重金属污染现状范例6篇

前言:中文期刊网精心挑选了重金属污染现状范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

重金属污染现状

重金属污染现状范文1

关键词:重金属;污染;土壤;植物修复

中图分类号:X24文献标识码:A文章编号:1674-9944(2015)12-0226-03

2土壤重金属污染现状

随着社会经济的发展,越来越多的工矿企业被建立。资源的紧张也导致越来越多的污水被灌溉到农田中。污灌区的污水是经过简单处理的日常用水以及工业废水,其中大部分是来自于附近厂区的工业用水。随着我国城镇建设的不断增强,各个大中小城市对污水的处理也得到了进一步的改善。但是其中潜在的污染风险也一直是人们研究的对象,尤其是近年来粮食安全问题层出不穷,长期累计的土壤问题开始显露,并呈现不断加强的趋势。

近年来,在全国土壤调查的基础上我国研究学者对部分地区农用地土壤展开了调查研究。其中天津、沈阳、保定、兰州等工业城市的污灌区表层土壤呈现不同程度的重金属污染[6~10]。张丽红等[11]以国家土壤环境质量标准为标准,采样调查分析了100个河北省清苑县及清苑县附近的农田土壤样品,结果显示:土壤中Cd污染最为严重,超标率65%,达中度污染水平;Pb、Zn、Cu超标率分别为37%、44%和33%,达到轻度污染水平,足以引起各位学者关注。茹淑华等[12]对河北石家庄典型污灌区进行取样调查,结果显示:污灌区Cu 、Zn 、Pb 、Cd 和Cr存在不同程度的富集现象,而清灌区仍处于清洁水平。虽然污灌区土壤重金属含量总体上均未超过我国农产品产地土壤环境质量标准,但土壤样品仍有个别样点的Cd出现超标现象。因此,对污灌区土壤重金属修复迫在眉睫。

3土壤中重金属污染的植物修复措施

针对环境污染,越来越多的污染修复方式被人类利用。其中植物修复是以清除污染,修复或治理为目的利用绿色植物从环境中转移容纳或转化污染物的环境污染治理技术[13~15]。其根据修复植物的特点和功能用于重金属污染土壤等接种的植物修复技术主要有4种类型:植物挥发、提取、过滤以及稳定或固化[16]。

3.1普通植物对土壤重金属的修复

近年来,我国对植物修复重金属污染土壤作出了很多研究。陈同斌等[17]试验小组分别发现在我国湖南、广西南方等地存在大面积的蜈蚣草等蕨类植物,并指出其具有超富集砷能力,且其植物体内氮磷养分的含量远远低于其叶片含砷量。刘金林等[18]对一年蓬进行实验研究发现,该原产自北美的一年蓬对土壤中重金属的富集能力较强。同时lin等[19]以汞污染的稻田为实验材料,研究了改作苎麻对土壤中重金属的净化作用,研究显示改作苎麻能净化汞污染的稻田,其中年净化率达41%,并连种稻田土壤的自净时间缩短了8.5倍。黄会一等[20]也发现杨树对汞和镉有很好的耐性和净化功能。

3.2花卉植物对土壤重金属的修复

随着经济和社会的不断发展,越来越多的研究学者也将目光转向花卉植物。花卉植物具有一定的观赏性,而且种类繁多。同时花卉植物对重金属有一定能力的积累转移作用。周霞等[21]对鸭脚木、小叶黄杨等8中花卉植物进行研究发现:花卉植物对重金属的转移能力大小顺序为Zn>Cd>Cu>CrPb 。对重金属的积累能力大小顺序为Cr>Zn>Cu>Cd>Pb。其中,亮叶忍冬、小叶黄杨、金叶假连翘对土壤中Cd的修复效果较为理想;鸭脚木、亮叶忍冬、小叶黄杨对土壤中Zn的修复效果较好;鸭脚木、金光变叶木、细叶鸡爪槭、胡椒木、等花卉植物对土壤中Cr的富集能力均较高,且根部积累系数都大于1,这说明对土壤中Cr的修复效果较好。

3.3草本能源植物对土壤重金属的修复

草本能源植物作为生物生长和人类发展的生物能源基础在社会发展及人类生存过程中占有重要地位[22,23]。同时在倡导低碳经济的当今社会,草本能源植物作为草本植物的一种,其同样具有非常高的应用生态价值及经济价值[24~27]。最重要的是,部分草本能源植物具有较强的生态适应能力使其在污染土地的治理中具有一定的应用潜力。侯新村等[28]对柳枝稷、荻、芦竹、杂交狼尾草、四种草本能源植物的规模化种植并对其积累重金属作用进行研究,研究结果表明:草本能源植物对砷汞铜铬铅镉等重金属的绝对富集量较为可观。对于砷铜铅镉均以杂交狼尾草的绝对富集量最高,柳枝稷、荻、芦竹次之;杂交狼尾草对污染土壤中污染物汞的绝对富集能力最高;芦竹对铬的绝对富集能力最高,最高达1 333.37 g/hm2,这说明草本能源植物可以作为重金属污染植物修复的一类修复植物,其具有一定的修复潜力。

4结语

土壤的重金属污染危及粮食生产、食物质量、生态安全、人体健康以及区域可持续发展。以预防为主[29],预防、控制和修复相结合的土壤保护政策迫在眉睫。我国虽然在植物修复上起步较晚,但是仍然发展迅速。植物修复是利用具有修复性能的植物的生命活动对重金属污染土壤进行积累修复的一项新技术。与此同时,我国很多的研究学者也就此问题展开过多种研究且证明植物修复是一种极具有潜力的土壤重金属修复方式。因此接下来仍需要在找到具有较强积累能力的植物之后对其生长发育规律及发育调控措施进行研究从而不断提高植物修复的效率以加快对土壤重金属污染的修复进程。

参考文献:

[1]汪小勇.被农药污染的土壤植物修复研究进展[J].中国农学通报,2005,21(7):382~382.

[2]徐磊,周静,崔红标,等.重金属污染土壤的修复与修复效果评价研究进展[J].中国农学通报,2014,30(20):161~167.

