重金属对环境的影响范例6篇

前言:中文期刊网精心挑选了重金属对环境的影响范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

重金属对环境的影响

重金属对环境的影响范文1

论文关键词:超重力,重金属,玉米,生长性状,叶绿素

 

近几年由于人类的活动,造成不少重金属如铅、汞、镉、钴等进入大气、土壤、水中,引起严重的环境污染。重金属铬Cr是再生水中污染物之一,对人群的健康产生危害[1]。在Cr影响植物生长方面,有人对土壤或沙中栽培的洋葱和玉米对灌溉水中对重金属Cr的吸收规律进行了研究[2-3]。杨和连[4]等专家都进行试验研究了Cr对作物种子发芽的影响[5-6]。近几年培育高度耐重金属的植株,成为了育种的难题,在研究重金属超富集植物吸收、转运和贮存Zn、Ni、Cd等重金属的分子机制取得主要进展[7]。根据目前的研究,主要通过鉴定玉米的形态指标和生理生化指标来研究植物的对重金属的抗性。本试验是在航天育种的启发下叶绿素,变微重力为超重力,综合超重力和重金属的因素,探讨对玉米种子萌发,幼苗形态和叶绿素的影响。探索利用超重力处理植物种子提高其抗重金属性的生理生化基础。

1材料与方法

供试材料采用农大108玉米品种。首先对小麦种子用0.1% HgCl2消毒10min,再自来水冲洗彻底后浸种24 h。然后暗培养至大多数种子萌动。随机抽取30粒种子各5份,以1000g·2h、2000g·1h、4000g·40min、6000g·20min、和8000g·10min进行超重力处理,未离心的种子作为空白对照(CK)。处理后的种子放入含有不同浓度重金属营养液的苗盆中进行水培,置于25℃恒温光照培养箱下培养。

培养至胚芽突破种皮长出幼苗,此时期测定种子的发芽率。在第3天测量玉米的形态指标。培养至三叶期,随机取叶样进行测定叶绿素。

2结果与分析

2.1 超重力和重金属对玉米种子发芽率的影响

由图l可以看出,综合超重力和重金属双重胁迫,当相同超重力处理时,由图可知随着重金属处理浓度的增加,种子的发芽率明显降低。对实验的结果进行分析表明超重力为8000 g·10 min高速短时可以降低重金属对玉米种子发芽率的影响。

图1 在不同超重力下重金属Cr对种子发芽率的影响

Fig1 Effects of Cr (Ⅲ)on seed germination underdifferent hypergravity treatments

2.2 超重力和重金属对玉米种子形态指标的影响

植物的形态指标是判断植物性状最直接的一类指标,形态指标中最主要的是植株的芽长和根长论文怎么写。当种子萌发后,其芽、根的生长完全暴露在外界环境中[9],直接受到培养皿中Cr的影响叶绿素,故Cr对芽、根生长的影响远大于对发芽率的影响,如图2和图3所示。

1. 根长的分析

当重金属的浓度为0 mg/L时,6000g·20min 和8000g·10min处理的可促进根的生长。综合超重力和重金属双重胁迫,在1000 g和2000 g超重力处理下可降低重金属对根长的抑制。

图2 不同超重力下重金属对玉米幼苗根长的影响

Fig2 Effects of Cr (Ⅲ)on root length of maize seedlings under differenthypergravity treatments

2. 芽长的分析

当重金属的浓度为0 mg/L时,8000g·10min处理可促进芽的生长。综合分析超重力和重金属对幼苗的影响,在每一种超重力下玉米苗可抵抗不同浓度重金属的抑制作用,如2000 g的处理中10 mg/L浓度下,幼苗的高度较空白组10 mg/L浓度处理分别增加了58.23 %。

图3 不同超重力下重金属对玉米幼苗芽长的影响

Fig3 Effects of Cr (Ⅲ)on bud length of maize seedlings under differenthypergravity treatments

