重金属污染土壤处理范例6篇

前言:中文期刊网精心挑选了重金属污染土壤处理范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

重金属污染土壤处理

重金属污染土壤处理范文1

关键词:表面处理 土壤重金属 污染评估

中图分类号:V2 文献标识码:A 文章编号:1672-3791(2014)01(a)-0071-01

1 任务来源

深圳市轨道建设,需要拆迁大量工业企业,由于拆迁工作时间紧,部分企业搬迁时,对废水处理设施清理不彻底,并遗弃大量处理设备、药剂。经排查,在某工业区拆迁范围内有4家含电镀生产工艺企业和1家有印染工序的服装制造企业。由于这类企业在生产及废水处理过程中使用大量重金属盐、酸碱和其它化学药品,遗留废弃污水处理设备及其周边土壤存在一定重金属污染隐患,存在土壤污染遗留问题。

由于受污染场地的历史成因、污染程度和范围等存在较大的不确定性,且国内无专门标准对应工业用地转变为居住用地土壤标准,特委托开展专项调查,对范围内土壤污染情况进行进一步分析,并参考国内外相关标准对土壤污染程度和范围进行科学评估,提出受污染场地的处理处置方式和建议。

2 现场调查

针对4家使用重金属原料电镀企业土壤污染调查,研究根据各企业车间及污水处理设施布置的特点,分别在各厂水处理设施、车间地面,采了20 cm、50 cm、90 cm不同深度的土壤采样检测,共计采取了19个样品。

共检测pH值、氰化物、总铬、铜、锌、镍、铅、镉、银9个检测指标。

3 适用标准选取

我国现行关于土壤质量评价的标准尚无专门标准对应工业用地转变为居住用地土壤标准。因此,将符合应用情形的《土壤环境质量标准(GB15618-1995)》三级标准、《工业企业土壤环境质量风险评价基准(HJ/T 25-1999)》直接接触标准、《展览会用地土壤环境质量评价标准(暂行)(HJ 350-2007)》B级标准以及香港地区《按风险厘定的土地污染整治标准》(乡郊住宅)标准值进行对比。《土壤环境质量标准》三级,及《展览会用地土壤环境质量评价标准(暂行)》B级标准值均严于《工业企业土壤环境质量风险评价基准》直接接触标准和香港地区《按风险厘定的土地污染整治标准》(乡郊住宅)标准值。

根据环境影响评价从严要求的原则,以及结合项目的实际情况,使用《土壤环境质量标准(GB15618-1995)》三级标准评价污染情况,使用《展览会用地土壤环境质量评价标准》B级标准评估工业区受污染土壤是否需要进行修复。

4 土壤检测结果

调查中的19个土壤采样点,9个检测指标,所有采样点的检测指标均能达到《展览会用地土壤环境质量评价标准(暂行)(HJ 350-2007)》B级标准,污染企业场地内地下1m以上土壤不需要进行修复。但有2个采样点的铬、1个采样点的铜、3个采样点的镍超过《土壤环境质量标准(GB15618-1995)》三级标准,说明污染企业场地内地下1m的土壤受到一定程度的重金属的污染。

5 土壤处理建议

根据现场调查及检测数据分析可知,就本次检测采样深度的土壤均低于展会标准B级,其中氰化物也低于香港风险厘定标准,说明土壤不需要进行修复。

由于各别采样点中铬、铜、镍超过土壤国标三级标准,建议将受重金属污染企业场地范围地下1 m土壤建议拉运至部九窝垃圾填埋场,而不能用于农田、林地和绿化种植用途,也不能随意进行填海或填河,避免造成二次污染。

6 对遗留废水、污泥处置建议

(1)优先完成对含氰化物废水和污泥的破氰处理,减少后续处理过程工人中毒风险。

(2)对现场含六价铬废水进行还原,降低其毒性,然后再安排转运。

(3)处理现场要求原厂派驻一名熟悉废水处理设施现场情况的员工,协助处理单位完成清理工作。

(4)充分利用原厂遗留水处理化学药剂,以废治废,减少处理成本。

(5)委托有危险废物处理资质的单位进行现场清理,对遗留废水处理或外运,对遗留污泥清运并安全填埋。

7 对构筑物、处理设备及药剂处理建议

通过对现场调查,各厂废水处理构筑物无渗漏现象,池体表面防腐层只有少部分脱落现象,在妥善处置废水处理设施场地内遗留废水、污泥,清理管道、设备,污泥堆放场地等附属设施后,废水处理设施可以作为普通建筑物拆除。