[3]杨军,陈同斌.北京市再生水灌溉对土壤、农作物的重金属污染风险[J].自然资源学报,2011,26(2):209~217.

[4]胡超,付庆灵.土壤重金属污染对蔬菜发育及品质的影响之研究进展[J].中国农学通报,2007,23(6):519~523.

[5]杨旭,向昌国,刘志霄.重金属污染对土壤动物的影响[J].中国农学通报,2008,24(12):

[6]龚钟明,曹军,朱学梅,等.天津市郊污灌区农田土壤中的有机氯农药残留 [J].农业环境保护,2002,21 (5):459~461.

[7]张乃明,刑承玉,贾润山,等.太原污灌区土壤重金属污染研究[J].农业环境保护,1996,15(1):21~23.

[8]张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J].土壤通报,2001,32(4):182~186.

[9]谢建治,刘树庆,刘玉柱,等.保定市郊土壤重金属污染对蔬菜营养品质的影响[J].农业环境保护,2002,21(4):325~327.

[10]王国利,刘长仲,卢子扬,等.白银市污水灌溉对农田土壤质量的影响[J].甘肃农业大学学报, 2006,41(1):79~82.

[11]张丽红.河北清苑县及周边农田土壤及农作物中重金属污染状况与分析评价[J].农业环境科学学报,2010,29(11):2139~2146.

[12]茹淑华,张国印.河北省典型污灌区土壤和植物重金属累积特征研究[J].河北农业科学,2008,12(10):78~81.

[13]邢艳帅,乔冬梅,朱桂芬,等.土壤重金属污染及植物修复技术研究进展[J].中国农学通报,2014,30(17):208~214.

[14]唐世荣.污染环境植物修复的原理与方法[M].北京:科学出版社,2006.

[15]毕君,郭伟珍,高红真.9种植物对镉的忍耐和富集能力研究[J].中国农学通报,2013,29(34):12~16.

[16]白向玉,韩宝平.花卉植物修复重金属污染技术的国内外研究进展[J].徐州工程学院学报,2010,25(3):56~60.

[17]陈同斌,韦朝阳.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3).

[18]Liu Jin lin.The research of absorption and accumulation of higher aquatic vascular plants to heavy metals[J].Chinese Environmental Science.1986,52:24~28.

[19]Lin Zhi qing , Huang Hui yi. Study on the tolerance of woody\|plants to mercury [J].Acta Ecology Sinical.1989,9(4):316~319.

[20]Huang Hui yi, Jiang De ming, Zhang Chun xing, et al. Study on control of cadmium polluted soil by forestry eco\|engineering [J].Chian encironmental science.1989,9(6):419~426.

[21]周霞,林庆昶.花卉植物对重金属污染土壤修复能力的研究[J].安徽农业科学,2012,40(14) :8133~8135.

[22]石元春.生物质能源主导论[N].科学时报.2010-12-09(3).

[23]谢光辉,郭兴强,王鑫,等.能源作物资源现状与发展前景[J].资源科学.2007,29(5):74~80.

[24]贺庭,刘婕,朱宇恩,等.重金属污染土壤木本-草本联合修复研究进展[J].中国农学通报,2012(11):237~242.

[25]云锦凤.低碳经济与草业发展的新机遇[J].中国草地学报.2010,32(3):1~3.

[26]章力建,刘帅.保护草原增强草原碳汇功能[J].中国草地学报.2013,32(2):1~5.

[27]侯新村,范希峰,武菊英,等.石油污染土地能源草生态价值与经济效益评价[C]/倪维斗,徐进良./2010中国可再生能源科技发展大会论文集.武汉:美国科研出版社,2010.

重金属污染现状范文2

【关键词】食品;重金属;污染

【中图分类号】R15 【文献标识码】A 【文章编号】1004-7484(2012)13-0630-02

食品中的重金属污染物主要来源于某些地区特殊自然环境中的高本底含量,由于人为的环境污染而早于有毒有害金属对食品污染,食品生产过程中含有重金属材料污染食品。摄入有害重金属元素污染食品对人体产生多方面的危害[1]。因此,为掌握绵阳市食品重金属污染程度,我们在2011年对我市城区和部分区县市场中销售食品进行监测,以期了解各种食品重金属污染水平,有针对性地为政府监管提供依据,为预防食品污染,控制食源性疾病和食品安全提供依据。

1 材料与方法

1.1 样品来源

按照国家食品安全风险监测计划的要求在绵阳市涪城区、游仙区、梓潼县、安县、三台县和北川县的大型批发市场、农贸市场和超市随机抽取粮食类、蔬菜类、水果类、蛋类、肉类、奶及奶制品类、鱼类和藻类水产品等种类样品,每份样品约500克。采集样品根据绵阳市居民日常消费状况,以本地产品为主,采用具有代表性的样品。

1.2 监测指标

重金属污染物包括铅、镉、汞。

1.3检测方法

取食品可食部分,按照以下方法进行检测。铅:按照GB/T 5009.12-2003《食品中铅的测定》石墨炉原子吸收光谱法。镉:按照GB/T 5009.15-2003《食品中镉的测定》石墨炉原子吸收光谱法。汞:按照GB/T 5009.17-2003《食品中总汞及有机汞的测定》原子荧光光谱分析法。

1.4 判定依据

测定结果根据GB2762-2005《食品中污染物限量》所规定的各项指标判定。检出值高于标准规定值的结果判定为“超标”。

2 结果

2.1 食品中铅污染情况

2011年绵阳市共抽取10类食品共230份,铅含量范围在0.02~2.67 mg/kg 之间,均值为0.41mg/kg,超标98份,超标率为42.61%。超标率中以猪肾超标率最高, 达72.22%,其次是皮蛋(66.67%)、藻类水产品(61.11%)、蔬菜(60.71%)和水果(41.79%)。其他类样品也存在不用程度的超标,见表1。