2.3 超重力和重金属对玉米苗期叶片叶绿素的影响

叶绿素是植物体有机合成的场所,是光能的吸收器,其含量的高低直接决定植株的有机合成能力。提高测定叶绿素a和叶绿素b的含量可判断植物的有机合成能力[10]。

由图4、5可知在无超重力处理下,重金属对叶绿素a、b合成的影响不明显,除1mg/L浓度外其他浓度的重金属均抑制了叶绿素a、b的合成。综合两因素的共同作用分析表明,2000g和4000 g的处理可以降低重金属对玉米叶绿素合成的影响。

图4 不同超重力下重金属对玉米叶片叶绿素a含量的影响

Fig 4Effects of Cr (Ⅲ)on the chloiophyⅠ(Ca) content of corn’s leaves under differenthypergravity treatments

图5不同超重力下重金属对玉米叶片叶绿素b含量的影响

Fig 5Effects of Cr (Ⅲ)on the chloiophyⅡ(Cb)content of corn’s leaves under differenthypergravity treatments

3 讨论

本实验研究超重力处理对玉米重金属耐性的影响时发现,对玉米进行超重力单因素处理时其发芽率符合赵欣等人的研究结论[11]。超重力和重金属双重胁迫对种子发芽率的影响,和超重力单因素处理对种子的影响相似,因为种子发芽时利用自身的营养物质几乎不受到重金属的迫害。高速超重力可以促进根长和芽长的生长,低速的超重力抑制它们的生长叶绿素,但抑制作用不明显。在结果分析中已经分析数据得出结论,在每一个超重力处理组都有抗重金属较强的植株。形态指标可鉴定植株受重金属迫害的程度,是一个可以直接表现植株生长状态的指标。在结果分析中那些形态指标较高的植株,这些植株对重金属的抗性也较强。可以作为研究植物耐重金属的鉴定指标。

实验结果表明,在每一个超重力处理组都有抗重金属较强的植株。叶绿素含量是表示植物光合器官生理状况的重要指标[12]。结果表明,短时间胁迫下,叶绿素含量略有增加,这可能是叶绿合成系统的一种激应性反应。当Cr(Ⅲ)胁迫浓度高50 mg/L时,随着铬浓度的逐渐增大而下降,这与徐勤松等[15]以铬处理水车前叶片的结果相似。

参考文献

[1]纪柱,铬盐生产工艺与致癌物[J].化工环保,1999,(3):173-174.

[2]巫常林,黄冠华,刘洪禄,等.再生水短期灌溉对土壤作物中重金属分布影响的试验研究叨[J].农业工程学报,2006,22(7):91-96.

[3]徐衍忠,秦绪娜,刘祥红,等.铬污染及其生态效应[J].环境科学与技术,2002,23(增刊):8,9,28.

[4]杨和连,车灵艳,卢二乔.重金属铬对西葫芦种子发芽及出苗的影响[J].种子,2004,23(6):60-62.

[5]蒋光月,崔德杰.重金属Cr对小白菜种子萌发及生长的影响[J].农业环境科学学报,2006,25(增刊);76-79.

[6]郑爱珍.重金属Cr污染对辣椒幼苗生理生化特性的影响[J].农业环境科学学报,2007,26(4):1343-1346.

[7]孙健,铁柏清,钱湛,杨佘维,毛晓茜,赵婷.复合重金属胁迫对玉米和高粱成苗过程的影响[J].山地农业生物学报, 2005,24(6):514-521.

[8]何翠屏,胡惠蓉.两种重金属胁迫对两种草坪草生长与代谢的影响[J].华中农业大学.

[9]乔琳,盛东风,邓艳.重金属铜、锌、铁、铅污染对白菜幼苗鲜重及叶绿素含量的影响[J].广东农业科学,2010,37(2).

[10]赵欣,王金胜.不同超重力处理小麦、玉米种子对其生理生化指标的影响[J]. 中国农业科技导报,2007,9(6):100-104.

[11]秦天才,阮捷,王腊娇.铬对植物光合作用的影响[J].环境科学与技术,2000,90:33-36.