对于遗留的水处理设备及遗弃化学品委托有危险废物处理资质的单位进行无害化处理并清运。

参考文献

[1] 谢婧,吴健生,郑茂坤,等.基于不同土地利用方式的深圳市农用地土壤重金属污染评价[Z].生态毒理学报,5(2):202-207.

重金属污染土壤处理范文2

(台州学院 生命科学学院,浙江 台州 318000)

摘 要:本文以浙江省台州市路桥区峰江地区电子废物拆解回收场地为对象,主要考察了电子废物拆解地土壤中重金属污染的分布特征.结果表明,在考察的5种(Cu、Zn、Pb、Cr、Cd)重金属中,除了Cr和Zn外均在一定程度上超过《国家土壤环境质量标准》二类土壤环境质量标准,污染最严重的是Cu、Cd,其次为Pb.以国家土壤环境质量二级标准计算该典型区Cu、Zn、Pb、Cr、Cd的综合污染指数为4.3,已达严重污染程度.表明该电子废物回收迹地土壤存在严重的重金属复合污染问题,已不适合农业耕作.

关键词 :电子废物;重金属污染;土壤;分布特征

中图分类号:X705 文献标识码:A 文章编号:1673-260X(2015)01-0140-03

1 前言

电子废物,又称电子垃圾,是指各类报废的电子产品,包括各种废旧电脑、通信设备、电视机、电冰箱以及被淘汰的精密电子仪器仪表等[1,2].20世纪以来,随着电子信息等高科技产业迅猛发展,电子技术的更新不断加快,全球越来越多的废旧电子和电器设备被淘汰.在许多发达国家,电子废物已成为增长最快的垃圾流[2,7,9,10].世界上约80%的电子废物被转运到亚洲,其中有90%以“回收”等名义输入到中国[11].

电子废物中含有大量的铜、镍、铅、镉等重金属,电子废物的拆解回收可以带来廉价的原材料和丰厚的利润[3,4].但是电子废物不合适的处理方式,同时也导致有害重金属进入环境,对人类的身体健康和生存环境造成严重的危害[5-8].浙江台州地区是中国最大的电子废物拆解回收处理中心之一.当地居民采用电线电缆的露天焚烧、电路板的烤制熔化酸洗等原始粗放的方式进行电子废物的拆解,严重污染了当地生态环境[4,5].

在电子废物回收活动对环境和人类造成的巨大环境危害引起国际关注的情况下,国内环保部门严令禁止电子垃圾的公开焚烧和随意倾倒,但在暴利的驱使下,收效甚微[5,6,12].虽然路桥地区环保部门对当地电子废物拆解回收进行了集中的整治与规划,将所有电子废物拆解回收作坊集中在同一条街道进行,但是由于拆解方式相对比较落后,拆解活动所带来的环境污染问题还在继续.因此,本研究选择浙江省台州路桥地区典型电子废物不当处置地区峰江开展研究工作,通过对该地区电子废物回收迹地土壤中重金属的含量水平、分布特征的研究,对该地区电子废物回收活动带来的重金属污染进行了初步的评价.

1 材料与方法

1.1 土壤样采集

选取峰江地区某一拆解时间为20多年的电子废物拆解地.其拆卸的电子废物主要成分为家用电器的外壳、电板以及废旧的电线等.采样时,以电子废物拆解地为中心,在离电子废物拆解点边缘0m、100m、200m、300m处分别采集3个平行样.梅花状采样,分别取约1kg土壤(取距离地表2cm以下的混合土样),将所取土壤均匀混合,土壤样品经自然风干后,用玛瑙棒研压,通过200目尼龙筛,混匀后备用.