2.2 食品中污染情况

含量范围在

2.3 食品中汞污染情况

汞含量范围在

3 讨论

从2011的结果分析,本市各类食品中重金属铅的污染尤为突出,总超标率达42.61%,远高于覃志英等[2]( 铅不合格率为10. 7%) 的报道。其次是重金属镉的污染,超标率为19.31%,与文献[3] 报道基本一致。汞污染的风险较铅、稍小,为15.22%。说明本市食品中重金属污染物主要是铅、镉污染,尤其是少数产品( 主要是猪肾、皮蛋、藻类水产品) 重金属含量超标率很高,应引起检测和监督部门高度重视。这些产品是市民每天都在食用的,危害因素也相应提高。因此,建立绿色农产品、畜牧生产基地是保证食品安全中最重要的环节,应同时加强食品卫生安全监督力度,让广大市民吃上绿色、无害、健康的食品。

重金属污染现状范文3

[关键词]历史遗留 铅锌废渣 重金属污染 对策

[中图分类号] P618.42 [文献码] B [文章编号] 1000-405X(2014)-3-220-1

0前言

威宁县的铅锌冶炼业历史悠久,据《大方府志》记载:在唐朝五代就有铅锌冶炼业,在近现代,清末民国时期和1958年的时期都有铅锌冶炼业。威宁县铅锌冶炼业发展较快、规模较大,污染最为严重的是上世纪末20年。威宁铅锌冶炼业以土法炼锌为主,主要采用土制马弗炉、马槽炉、横罐、小竖罐、六角炉等简易土高炉进行焙烧、简易冷凝设施进行收尘等落后方式炼锌或氧化锌制品。生产工艺主要是用煤与锌矿按比例装罐后经燃煤加热,在煤还原作用下产出粗锌,资源、能源消耗消耗量大,锌的回收率低,浪费现象严重,产生的燃烧烟气和还原烟气直接排入大气,废渣随意倾倒,对生态和环境造成了严重的破坏和影响。因此,为改善生态环境质量,减轻废渣对环境的影响,为人民群众创造一个良好的生产、生活环境,对该区域冶炼废渣及时进行污染治理迫在眉睫。

1铅锌废渣重金属的污染现状及危害分析

1.1废渣分布状况

经过对全县炼锌区废渣堆放场点的初步了解,在近几十年的土法炼锌生产过程中未同步采取相应的环保措施,废渣乱堆乱放随意倾倒。据原毕节地区环境监测中心站调查,威宁县炼锌废渣总量为432万吨,主要分布在炉山镇、东风镇、草海镇、二塘镇、盐仓镇、金钟镇等15个乡镇,废渣总占地面积约4500亩,占地性质为耕地26.0%,荒坡、沟谷、洼地50.2%,河道23.8%。其具体分布情况如下:

(1)沿公路两侧分布

炼锌业大多沿交通发达的乡镇分布,主要有威赫线的盐仓镇盐仓村,威水线金钟段草海镇白马村、鸭子塘村、金钟镇冒水井村,水煤线猴场镇穿洞村、倮未村、发纠村等。

(2)沿荒坡、沟谷、洼地分布

二塘镇的果花村(大红山)、铁营村(湖南坡)、中山村、金钟镇的格兜井,东风镇红花岭村、格书村。

(3)沿河道分布

主要是沿乌江水系三岔河上游支流大河分布。在炉山镇的16个炼锌村几乎在炉山河两侧的沟谷,东风镇的拱桥村、黄泥村、竹林村、文明村在二塘河的支流拱桥小河上的支流拖倮河上。另外,羊街河两岸也有铅锌废渣的分布点。

1.2废渣重金属污染的危害

1.2.1对地表水、地下水水质的影响

炼锌废渣堆受地表径流及雨水的冲刷等作用,使炼锌废渣或其中的重金属、悬浮物等进入地表水,也有相当数量的废渣是直接倒入沟谷、河床污染地表水。大量的炼锌废渣堆积在河道,淤积、堵塞河道或造成河道改道,抬升了河床。这些废渣及其中的重金属、悬浮物等污染物进入地表水后,造成的污染相当严重,凡是在炼锌集中区的地表水,其水质基本都劣于《地表水环境质量标准》(GB3838-2002)Ⅴ类,污染主要是以铅、锌、镉为特征污染物,铅的污染尤为突出。炼锌废渣堆受地表径流及雨水的冲刷,从地表、溶洞渗透,将渣中的有毒有害物质转移到地下水中,从地下水的水质监测状况来看,基本都劣于《地下水环境质量标准》(GB/T14848-93)Ⅲ类,特征污染物仍然是重金属铅、镉、锌。

1.2.2对土壤的影响

铅锌废渣堆放区土壤污染是由炼锌废渣经雨水和地表径流的冲刷、淋溶,废渣中的污染物渗入土壤,造成的土壤污染。土壤重金属污染可影响农作物产量和质量的下降,并可通过食物链危害人类的健康,也可以导致大气和水环境质量的进一步恶化。

从以上几方面的环境影响分析可以看出,铅锌废渣对环境的污染是严重的,受污染的空气、水和土壤直接危害到生活在渣场周围农民的身体健康和植物的生长。

2铅锌废渣重金属污染的防治对策

铅锌废渣重金属污染较难治理,这与它的特性是分不开的,同时也是它越来越受关注的原因,因此在治理重金属污染时必须充分考虑到它的特性。铅锌渣中的重金属(以铅、锌为主)通过雨水淋溶、空气氧化以及微生物作用后进入环境,对周围土壤、水体和生态环境构成威胁。由于重金属污染物属于持久性污染物,具有长期性、隐匿性、不可逆性以及不能完全被分解或消逝的特点,无法从环境中彻底清除,只能改变其存在的位置或存在的形态。

针对威宁县铅锌废渣的堆存特点和废渣重金属污染的特征,我们主要是考虑对废渣中的重金属污染物采取稳定固化的措施,实现铅锌渣的物理稳定、化学稳定和生态安全。铅锌渣(或铅锌尾矿)的堆积性质与沙砾十分相似,具有比较好的渗水性能。铅锌废渣中的重金属主要包括铅、锌,此外还含有少量的汞和砷等。目前,国内外常用的重金属稳定化药剂主要包括无机药剂和有机药剂。无机药剂类型主要包括硫化物、磷酸盐、硫酸盐、碳酸盐等等与重金属反应生成沉淀物质的化学物质,这些物质单独使用均会出现各种问题,如硫化物的毒性和臭味、硫酸盐沉淀的可溶性、碳酸盐对pH值的要求以及磷酸盐对汞稳定化的无效等等。有机药剂主要包括长链烷基胺和长链烷基硫,不溶于水,无法实现药剂与铅锌渣的充分混合,而且价格昂贵,是无机药剂价格的10倍以上。所以,我们主要将多种可溶性无机药剂按照优化比例组合而成,从而解决了各种药剂单独使用时可能产生的问题。