重金属对环境的影响范文2

1 材料与方法

1.1 材料和试剂

试验用光棘球海胆取自辽宁省海洋水产科学研究院培育的F1代家系。分别取性成熟雌性和雄性个体,用0.5mol/L的KCl溶液刺激海胆生产配子,分别收集卵子和,将精 液用过滤海水按1∶100配制成稀释液备用。氯化锌(ZnCl2),氯化镉(CdCl2),氯化汞(HgCl2),硫酸铜(CuSO4),乙酸铅[Pb(CH3COO)2]均为分析纯,购自国药集团化学试剂有限公司,分别用蒸馏水配制成0.1mol/L,0.1mol/L,0.1mol/L,0.01mol/L,0.1mol/L的储液,备用。

1.2 试验方法

试验浓度设置:5种重金属的浓度设置参考Radenac等[10]的研究结果,均设置了低、中、高3个暴露浓度,其中Cd、Pb、Cu、Zn的暴露浓度均为0.1、0.5、1.0μmol/L;Hg的 暴 露 浓 度 为0.01、0.05、0.1μmol/L,同时设置空白对照组。暴露试验在2L的玻璃烧杯进行,各试验浓度设置2个烧杯,每个烧杯中加入2L过滤海水,再分别加入重金属储液至试验浓度,试验开始后每个烧杯中先放入10 000枚光棘球海胆的卵子,再加入100μL的光棘球海胆的稀释液,充分搅匀。15min后取样,每个烧杯各取1000枚卵用5%的甲醛溶液固定,每次取200枚卵子在解剖镜下观察,统计受精率。48h后对照组光棘球海胆胚胎发育至长腕幼虫时取样。每个烧杯各取1000个光棘球海胆胚胎,用5%的甲醛溶液固定,用于观察统计。试验重复1次。

1.3 电镜切片与观察

光棘球海胆经中浓度重金属溶液暴露2min,立即用3%的戊二醛(pH 7.4的0.1mol/L磷酸缓冲液配制)固定2~4h(4 ℃)后,1%琼脂预包埋,切成1 mm3的小块,用戊二醛固定10h。经pH 7.4的0.1mol/L磷酸缓冲液浸洗,再用1%的锇酸固 定2h,乙 醇 梯 度 脱 水 后,用 丙 酮 脱 水,Epon812包埋,LKB-NOVA超薄切片机切片。日立H-7000透射电镜观察生殖腺结构变化并拍照。

1.4 数据统计与分析

试验结果用平均值±标准差表示,对照组和每个重金属暴露组之间进行t检验,P<0.05为差异显著,P<0.01为差异极显著。

2 结果与分析

2.1 5种重金属对光棘球海胆卵子受精率的影响

在水温(21±0.5)℃、盐度32条件下,对照组光棘球海胆卵子的受精率高达(96.31±0.58)%(图1)。由图1可见,与对照组相比,0.01、0.05、0.1μmol/L的Hg和0.1、0.5、1.0μmol/L的Cu、Zn、Pb、Cd暴露后,光棘球海胆卵子的受精率极显著地降低;并随着重金属暴露浓度的升高受精率逐渐降低,具有剂量—效应关系。其中Cu暴露后受精率下降幅度最大,表明5种重金属离子中,Cu对光棘球海胆精卵结合的毒性作用最大。比较5种重金属对光棘球海胆卵子受精率的影响结果,发现5种重金属对受精毒性作用为:Hg>Cu>Zn

>Pb>Cd。

2.2 5种重金属对光棘球海胆胆胚胎发育的毒性作用

在水温 (21±0.5)℃、盐度32条件下,对照组光棘球海胆胚胎发育48h进入长腕幼虫时期,其中正常的长腕幼虫的比例为(95.16±0.68)%,胚胎发育的延滞率和畸形率分别为(2.29±0.16)%、(2.55±0.56)%。与对照组相比,0.01、0.05、0.1μmol/L Hg暴露后,光棘球海胆正常长腕幼虫的百分比极显著降低,随着暴露浓度升高呈下降趋势,具有剂量—效应关系,胚胎延滞率和胚胎畸形率均极显著上升,同样具有剂量—效应关系。经比较发现,Cu、Pb、Zn、Cd对光棘球海胆胚胎的毒性作用与Hg的毒性作用相似。其中,1.0μmol/L Cu处理组未观察到长腕幼虫个体(表1)。通过比较5种重金属离子对光棘球海胆胚胎的毒性作用结果发现,5种重金属对光棘球海胆胚胎的毒性作用为:Hg> Cu> Pb> Zn> Cd。