1.2 样品的处理

称取备用的土壤样品0.5000±0.0005g,置于大玻璃管中,采用硝酸-高氯酸-氢氟酸全量消解法处理土壤样品[13].采用ICP-OES测定土壤处理液中Cu、Cd、Zn、Pb、Cr的含量.实验所用试剂均为分析纯,所用水均为去离子水.并采用国家标准物质土壤标准参考样GSS24、GSS25参比进行分析质量控制,分析误差均在允许范围内,并设置空白样品同步分析.

2 结果与分析

2.1 电子垃圾拆解点土壤性质

本文对路桥电子产品拆解地周边土壤的pH、总有机碳TOC(mg/g)、总氮(mg/g)、总磷(μg/g)及铵态氮(μg/g)含量做了测试分析,结果如表1所示.该地区土壤pH、总有机碳、总氮、铵态氮及总磷无显著差异,表明各个采样点土壤基本物理化学性质无显著差异.与全国第二次土壤普查中该地区水稻土养分含量平均值(有机碳:24.5g/kg;总氮:2.45g/kg;总磷:0.41g/kg)相比,土壤养分含量均有所增加,而该地区土壤的pH则略低于该区全国土壤第二次普查结果(pH为6.0).可见,研究区电子废物拆解活动并未降低其周边农田土壤的肥力质量,却降低了土壤的pH值,使得该地区土壤有一定的酸化.这可能与周边电子废物拆解的重金属回收工艺流程有关.该工艺是将含贵金属的废旧电子产品以浓酸处理,取得贵金属的剥离沉淀物,再分别将其还原成金、银、钯等金属产品.而在该典型区,多半企业采用传统的手工作坊式生产,很少集中处理剩余的大量残留酸液,而是直接排于周边沟渠、农田等场地,大量酸性废水的灌溉破坏了土壤的缓冲能力从而造成土壤的酸化[10].而土壤酸化一方面会破坏土壤结构,使得土壤板结,抗逆能力下降,另一方面更为重要的是土壤酸化有利于土壤中重金属向水溶态、交换态的转化[7-9],增加重金属在生物环境介质的移动性及其污染风险,从而降低土壤的环境功能,因此,该地区农田土壤环境问题应该引起我们高度重视[10].

2.2 电子废物拆解地周边重金属的分布特征

表2为该电子废物回收迹地土壤中重金属的含量.该地区表层土壤Cu、Cd、Pb、Zn、Cr的全量均明显高于浙江省该地区土壤背景值(Cu:19.77mg kg-1,Cd:0.20mg kg-1,Pb:24.49mg kg-1,Zn:84.84mg kg-1,Cr:58.51mg kg-1)[13,14].由表1可见,该地区土壤中Cu和Cd的污染最为严重,Cu的最大浓度为519.3mg/kg,最小浓度为249.0mg/kg,最大浓度为《土壤环境质量标准》(GB 15618-2008)中农业用地二级标准50mg/kg的10.4倍,最低浓度为《土壤环境质量标准》(GB 15618-2008)中农业土地二级标准的5.0倍.其次,该地区土壤中Cd最大浓度和最小浓度分别为4.5mg/kg和0.8mg/kg,为《土壤环境质量标准》(GB 15618-2008)中农用土地二级标准0.3mg/kg的9.0倍和2.7倍.调查还发现Pb的最大浓度达到56.9mg/kg,这个值已经超过《土壤环境质量标准》(GB 15618-2008)中水田、旱地、菜地的二级标准,表明不适合耕种,尚可作为果园用地.Cr和Zn的含量较低,没有超过《土壤环境质量标准》(GB 15618-2008)中农业用地标准,主要是该拆解场地中几乎不含或含有少量含Cr、Zn较多的电子垃圾, 如磁带、录像带等.

由表1,各采样点处Cu和Cd的含量均超出《土壤环境质量标准》(GB 15618-2008)中的二级标准,而Pb则是在回收迹地中心超出《土壤环境质量标准》(GB 15618-2008)中水田、旱地、菜地的二级标准,这说明电子产品回收活动队对周围土壤污染比较严重.在电子产品回收基地周围300m范围的土壤中,Cd、Cr、Cu、Pb、Zn含量随距离增加快速降低.以国家土壤环境质量二级标准计算该典型区Cu、Zn、Pb、Cr、Cd的综合污染指数为4.3,已达严重污染程度,表明该电子废物回收迹地土壤存在严重的重金属复合污染问题,已不适合农业耕作.