3结束语

威宁县历史炼锌区的土地污染严重,生态环境遭到严重的破坏,所以,清除当地的土地重金属污染也是一项十分迫切而重要的任务。威宁县炼锌废渣历史遗留重金属污染防治工程已列为贵州省炼锌区生态恢复及环境治理的示范项目,是贵州省“十二五”环境规划中污染治理的重点。项目是对炼锌废弃地的重金属污染物进行控制和植被恢复,是对被破坏的生态系统的恢复与重建,可以弥补、充实和丰富当地原有的自然界,从而可以促进当地社会、经济和环境的协调发展。但由于威宁县目前经济总量偏小,财政收入有限,建设资金筹措已成为制约该项目建设的一个主要因素。目前,威宁县人民政府正在积极向国家和省市在该项目建设资金上争取更大的支持。

参考文献

重金属污染现状范文4

关键词:土壤 重金属 污染状况

中图分类号:X53 文献标识码:A 文章编号:1007-3973(2013)010-142-02

郫县位于成都近郊,面积437.5km2,共有农村人口44.2017万人,气候温和,雨水充沛,河网密布,水质优良,土壤肥沃,农业历史悠久,是整个成都平原的主要蔬菜生产基地。随着现代工业和城市的发展,废水、废气、废渣和城镇生活垃圾的排放增加,都容易引起土壤中的重金属含量增加。土壤中的重金属污染因为难于治理、具累积性且危害周期长,受到人们的普遍关注,不但影响农产品的清洁生产,而且通过食物对人类健康造成极大的危害。因此了解和研究郫县土壤重金属污染现况,对于政府制定针对性措施,保护土壤环境质量,生态环境建设以及绿色农业,保障人体健康具有非常重要的意义。

1 对象与方法

1.1 概况和设计

本次研究主要选择以农业生产为主,水稻、小麦、蔬菜和园林种植为主要生产,全县共选取了5个镇,唐元镇、新民场镇、三道堰镇、古城镇和友爱镇,每个镇又随机选择了4个村,每个村随机采取一件土壤样品,样品基本覆盖了郫县农用土地利用类型。

1.2 样品采集与检测分析

1.2.1 样品采集

每个监测点采集菜地或农田土壤样品1份,采集0-20cm深表层土壤,在1m2范围内按照5点取样法采集土壤混合为一个样品,采样总量为1000g左右。

1.2.2 检测方法

检测项目包括铅、镉、汞、铬、砷和pH值,分析方法是ICP-MS方法(电感耦合等离子体质谱法)。

1.2.3 土壤重金属污染评价方法

评价标准采用《土壤环境质量标准》(GB 15618-1995),评价的方法为超过《土壤环境质量标准》规定限值则表示已被污染,未超过则表示还未被污染。

2 结果

郫县属于平原,选择的20个村海拔均在553-598m,土壤均为黑褐色壤土,土壤湿度为潮,土壤中含有植物根系为少量。pH值测定在3.62-8.03之间,其中酸性土壤样品有11件,中性土壤样品有6件,碱性土壤样品有3件(如图1)。

郫县土地主要用于农田、蔬菜地、果园等,故土壤重金属污染评价以国家土壤环境质量二级标准作为评价参照,其中镉有45%的样点(及9件样品)出现污染,最大值是0.53mg/kg(如表1)。

在pH值测定酸性土壤中污染6件,中性土壤中污染3件,说明pH值的大小显著影响土壤中重金属的存在形态和土壤对重金属的吸附量,土壤pH值越低,H+越多,重金属被吸附的越多,其活动性越强(如图2)。其它样点重金属未出现污染。

3 结论

通过以上调查,郫县土壤重金属污染以镉为主,而土壤重金属污染的原因主要有以下几点:

3.1 燃煤的使用

燃煤的大量使用是整个成都平原土壤重金属Hg污染的重要因素之一。已有研究表明,燃煤已成为大气汞的最主要来源,而且大气汞浓度与土壤汞含量呈显著的正相关。整个成都以前能源以燃煤为主,在2000年时燃煤占总能源32.8%,郫县为成都的近郊县,整个大气的污染比较明显。

3.2 工业“三废”排放及大气和酸雨沉降

随着城市经济的飞速发展,工业企业的不断引进,工业“三废”排放的增加,随着大气和酸雨的沉降,一起进入农田土壤,既造成了土壤的严重酸化,也是造成土壤重金属的污染。

3.3 交通运输

随着城市的发展,人们的生活水平的不断提高,汽车已作为人们出行的主要交通工具,然而汽车的增加随之带来的汽车尾气排放也急剧增加,有专家研究认为土壤中的重金属污染一部分来源于汽车尾气排放的Pb、未燃尽的四己基铅残渣及汽车轮胎磨损产生的粉尘进入土壤,在公路沿线更为明显。

3.4 农药和化肥的施用

在农业生产中,农药、化肥的施用,是加剧土壤重金属污染的主要途径之一。现代农业生产存在大规模、集团化生产,经营商或农户为了加快成熟期,提高生产,增加经济收入而出现滥用和大量使用农药、化肥等制剂。农药和化肥成分中含有镉、砷、铅、铬等重金属元素,长期大量施用化肥、农药可导致土壤重金属的积累和污染。

4 加强土壤重金属污染防治的一些建议

土壤重金属污染具有隐蔽性、长期性和不可逆性等特点,人们对于土壤重金属污染对农产品和人体健康造成的潜在危害意识还不强烈。今后应加强宣传教育,提高群众的环保意识,使人们充分意识到滥用和过量使用农药、化肥等造成污染的严重性。加强工业“三废”的排放管理,严格按排放标准执行。相关部门要加大土壤重金属污染的监测工作,形成良好的监测预警系统,为政府制定针对性措施提供可靠依据。

参考文献:

[1] 陈红亮,谭红,谢锋,等.遵义东南部地区农业土壤重金属分布特征及风险评价[J].核农学报,2008,22(1):105-110.