2.3 5种重金属对光棘球海胆超微结构的损伤

5种重金属暴露后,光棘球海胆超微结构受到了不同程度的损伤(图2)。对照组光棘球海胆呈规则的子弹头形,其头部为顶体结构,基部线粒体对称分布结构完整,整个的外膜清晰(图2a)。0.5μmol/L Cd暴露后,光棘球海胆外膜空泡化(黑色箭头,图2b),基部线粒体形状不规则(图2b)。0.5μmol/L Pb暴露后,光棘球海胆基部线粒体形状不规则,内嵴部分溶解(白色箭头,图2c),质 膜 部 分 断 裂 (黑 色 箭 头,图2c)。0.5μmol/L Zn暴露后,光棘球海胆外膜空泡化(黑色箭头,图2d),线粒体内嵴部分溶解(白色箭头,图2d)。0.5μmol/L Cu暴露后,光棘球海胆基部线粒体内部空泡化(白色箭头,图2e)。0.5μmol/L Hg暴露后,光棘球海胆头部质膜溶解(黑色箭头,图2f),线粒体内嵴断裂(白色箭头,图2f)。

3 讨论

重金属对环境的影响范文3

随着城市化和工业化进程的加快,城市重金属(铅、镉、汞 铬、砷)的污染日益严重。研究证实,这些重金属污染物可以通过食物和饮水摄入、呼吸道吸入和皮肤接触等进入人体,然后,在人体的某些器官中积蓄起来,造成慢性中毒,危害人体健康。

铅 重金属污染物铅对人体健康的危害主要是损害人体的神经系统和造血系统等,严重影响人体新陈代谢功能。

镉 重金属污染物镉对肾脏造成损害,可导致骨钙减少、骨质疏松、骨软化。镉污染物在人体积蓄还会引起高血压、动脉硬化和心脏病。

汞 重金属污染物汞在人体器官中积蓄造成慢性中毒,可导致脑和神经系统损伤,并可致胎儿和新生儿汞中毒。

铬 重金属污染物铬在人体器官中积蓄造成慢性中毒,可导致鼻炎、结核病、腹泻、支气管炎、皮炎等疾病。

砷 重金属污染物砷在人体器官中积蓄造成慢性中毒,可导致末梢神经炎和神经衰弱症,以及皮肤色素高度沉着和皮肤高度角化,甚至发生龟裂性溃疡。

以前,在日本发生的水俣病(汞污染)和骨痛病(镉污染)等公害病,都是重金属污染引起的典型例子。那么,人们应该如何减轻重金属对人体造成的危害呢?除了减少工业、企业重金属污染物排放,加强环境治理以外,做好个人防护也是十分必要的。现代医学研究表明,微量元素硒对上述重金属可以产生拮抗作用,有效阻挡重金属对人体健康造成的潜在危害。

重金属对环境的影响范文4

土壤重金属污染研究进展

重金属有多种不同的定义。在环境化学领域中,重金属是指比重大于4或5的金属。重金属污染物不但包括生物毒性显著的汞、镉、铅、铬和类金属砷,还包括毒性较弱的重金属锌、铜、钴、镍、锡、钒等重金属元素。土壤重金属污染隐蔽性强、毒性大、难降解且能沿食物链富集,是人们优先考虑去除的污染物。

1污染来源

土壤重金属污染来源大体可以分为工业来源、农业来源、交通来源。

1.1工业来源。煤和石油等化石燃料燃烧释放大量含有重金属的有害气体和粉尘,工厂排放的烟气、粉尘等气体污染物经大气环流扩散,以干、湿的沉降方式进入到水体与土壤中,造成土壤重金属污染。工业生产过程如采矿、选矿、矿物加工等排放的废水、废气、废渣是土壤中汞、铅、镉、砷等重金属污染的主要来源。