徐莉等[10]调查了浙江东部废旧电子产品拆解场地周边农田土壤重金属污染特,发现检测土壤中存在Cu、Cd总量超过土壤环境质量二级标准,Cu和Pd的浓度范围与本研究相当,而Cd的浓度则是本研究的2~3倍,而相应地区土壤酸化很明显(3.8~4.4),可能是导致Cd浓度较高的原因.潘红梅等[11]于2006年考查了同一地区重金属污染的状况,发现Cu含量为435.67mg/kg,与本研究的结果比较接近.罗勇等[13]考察了广东省龙塘镇和石角镇的电子废物堆场附近农田土壤重金属含量,发现Cu的超标率为63.7%,Pd的超标率为48.5%,Cd的超标率为78.8%,这与研究的结果也比较相近,可能是这两地与本研究地所回收的电子废物的种类和回收工艺比较接近.郑茂坤等[12]考察了同一地区废旧电子产品拆解区农田土壤重金属污染特征及空间分布规律,发现Cu、Zn、Pb、Cd含量分别为Cu 118 mg kg-1、Pb 47.9 mg kg-1、Zn 169.0 mg kg-1、Cd 1.21 mg kg-1,其中Cu的含量为本调查结果的1/2~1/5,明显较小,Cd的含量也较本研究低,可能是由于Cu、Cd的富集速度比较快,经过近两年电子废物的拆解回收,Cu、Cd的含量明显增加了.

3 结论和讨论

电子废物回收活动,由于回收方式的粗放化,导致重金属在周围环境中不断积累.电子产品回收迹地土壤中Cd、Cr、Cu、Pb、Zn中,除了Cr和Zn外均超过《国家土壤环境质量标准》二类土壤环境质量标准,污染最严重的是Cu、Cd,其次为Pb.以国家土壤环境质量二级标准计算该典型区Cu、Zn、Pb、Cr、Cd的综合污染指数为4.3,已达严重污染程度.表明该电子废物回收迹地土壤存在严重的重金属复合污染问题,已不适合农业耕作.

——————————

参考文献:

〔1〕Ha N N, Agusa T, Ramu K, et al. Contamination by trace elements at e-waste recycling sites in Bangalore, India[J]. Chemosphere,2009,76:9-15.

〔2〕UNEP. 2005. E-waste, the hidden side of IT equipment’s manufacturing and use: Early warning on emerging environmental threats no. 5, United Nations Environment Programme,2005.

〔3〕王家嘉.废旧电子产品拆解对农田土壤复合污染特征及其调控修复研究[D].贵阳:贵州大学, 2008.

〔4〕吴南翔,杨寅娟,俞苏霞,等.旧电器拆解业对职业人群及普通居民的健康影响[J].环境与健康杂志,2001,18(2):97-99.

〔5〕Xing G H, Wu S C, Wong M H. Dietary exposure to PCBs based on food consumption survey and food basket analysis at Taizhou, China–The World’s major site for recycling transformers. Chemosphere, 2010,81:1239-1244.

〔6〕鲁如坤.土壤农业化学分析法[M].北京:农业科技出版社,1999.235-285.

〔7〕杜彩艳,祖艳群,李元.pH和有机质对土壤中镉和锌生物有效性影响研究[J].云南农业大学学报,2005,20(4):539-543.

〔8〕Harter R D. Effect of soil pH on adsorp tion of lead, copper, zinc and nickel. Soil science Society of America Journal,1983,47:47-51.

〔9〕Clemente R, WalkerD J, Roig A, et al. Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine sp illage atAznalcóllar(Spain).Biodegradation,2003,14(3):199-205.

〔10〕徐莉,骆永明,滕应,卜元卿,张雪莲,王家嘉,李振高,刘五星.长江三角洲地区土壤环境质量与修复研究Ⅳ.废旧电子产品拆解场地周边农田土壤酸化和重金属污染特征[J].土壤学报,2009,46(5):833-839.

〔11〕潘虹梅,李凤全,叶玮,王俊荆.电子废弃物拆解业对周边土壤环境的影响——以台州路桥下谷岙村为例[J].浙江师范大学学报(自然科学版),2007,30(1):103-108.