[2] 王定勇,石孝洪,杨学春.大气汞在土壤中转化及其与土壤汞富集的相关性[J].重庆环境科学,1998,20(5):22-25.

重金属污染现状范文5

关键词:铜陵市 重金属污染 研究进展

中图分类号:X5 文献标识码:A 文章编号:1672-3791(2013)07(c)-0137-03

随着我国工业化的不断加速,开发利用的重金属种类、数量和方式越来越多,涉及重金属的行业越来越多,再加上一些污染企业的违法开采、超标排污等问题突出,使重金属污染呈蔓延趋势,污染事件出现高发态势,表现出长期积累和近期集中爆发、历史遗留问题和新出现问题相交织的特点[1]。2011年2月,国务院批复了《重金属污染综合防治“十二五”规划》。体现了我国对重金属污染防治的高度重视。

铜陵市是一个有着三千多年开采历史的极具特色的有色多金属矿区,是我国重要的有色金属工业基地,有着悠久的采冶铜历史[2]。目前已形成以采、选、炼、加工为一体的“铜”产业链,对推动铜陵地区社会经济发展发挥了巨大作用.但也带来了一系列的重金属环境污染和生态破坏问题,对公众身体健康构成了潜在或现实的危害。铜陵县、铜官山区是国家60个重金属砷控制区之一,46家企业被列为环保部重点监控企业,重金属污染防治任务十分艰巨[3]。

1 铜陵重金属污染研究分布

目前有关铜陵重金属污染的研究,主要集中在矿区土壤、尾矿库、水及水体沉积物污染、大气沉降物及城区表土与灰尘和潜在生态风险的评估。

1.1 矿区土壤

土壤中的重金属,在自然情况下,主要来源于成土母岩和残落的生物物质。但是近代以来,工农业的快速发展,人类活动加剧了土壤重金属的污染,污染程度越来越重,范围越来越广。胡圆圆等[4]对铜陵铜官山铜矿区土壤重金属含量进行了研究。研究结果表明,铜官山铜矿区土壤Cu、Zn、As、Hg平均含量高于铜陵市土壤背景值,土壤已受Cu、Zn、As重污染,受Hg轻污染。

杨西飞[5]运用Matlab软件模糊推理系统(FIS)对铜陵矿区农田表层土壤重金属污染进行了评价,发现该矿区农田表层土壤普遍受到了重金属不同程度的污染,其中Cd污染最严重,其次是Cu,其它各元素依次为Pb>As>Zn>Hg。土壤中Hg、Cd、Cu和Pb元素在表层明显富集,各元素总量在不同深度均明显高于土壤自然背景值,Hg、Cd、Cu、Pb和Zn在垂向上呈递减趋势,且在横向上主要以洋河、顺安河和新桥河为中心向四周递减。不同形态重金属在总量中的百分含量随深度变化明显不同。

王嘉[6]对铜陵的两个矿区(狮子山区朝山金矿主井和铜陵县顺安镇新桥矿业公司主井)土壤重金属污染问题进行了较详细的研究,运用内梅罗指数法和地质累积指数法对研究区进行了现状评价,研究表明,As和Cd为严重超标污染物;As的致癌风险和非致癌风险都大,Cr的致癌风险最大;Cd、Hg、As对生态危害的潜在风险很大;所研究的两矿区均存在很高的致癌风险和生态风险,朝山金矿区相对更高些。

白晓宇等[7]运用地统计学分析手段对铜陵矿区土壤中若干重金属元素进行空间变异分析及空间插值和污染分析,结果表明,As、Cd、Pb、Zn元素的变异函数表现为各向异性,其方向性可能主要受矿床分布控制;Hg元素因受小尺度因子影响较大而呈现块金效应较大。As元素污染的主要是由于铜矿、铅锌矿、褐铁矿矿床及其开发;Cd元素的污染与铅锌矿床及其开发,以及农业污灌有关;Pb、Zn元素的污染与铅锌矿床及其开发密切相关。

1.2 尾矿库

铜陵市是安徽省境内重要的铜生产基地。在铜矿生产的同时,产出了大量尾矿堆存于附近的尾砂库中。尾矿库多建于山间谷地、河流上游地区,其下游是经济、农业发达地区。近几年来,随着经济发展和城市的扩容,部分郊区的尾矿库已经进入市区,尾矿库的环境效应及其安全性令人关注。徐晓春等[8]对安徽铜陵林冲尾矿库复垦土壤采样检测的结果表明复垦土壤中Cu的污染极其严重,As、Zn、Pb的污染较轻。徐晓春[9]还对铜陵凤凰山矿林冲尾矿库中重金属元素的空间分布特征及相关土壤、水系沉积物和植物中重金属元素含量变化进行了研究,发现长期堆存的尾矿会发生元素的次生淋滤与富集。

惠勇[10]等对铜陵市凤凰山尾矿库三个不同凤丹种植地进行了研究,结果表明,尾矿土壤中的Cu、Zn、Cd含量均较高,其中Cu、Cd的含量分别是国家土壤环境质量二级标准的1.04~1.30倍和6.58~9.34倍。矿区近年来种植的作物对重金属的吸收富集作用不明显。

王少华[11]等采集了铜陵市杨山冲尾矿库、尾矿库周边及较远距离土壤、水、植物样品,测定了其中的重金属含量,发现所采集的土壤、水和植物中都存在不同程度的As,Hg,Cu,Zn和Pb等元素的富集现象,且不同元素之间的富集程度也有所差异;重金属元素含量随着远离尾矿库,有逐渐递减的趋势。周元祥[12]等对杨山冲尾矿库尾砂重金属元素的迁移规律进行了研究,发现在自然风化条件下,Cu、As、Hg、Cd和Pb的淋滤迁移速度相对较快,Zn略慢;Zn、Pb、Hg和Cd在50~60 cm深处会发生二次富集;风化后尾砂中Cu、Pb、As和Hg以残渣态为主要赋存形式,其次为铁锰氧化态,其中Zn和Cd以铁锰氧化态含量在表层最高。