1.2农业来源。主要来源于农田污水灌溉、污泥利用,化肥、有机肥、农药和杀虫剂的滥用以及塑料薄膜的大量使用等。农用物资施用和农业污灌是农田土壤中汞、铬、砷、铜、锌等重金属污染的重要来源。

1.3城市交通来源。主要来源于汽车排放的尾气及轮胎磨损产生的粉尘。汽油、油的燃烧和发动机及其他镀金部件磨损可释放出铅、镉、铜、锌等重金属粉尘。

2污染危害

重金属一旦进入土壤,就很难被微生物降解或者从土壤中去除,因此重金属对土壤的理化性质、生物特性和微生物群落结构都产生重大危害。受到重金属污染的土壤,其物理结构和化学性质都会发生变化,危害极大。

2.1导致经济损失。土壤的重金属污染会造成耕地面积持续减少、土壤质量下降和生物毒害增多,导致农作物大幅度减产,从而影响到粮食供给、农业可持续发展和区域经济增长。

2.2危害人体健康。酸雨、土壤添加剂等外界环境条件的变化,提高了土壤中重金属的活性和生物有效性,使得重金属较易被植物吸收利用,重金属污染物难以降解,直接或间接地危害到处于食物链顶端的人类的身体健康,引发骨痛病、儿童血铅、高血压、心脑血管,癌症等疾病。

2.3导致其他污染。土壤受到污染后,含重金属浓度较高的污染表土容易在水力和风力的作用下分别进入到水体和大气中,导致水污染、大气污染和其他衍生环境问题。

3治理途径

重金属污染土壤的治理途径主要有两种:一种是将重金属污染物清除,削减土壤重金属总量;另一种是固化土壤重金属,降低其迁移性和生物可利用性,削减有效态重金属含量。具体来讲包括工程措施,化学措施,农业措施和生态措施。

3.1工程措施。工程措施包括排土、客土和淋洗等方法。排土法剥离表层受污染的土壤,客土法是在被污染的土壤上覆盖未被污染的土壤,淋洗法是通过清水灌溉稀释或洗去重金属离子。工程措施效果较为彻底,能使耕作层土壤中重金属的浓度降至临界浓度以下,或减少重金属污染物与植物根系的接触来控制危害。

3.2化学措施。第一,通过添加表面活性剂、有机螯合剂等一系列调控措施,改良土壤的理化性状,提高土壤重金属的生物有效性,使其易于被其他植物吸收,以达到修复土壤的目的。第二,通过添加固化材料,降低重金属的迁移性和生物有效性。

3.3农业措施。农业措施是因地制宜的修正和完善耕作管理制度来减轻重金属的危害,或者在受污染土壤上种植不进入食物链的植物。农业措施适合治理中、轻度受污染土壤。

3.4生物措施。生物措施:一是通过生物作用改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性;二是通过生物吸收、代谢达到对重金属的削减、净化与固定作用。通过一些特殊的微生物与植物、动物去除或者转化土壤中的重金属,降低重金属的毒性。

3.4.1微生物修复。微生物修复技术主要有两种:原位修复技术和异位修复技术。受到重金属污染的土壤,往往富集多种耐重金属的真菌和细菌,微生物可通过多种作用方式降低土壤中重金属的毒性。

3.4.2植物修复。植物修复是利用植物吸收、富集、降解或固定土壤中重金属离子或其他污染物,以降低或消除污染程度,修复土壤。

3.4.3动物修复。动物修复是利用土壤中的某些鼠类等低等动物吸收土壤中的重金属。例如在受重金属污染的土壤中放养蛆虫,待其富集重金属后,采用电激、灌水等方法驱出蛆虫集中处理。

4展望

土壤重金属污染来源趋于多样化、综合性,对人类的危害也日趋严重。在未来很长时间内重金属污染仍将是我国所面临的重大环境问题之一,迫切需要解决。但对于不同种类、不同性质的重金属污染事件,应将物理、化学、生物等修复手段综合应用以便更好地治理土壤重金属污染,同时研制复合材料,已解决土壤重金属复合污染的问题。

参考文献:

[1]MILEN KOVICN,DAMJANOVIC M.Study of HeavyMetal Pollution in Sedimentsfrom the IronGate(DanubeRiver),Serbia and Montenegro[J].Polish Journal ofEnvironmental Studies,2005,14(6):781-787.

