基于CDIO思想的课程改革采用将授课内容精简,关键知识点精讲,综合性知识点布置主题性任务的方法,让学生主动学习,拓展知识面,培养了学生进行独立思考的能力。充分利用互联网资源以及教师的实际工程经验,对知识点进行剖析,增强学生对知识点的感性认识。同时制作大量的流体流动动画,展示最新工程流体力学学科应用资料,极大地丰富了教学资源,便于理解重要知识点,激发学生的学习兴趣和主动性。

4.2实践教学环节改革

华裔诺贝尔物理学奖获得者李政道先生,在关于杰出科学人才培养的问题上特别强调实验精神和实验能力。基于CDIO思想课程改革的实践环节,以三级项目为主,多层次实验教学为辅,全面锻炼学生的知识检索能力,团队协作交流能力,多学科、大系统的掌控能力,并能够对学生知识的掌握情况进行深入的了解[7]。工程流体力学三级项目包括:系统全面的任务要求,灵活多变的题目选择,细致的团队任务分工,明确的节点汇报形式,以及一套合理的考核机制。以2014年秋季学期工程流体力学三级项目为例,要求每个班级的学生自行组队,3-5人一组,每组选出一个组长,分别从六个题目中任选一个为题,对该题目进行分析、求解,明确组内成员分工,按时进行节点汇报,最后提交三级项目的课程报告和项目感想,抽签进行PPT汇报。通过对学生的反馈信息和实际表现进行分析可以看出,三级项目的方法可以将CDIO教育改革理念与课程知识完美融合。不仅让学生对所学知识有了更加深刻的理解,锻炼工程实践能力,而且让教师的参与者和引领者作用得到充分发挥。

4.3学风建设环节改革

工程流体力学课程的理论难度较大,采用传统的课堂式教学和单一卷面考核的方式,使学生只关注考试得高分,做实验不提前准备、不关注原理,更让一部分学生产生了课程学了也毫无用处的想法。基于CDIO工程教育的流体力学课程改革,严格按照CDIO的12条标准与能力大纲的要求,设计出一套合理的、循序渐进的三级项目考核机制。在项目的进展过程中,学生需要付出很多的课余时间,对项目的相关内容进行广泛的搜索和学习,通过软件仿真、理论计算以及与工程应用对比等方式,使学生对所学知识有了更深刻的认识。同时,学生充分体会到了团队合作过程中,成员间交流、沟通、共享的重要性,体会到了集体智慧带来的冲击,以及团队合力完成项目的成就感。在听取其他小组汇报的过程中,对整个课程也有了更加深刻的理解。

4.4教师身份转换环节改革

根据CDIO工程教育改革方案的要求,教师不仅仅是知识的传播者,更是知识交流的参与者和引导者[8]。教师在自身知识和工程经验积累的基础上,严格按照CDIO工程教育改革能力大纲要求,系统、全面地整理出独具特色的课堂教学教案。表2给出了工程流体力学课程某一个单位学时的部分课堂教学教案,只有按照详尽的能力大纲的要求,才能充分保障教学质量。在三级项目考核机制的进程中,每个小组都要与教师在课下进行深入的沟通和交流。这种轻松、愉悦的沟通方式,不仅拉近了教师与学生之间的距离,而且使教师能够更加充分地发挥参与者和引领者的作用,积极地引领学生走向自主学习和探索的阶段。

4.5考核机制环节改革

与传统单一卷面考核的方式相比,基于CDIO工程教育改革的考察机制更加注重对学生学习态度和学习能力的考察。目前采用的考核方法是:课堂出勤0.1,平时作业0.1,实验成绩0.1,三级项目0.1,考试卷面成绩0.6。其中,三级项目由二部分组成:①组内互评等分,总分5分,最优分和最差分相差不得小于1分,组内人均得分为4分;②导师评分,总分5分,最优分和最差分相差不得小于1分。实践证明,CDIO工程教育改革的考核机制更加公平、合理,克服了学生对卷面考试的依赖,提高了学习的积极性,同时保证了课程、实验和三级项目的正常有序进行。近三年的课程合格率由改革前的低于75%,稳步增长并保持在90%以上,获得了学生们的广泛认可。

5结束语

CDIO工程教育体系是基于欧美发达国家的教育基础而提出发展的,并不完全符合我国的教育情况和社会背景。如何将CDIO工程教育改革消化吸收,与中国的社会现状和教育现状相结合,走出一条具有中国特色的教学改革之路,是今后CDIO在中国发展的重点和难点。通过对几年来基于CDIO工程教育理念的工程流体力学课程改革成果进行分析,可以得出很多宝贵的经验。应用型本科院校必须克服困难,强调方法,将改革进行下去,只有这样才能培养出符合当代社会发展需要的工程型人才。同时,教育改革是一个漫长的过程,必须本着“决策—实施—检查—反馈—修正”的闭环管理思路,才能将改革合理、平稳地进行下去。

作者:袁晓明 王超 杜冰 单位:燕山大学河北省重型机械流体动力传输与控制重点实验室 燕山大学先进锻压成形技术与科学教育部重点实验室

参考文献:

[1]黄群慧.中国的工业化进程:阶段、特征与前景[J].经济与管理,2013,07:5-11.

[2]胡文龙.基于CDIO的工科探究式教学改革研究[J].高等工程教育研究,2014,01:163-168.

[3]顾学雍.联结理论与实践的CDIO—清华大学创新性工程教育的探索[J].高等工程教育研究,2009,01:11-23.

[4]高殿荣,张伟.工程流体力学[M].北京:化学工业出版社,2014,1.