1.3 水及水体沉积物

水体及沉积物因其独特的环境特点,往往会成为重金属元素的“源”和“汇”,学者们也因此对其进行了众多研究。张敏[13]等通过测定长江铜陵段枯、丰水期江水中Cu、Pb、Zn和Cd不同形态的含量,分析了四种金属在江水中的存在形态分布,不同水期含量变化,水中悬浮物对金属吸附能力大小,以及近20年来含量的变化情况。发现长江铜陵段江水中各重金属总量丰水期时大于枯水期,重金属各形态含量之间均有差异。与近20年江水中的重金属背景值比较,长江铜陵段重金属含量有普遍升高的趋势。

徐晓春[14]等对相思河的重金属污染情况进行了调查和研究,采用潜在危害指数法对沉积物中重金属进行了评价。研究表明,相思河中下游受到的重金属污染明显比上游严重,Cu和Cd的富集系数和生态危害高。

李如忠[15]等对惠溪河滨岸带土壤重金属形态分布及风险评估进行了研究,研究表明,惠溪河滨岸带土壤中Cd和As达到极高风险等级,Cu为中等风险等级;根据综合污染及潜在生态风险贡献率水平,初步判定As和Cd为惠溪河滨岸土壤重金属污染治理和修复的优先控制对象。

王岚[16]等对长江水系表层沉积物重金属污染特征及生态风险性评价的研究中表明,安徽顺安河位点为极强生态危害范畴。

叶宏萌[17]对铜陵矿区的新桥至顺安河沉积物中五种重金属的全量和形态进行了研究,并结合环境条件分析了它们的横向和纵向迁移变化特征,研究表明该区域沉积物重金属中Cu、Zn、Pb、Cd的均值皆远超长江下游沉积物背景值,其中以Cu和Cd最显著。对重金属横向迁移分析发现,矿山重金属会随着沉积物的距离增加而显著降低,新桥河沉积物的迁移变化显著高于顺安河沉积物。在迁移过程中,Cu、Zn、Cr残渣态逐步增加,毒性减弱,Pb、Cd的活性态比例增大。重金属的纵向迁移分析结果表明,离矿山的位置远近对沉积柱金属的总量和形态起决定作用,矿区下游河流沉积物既受尾矿的影响,也受河流流域物质本身的影响。

1.4 大气沉降物及城区表土与灰尘

随着城市化进程的加快,而带来的交通污染以及其他方面的污染使得大气环境质量越来越差,大气环境污染问题越来越引起人们的注意。李如忠[18]利用美国国家环保局(US EPA)推荐的健康风险评价模型对铜陵市区表土与灰尘重金属污染健康风险进行了研究。研究表明,铜陵城区土壤和地表灰尘已遭受较为严重的重金属污染;不同功能用地的致癌风险均显著超过US EPA推荐的可接受风险阈值范围和国际辐射防护委员会(ICRP)推荐的最大可接受风险值;铜陵市表土与地表灰尘已对公众身体健康构成危害;其中主导致癌与非致癌风险效应的主要污染因子是As,主要暴露途径是手-口摄入途径。

吴开明[19]用藓袋法对铜陵市大气重金属污染进行了研究,发现铜陵市Cu污染最严重,有色金属冶炼工业是铜陵市最主要的污染源,交通运输对大气重金属污染也日趋严重。

殷汉琴[20]对铜陵市大气降尘中铜元素的污染特征进行了研究,采用富集因子法定性地判断各采样点铜元素的来源,研究表明,铜陵市大气降尘中铜元素污染严重并且形成了以铜开采和冶炼企业为中心的污染区域。研究发现铜矿石的开采和冶炼对大气降尘中的铜元素污染贡献较大, 是主要的污染源。

2 重金属污染修复技术与控制措施研究

重金属在土壤、水体、大气、生物体中广泛分布。由于大气和生物体中重金属的特殊性及其主要直接或间接来源于土壤和水体,所以对于重金属的污染修复技术主要集中在对土壤和水体中的重金属污染进行修复。

重金属在土壤中不易随水淋溶,不能被微生物分解,具有明显的生物富集作用且土壤污染具有较长潜伏期;由于土壤、污染物及地域的复杂性,土壤一旦受到污染,其治理不仅见效慢、费用高,而且受到多种因素的制约。目前,治理土壤重金属污染的途径主要有两种:(1)改变重金属在土壤中的存在形态、使其固定,降低其在环境中的迁移性和生物可利用性;(2)从土壤中去除重金属[21]。围绕这两种途径展开的土壤重金属治理措施有物理及物化措施、化学措施、农业生态措施、生物修复等[21~23]。

王华等[24]对我国底泥重金属污染防治研究做了相应综述,提出目前我国底泥重金属污染治理的常用方法有工程治理方法、生物治理方法和化学治理方法。

重金属污染物进入水生生态系统后对水生植物和动物均产生影响,并通过食物链发生富集,引起人体病变,危害人类。目前水体重金属污染治理修复方法主要有物理方法、化学方法、物理化学方法、集成技术、生物方法等[25]。

为控制铜陵市重金属污染、提高环境质量,铜陵市环保局组织编制了《铜陵市重金属污染综合防治“十二五”规划》,该规划以国家《重金属污染综合防治“十二五”规划》为指导,落实源头预防、过程阻断、清洁生产、末端治理的全过程综合防治理念,提出了一系列重金属污染防治措施,以求能遏制重金属污染趋势,改善区域环境质量,保护人民身体健康和环境权益。

3 结语

对铜陵市重金属污染研究情况进行了介绍,对重金属污染防治措施与修复技术经行了总结。根据目前研究结果表明,铜陵市重金属污染已比较严重。Cd、As、Cu和Pb为主要的污染元素,Hg虽然含量较低,但因为其毒性较大,亦当引起足够的重视。矿石的开采和冶炼以及尾矿的堆积成为铜陵市重金属污染的主要来源,所以首先应控制源头,治理矿石的开采和冶炼,清理尾矿的堆积。由于植被等生物体对重金属具有良好的吸附阻拦作用,可在采矿厂四周设置重金属吸收强防护带,阻止污染向更远扩散。对于已经受到污染的土壤,可以采用生物方法、物理或化学方法去除。

健全重金属污染防治法律体系、做好污染综合防治规划和强化行政管理是防治重金属污染的重要管理手段。《铜陵市重金属污染综合防治“十二五”规划》的提出对铜陵市重金属污染防治具有重要的指导和实践意义。健全重金属污染防治法律体系,实施清洁生产,监督实施环境影响评价验收工作,开发研究重金属污染防治技术等是目前重金属污染防治的重要任务。

参考文献

[1]罗吉.我国重金属污染防治立法现状及改进对策[J].环境保护,2012(18):24-26.