[2]赵学茂.土壤重金属污染的防治办法[J].甘肃农业,2006,(2):228.

[3]李兵.土壤中重金属污染与危害[J].金属世界,2005,(5):43-53.

[4]张志红,杨文敏.汽油车排出颗粒物化学组分分析[J].中国公共卫生,2001,17(7):623-624.

[5]章明奎.污染土壤重金属的生物有效性和移动性评价:四种方法比较[J].应用生态学报,2006,(8):1501-1504.

[6]祖艳群,李元昆明市蔬菜及其土壤中铅、镉、铜和锌含量水平及污染评价[J].云南环境科学,2003,(8):35.

[7]胡文.土壤-植物系统中重金属的生物有效性及其影响因素的研究[D].2008.

[8]夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社,1998.70-75.

重金属对环境的影响范文5

[1.天津市农业质量标准与检测技术研究所,天津 300381;2.农业部农产品质量安全风险评估实验室(天津),天津 300381]

摘要:对天津市食用菌中重金属水平进行了调查,评价其污染程度,并通过经食用菌途径重金属暴露接触对人体的健康风险进行系统评价。结果表明,食用菌中铅、镉、砷、汞含量分别为0.005~0.910 mg/kg、0.004~0.690 mg/kg、0.002~0.110 mg/kg、未检出~0.087 mg/kg。所采集的食用菌中铅、镉、砷、汞的含量均低于《GB 7096-2003食用菌卫生标准》和《NY 5095-2006无公害食品食用菌》的限量值,表明天津市场大型超市和食用菌生产基地的食用菌总体水平是安全的。重金属暴露接触对人体的健康风险评估结果表明,4种重金属元素铅、镉、砷、汞的靶标危害指数(THQ)值均低于1,即经食用菌途径摄入的铅、镉、砷、汞对天津市居民的健康风险比较低。但是THQ儿童>THQ成人,表明儿童经食用菌暴露途径摄入重金属的潜在健康风险较高。

关键词 :食用菌;重金属;健康风险评价;污染评价

中图分类号:S646 文献标识码:A 文章编号:0439-8114(2015)02-0440-04

DOI:10.14088/j.cnki.issn0439-8114.2015.02.047

食用菌自古以来被称为山珍,其味道鲜美,富含蛋白质、氨基酸、多糖等功能性营养成分,具有药用保健价值,被联合国推荐为21世纪的健康食品。近年来中国食用菌产业发展迅速,目前产量和消费量均居世界首位。随着人们对农产品质量安全的重视,食用菌的质量安全问题,特别是重金属污染导致的安全问题引起了人们的广泛关注。研究表明,食用菌富集重金属的能力高于一般作物,再加上产地环境的不断恶化和基质材料的滥用,食用菌中重金属污染问题越来越突出[1]。因此,开展食用菌重金属污染状况的调查并对其安全进行评价具有重要的现实意义。

近几年,北京、四川、江苏、浙江、广州等省市对市场销售的主要食用菌进行了重金属污染调查与评价[2-6],结果表明,不少地区存在食用菌重金属超标。近年来,天津市的食用菌产业得到了迅猛的发展,市民对食用菌的消费也日渐增加,但是天津市流通领域的食用菌重金属元素含量状况如何,是否对人体存在健康风险,目前尚缺乏相关文献资料。为了全面了解天津市食用菌的质量状况,于2012年6~9月采集了天津市部分大型超市销售的食用菌以及天津市部分食用菌生产基地的食用菌样品,分析了铅、镉、砷、汞的污染水平,并采用靶标危害指数法(Tanget hazand quotients,THQ)评价食用菌中重金属对人体的健康风险,以期为相关决策和标准制定提供参考。

1 材料与方法

1.1 材料

采集食用菌品种主要以香菇、平菇、金针菇、茶树菇、杏鲍菇、白玉菇等消费量较大的品种为主,采样地点集中在规模化基地、农贸市场以及大型超市等,采用随机取样的方法。本次调查共采集样品70份(表1),采集的食用菌样品使用清洁食品袋保存,避免样品间交叉污染。

1.2 方法

食用菌样品经去除残留基质和杂质后,用自来水冲洗干净,再用去离子水冲洗3遍,擦净晾干后,切碎混匀取样。重金属测定方法均采用国家标准方法,其中铅采用GB 5009.12-2010[7],镉采用GB/T 5009.15-2003[8],砷采用GB/T 5009.11-2003[9],汞采用GB/T 5009.17-2003[10]。测试过程中插入国家一级标准物质茶叶(GBW10016)和菠菜(GBW10015)以进行分析质量控制,质控样品测定值均需在规定要求范围内。

1.3 重金属污染评价标准

食用菌重金属的安全性评价标准以《GB 7096-2003食用菌卫生标准》[11]、《NY 5095-2006无公害食品食用菌》[12]、《NY 5247-2004无公害食品茶树菇》[13]和《GB/T 19087-2008 地理标志产品庆元香菇》[14]为评价依据。

1.4 重金属接触人体健康风险评价方法

(1)重金属的日人均摄入量与食物中重金属的含量和对应食物的消耗量有关。经食用菌摄入重金属量采用日人均摄入量(Daily intake,DI)来计算。公式表达如下:

DI=FIR×C (1)

式中:FIR为食用菌消耗量,C为本次调查食用菌中重金属含量平均值。

(2)靶标危害系数方法(Target hazard quotients,THQ)是一种用于评估人体通过食物摄取重金属风险评估方法,该方法假定污染物吸收剂量等于摄取剂量,以测定的人体摄入污染物剂量与参考剂量的比值作为评价标准,如果该值小于1,则说明暴露人群没有明显的健康风险,反之,则存在健康风险。THQ计算公式如下:

式中:EF为暴露频率(365 d/a),ED为暴露区间(70a),FIR为食物摄入率(g/d),C为食物的重金属含量(mg/kg,采用本次调查测得的各类食用菌的重金属含量平均值),RFD为参比剂量(mg/kg/d),WAB为人体平均体重(kg),TA为非致癌性平均暴露时间(365 d/a×暴露年数,本研究中假定为70年)。

2 结果与分析

2.1 食用菌中有害重金属含量分析

采集的食用菌样品中重金属含量结果见表2,由表可知,全部样品中均检出Pb、Cd、As,部分样品检出Hg,检出率为86.5%。总体上看,样品子实体中有害重金属的平均含量为Pb>Cd>As>Hg,其含量均低于《GB 7096-2003食用菌卫生标准》和《NY 5095-2006无公害食品 食用菌》限量,总体上安全,但部分样品的重金属接近限量值,值得关注。

另外,同一种重金属在不同食用菌中含量差异较大。如Pb在茶树菇中平均含量最高为0.350 mg/kg,而在平菇中平均含量为0.077 mg/kg,在真姬菇中平均含量为0.022 mg/kg,菌种之间含量差异显著,说明不同品种的食用菌对重金属的富集能力差别很大。此外,同品种食用菌中同一元素含量的差异也较大,如香菇中Cd的含量范围为0.037~0.180 mg/kg,变异系数为89.3%,Pb的含量范围为0.011~0.270 mg/kg,变异系数达到106%,进一步说明食用菌对重金属的累积不仅与食用菌品种有关,而且还受到环境条件、栽培技术等其他因素的影响。通过分析各重金属的总变异系数,发现其变异系数依次为Pb>Cd>As>Hg,其中Pb、Cd、As的变异系数均接近或超过了100%,说明其含量受食用菌品种和栽培环境的影响很大。

2.2 食用菌重金属污染评价

我国食用菌重金属污染的主要评价标准见表3,由表3可知,除Cd外,其余3种重金属限量是相同的。其中香菇参照《NY 5095-2006无公害食品 食用菌》与《GB/T 19087-2008 地理标志产品 庆元香菇》的限量要求一致。本次调查结果均低于限量值,说明天津市食用菌总体情况是安全的。