[2]张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D].合肥工业大学博士学位论文,2005.

[3]铜陵市重金属污染综合防治“十二五”规划[R].

[4]胡园园,陈发扬,杨霞,等.铜陵铜官山矿区土壤重金属污染状况研究[J].资源开发与市场,2009,25(4):342-344.

[5]杨西飞.铜陵矿区农田土壤及水稻的重金属污染现状研究[D].合肥:合肥工业大学,2007.

[6]王嘉.铜陵矿区土壤重金属污染现状评价与风险评估[D].合肥工业大学,2010.

[7]白晓宇,袁峰,李湘凌,等.铜陵矿区土壤重金属元素的空间变异及污染分析[J].地学前缘,2008,15(5):256-263.

[8]陈莉薇,徐晓春,黄界颖,等.铜陵林冲尾矿库复垦土壤重金属含量及污染评价[J].合肥工业大学学报:自然科学版,2011,34(10):1540-1544.

[9]徐晓春,王军,李援,等.安徽铜陵林冲尾矿库重金属元素分布与迁移及其环境影响[J].岩石矿物学杂志,2003,22(4):433-436.

[10]惠勇,张凤美,王友保,等.铜陵市凤凰山尾矿区重金属污染研究[J].安徽农业科学,2011,39(23):1426-1426.

[11]王少华,杨劫,刘苏明.铜陵狮子山杨山冲尾矿库重金属元素释放的环境效应[J].高校地质学报,2011,17(1):93-100.

[12]周元祥,岳书仓,周涛发.安徽铜陵杨山冲尾矿库尾砂重金属元素的迁移规律[J].环境科学研究,2010(4):497-503.

[13]张敏,王德淑.长江铜陵段表层水中重金属含量及存在形态分布研究[J].安全与环境学报,2003,3(6):61-64.

[14]徐晓春,牛杏杏,王美琴,等.铜陵相思河重金属污染的潜在生态危害评价[J].合肥工业大学学报:自然科学版,2011(1):128-131.

[15]李如忠,徐晶晶,姜艳敏,等.铜陵市惠溪河滨岸带土壤重金属形态分布及风险评估[J].环境科学研究,2013,26(1):88-96.

[16]王岚,王亚平,许春雪,等.长江水系表层沉积物重金属污染特征及生态风险性评价[J].环境科学,2012,33(8):2599-2606.

[17]叶宏萌,袁旭音,赵静.铜陵矿区河流沉积物重金属的迁移及环境效应[J].中国环境科学,2012,32(10):1853-1859.

[18]李如忠,潘成荣,陈婧,等.铜陵市区表土与灰尘重金属污染健康风险评估[J].中国环境科学,2012,32(12):2261-2270.

[19]吴明开,曹同,张小平.藓袋法监测铜陵市大气重金属污染的研究[J].激光生物学报,2008,17(4):554-558.

[20]殷汉琴,周涛发,张鑫,等.铜陵市大气降尘中铜元素的污染特征[J].吉林大学学报:地球科学版,2009,39(4):734-738.

[21]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997(3):72-76.

[22]佟洪金,涂仕华,赵秀兰.土壤重金属污染的治理措施[J].西南农业学报,2003 (S1):37-41.

[23]顾红,李建东,赵煊赫.土壤重金属污染防治技术研究进展[J].中国农学通报, 2005,21(8):397-408.

重金属污染现状范文6

[关键词] 农田土壤 重金属污染 现状 方法

[中图分类号] S158.4 [文献标识码] A [文章编号] 1003-1650 (2013)09-0037-02

土壤是由一层层厚度各异的矿物质成分所组成的。土壤和母质层的区别表现在形态、物理特性、化学特性以及矿物学特性等方面。由于地壳、大气和生物圈的相互作用,土层由矿物和有机物混合组成。疏松的土壤微粒组合起来,形成充满间隙的土壤形式。相对密度在4.5g/cm3以上的金属称作重金属。土壤中的重金属累积后对人体的危害相当大,能引起人的头痛、头晕、失眠、健忘、神经错乱、关节疼痛、结石、癌症(如肝癌、胃癌、肠癌和畸形儿)等。

一、土壤重金属污染的定义

土壤重金属污染是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引发的问题统称为土壤重金属污染。过量重金属可引起植物生理功能紊乱、营养失调,此外汞、砷能减弱和抑制土壤中硝化、氨化细菌活动,影响氮素供应。重金属污染物在土壤中移动性很小,不易随水淋滤,不为微生物降解,通过食物链进入人体后,潜在危害极大。一些矿山在开采中尚未建立石排场和尾矿库,废石和尾矿随意堆放,致使尾矿中富含难溶解的重金属进入土壤,加之矿石加工后余下的金属废渣随雨水进入地下水系统,造成严重的土壤重金属污染[1]。

二、重金属污染物的来源

污染土壤的重金属主要包括汞、镉、铅、铬和类金属砷等生物毒性显著的元素,以及有一定毒性的锌(Zn)、铜(Cu)、镍(Ni)等元素。主要来自于固体废物,如乱扔旧电池、电子线路板;工业选矿垃圾等的堆集;含重金属的废水未达标排放,被污染地下或地表水径流、渗透;重金属粉尘的沉降等。如汞主要来自含汞废水,镉、铅主要来自冶炼排放和汽车废气沉降,砷则来源于杀虫剂、杀菌剂、杀鼠剂和除草剂。

三、土壤重金属污染的特点

1.隐蔽性和滞后性

大气污染、水体污染和废弃物污染等一般通过感官就能发现,而农田土重金属污染往往要通过对土壤样品的分析化验、对农作物残留检测,甚至通过研究人畜健康状况后才能确定。因此农田土重金属污染从产生到问题出现通常会经过较长的时间,并具有一定的隐蔽性。

2.不可逆性和难治理性

如果大气和水体受到了污染,切断污染源后通过稀释作用和自净化作用也可能会使污染问题逆转。但是累积在农田土中的难降解重金属则很难靠稀释作用和自净化作用来加以消除。某些被重金属污染的土壤可能需要 100~200年的时间才能恢复原状。因此土壤重金属污染一旦发生后通常很难治理,而且其治理成本比较高、治理周期也比较长。

3.表聚性

农田土中的重金属污染物大部分残留于土壤耕层中,很少向土壤下层移动。这是由于土壤中存在有机胶体、无机胶体和有机-无机复合胶体,它们对重金属有较强的吸附能力和螯合能力,这就限制了重金属在土壤中的迁移。因此农田土中的重金属污染物很少向土壤下层移动,大部分残留在土壤耕层,这就导致农作物污染,进而危害人类的健康。

四、我国土壤重金属污染现状

我国的土壤重金属污染物主要来源于污水灌溉、工业废渣和城市垃圾等。污水中占有较大比例的工业废水的成分比较复杂,不同程度地含有微生物难以降解的多种重金属,是土壤重金属污染物的主要来源。

目前我国因农药和重金属污染的土壤面积已经达到上千万公顷,污染的耕地约有一千万公顷,占耕地总面积的10%以上。全国每年受重金属污染的粮食高达l200万吨,因重金属污染而导致的粮食减产高达1000多万吨,经济损失至少有200亿元。华南有的地区接近50%的农田遭受镉、砷、汞等重金属污染;广州近郊因为污水灌溉而污染的农田有2700公顷,因使用污泥造成1000多公顷的土壤被污染;上海的农田耕层土壤汞、镉含量增加了50%;天津市近郊因污水灌溉而导致超过两万公顷农田受重金属污染。国内蔬菜重金属污染的调查结果显示,我国菜地土壤重金属污染形势严峻,珠三角地区接近40%菜地重金属含量超标,其中10%属“严重”超标;重庆市的蔬菜重金属污染程度为镉>铅>汞,近郊蔬菜基地的土壤重金属汞和镉出现超标情况,超标率分别为6.7%和36.7%;广州市的蔬菜地铅污染最为普遍,砷污染次之[2]。

五、土壤重金属污染的危害

重金属污染与其他有机化合物的污染不同。不少有机化合物可以通过自然界本身物理的、化学的或生物的方式净化,使有害性降低或解除。而重金属具有富集性,很难在环境中降解。即使有益的金属元素浓度超过某一数值也会有剧烈的毒性,使动植物中毒,甚至死亡。金属有机化合物(如有机汞、有机铅、有机砷、有机锡等)比相应的金属无机化合物毒性要强得多;可溶态的金属又比颗粒态金属的毒性要大;六价铬比三价铬毒性要大等。

重金属在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性中毒、慢性中毒等,对人体会造成很大的危害。有关专家指出,重金属对土壤的污染具有不可逆转性,已受污染土壤没有治理价值,只能调整种植品种来加以回避。

六、重金属污染土壤的修复

土壤被污染后,为了避免其对植物的生长和通过食物链对人类造成危害,需要将其从土壤中清除掉。重金属污染土壤的修复技术主要有两种,一是改变重金属元素在土壤中的存在形式,使其由活化态转变为稳定态;二是从土壤中去除重金属元素,使土壤中重金属元素的浓度接近或达到背景含量的水平[3,4]。当前采用的治理方法主要有以下三种:

1.工程治理

即用物理(机械)原理治理重金属污染的土壤,主要有热处理技术、淋滤法、洗土法以及深翻法;

2.生物修复

即针对土壤中的重金属具有生物迁移这一特点而提出的一项净化措施,即利用某种特殊的植物、动物或者微生物能吸收土壤中的重金属污染物从而达到净化的目的;

3.改良剂

即投入各种土壤的改良剂,主要用于调节酸碱度和化学组分,使重金属能够以生物有效性低,毒害程度弱的形式存在。

国内对于土壤污染的治理已有过不少探索,从治理的手段上可以分为物理、化学和生物措施。物理和化学措施主要采用直接换土法、电化法、稳定固化法等方式。但物理和化学措施只适用于有限时空的土壤治理,大规模采用该方式成本太高,也不便于实施。而生物措施则主要利用动物、植物、微生物的生物作用,所用设施相对简单,成本低廉,更适合大规模应用。传统的植物修复技术是利用重金属超富集植物(多为草本植物)的种植吸收土壤内的重金属元素,但在实际应用中存在较大限制,且需要每年进行种植和收割,增加了土壤修复的成本。所以,寻找和培育重金属高富集能力的木本植物成为一个亟待解决的问题。

七、结束语

土壤重金属污染具有污染范围广、持续时间长、污染隐蔽性、难被生物降解等主要特点,并可能通过食物链不断地在生物体内富集,甚至可转化为毒害性更大的甲基化合物,对食物链中某些生物产生毒害,或最终在人体内积累而危害健康。为了预防土壤重金属污染,我们应当树立环保意识,充分认识其危害性,从小事做起,在根本上去除污染来源,杜绝废水、废气的任意排放,及时处理城乡垃圾,不滥用化肥农药。如何恢复重金属污染地区的本来面目也是一个长期性的课题,需要我们不断努力作进一步的探讨。

参考文献

[1]孙铁珩, 李培军, 周启星等. 土壤污染形成机理与修复技术, 北京, 科学出版社, 2005.

[2]周建利, 陈同斌. 我国城郊菜地土壤和蔬菜重金属污染研究现状与展望, 湖北农学院学报, 2002,22(5):476-480.

[3]董丙锋. 土壤环境质量及其演变的影响因素污染防治技术, 2007, 2: 53-55.