联合国粮农组织/世界卫生组织(FAO/WHO)联合食品添加剂专家委员会(JECFA)规定Pb、Cd、As、Hg的人体每周允许摄入量分别为50,7,15, 5 μg/kg[15]。按天津市成人平均体重55.9 kg计算[16],每周摄入重金属的允许量分别为2.80 mg(Pb)﹑0.391 mg(Cd)﹑0. 838 mg(As)﹑0. 280 mg (Hg)。假定人均食用菌的摄取量为每周1 kg(鲜重),每人每周摄入重金属的平均量为0.10 mg的Pb(占允许量的3.6%);0.094 mg的Cd(占允许量的24%);0.026 mg的As(占允许量的3.1%);0.017 mg的Hg(占允许量的6.1%),总体基本安全,但也可以看出,镉含量最高,摄入量所占比率也是最高的,应当引起重视。

2.3 食用菌途径摄入重金属的人体健康风险分析

采用靶标危害系数法对经食用菌途径摄入重金属对人体健康产生的危害风险进行分析,公式(2)中各项参数的取值及数据来源见表4。其中,食用菌摄入率(FIR)为估计值,假设食用菌摄入量占蔬菜摄入量的50%。以此为依据,计算天津市居民(成人、儿童)通过食用菌途径进入人体重金属Pb、Cd、As和Hg的THQ值见表5。由表可知,单一重金属的THQ大小为:Cd>As>Hg>Pb,说明Cd对人体健康产生危害的风险最大。但4种重金属元素的THQ值均低于1,说明经食用菌途径摄入的Pb、Cd、As和Hg对当地居民的身体健康产生危害的风险较低。虽然儿童摄入的重金属总量低于成人,但从计算结果可以看出儿童摄入Pb、Cd、As和Hg的THQ值均高于成人,说明通过食用菌摄入重金属对儿童的健康风险要大于成人。

3 讨论

总体上看,天津市流通领域食用菌中的Pb、Cd、As和Hg含量均低于国家高低标准限量值,总体质量安全,其样品中的平均含量为Pb>Cd>As>Hg,与北京市食用菌重金属含量调查结果一致[2]。另外,测定样品中的重金属在不同食用菌中含量差异较大,且在同品种食用菌中的差异也较大,其变异系数依次为Pb>Cd>As>Hg,其中Pb、Cd和As的变异系数均接近或超过了100%,表明食用菌具有富集重金属的特性,并且不同的品种对重金属的富集能力存在一定的差异,同一品种可能由于产地、栽培上的差异导致重金属含量差异较大。早期研究表明[19],食用菌较植物更易富集重金属,重金属主要来源于生长基质。随着食用菌栽培数量的急剧增加,人工栽培食用菌所用的主要原料已从单纯使用木屑、段木等原料转向农副产品甚至工业废料。据报道[20,21]诸如棉子壳、稻草、废棉、野草、桑枝、甘蔗渣、甜菜渣、花生壳、葵花子壳、树根、砻糠、酒糟和柠檬酸废液,甚至有毒的工农业副产品如废纸浆、烟草茎杆等也都在尝试之列。由于木本植物对重金属有一定的吸收积累作用,使积累的重金属污染物不会短期内释放到环境中,可经过木屑进入食用菌的基质。由此可见,基质中重金属的含量显著影响了食用菌产品中的重金属含量,因此在食用菌生产过程中应控制好培养基及其生长环境中的重金属含量,这应是减少食用菌重金属富集污染的有效途径。

通过假定每周人均食用菌摄入量,计算天津市居民每周通过食用菌途径摄入的重金属含量,结果表明,每周摄入重金属的量低于JECFA规定的Pb、Cd、As、Hg的人体每周允许摄入量,总体是安全的。但镉摄入比率最高,占允许量的24%,应当引起重视。由于多数食用菌具有富集镉能力,所以食用菌中的镉污染已成为食用菌进入流通领域的限制性因素。因此,通过研究食用菌中镉的富集规律,制定相应的控制方法将是今后的研究方向之一。

重金属暴露接触对人体的健康风险评价结果表明,单一重金属的THQ大小为:Cd>As>Hg>Pb,说明Cd对人体的健康风险最大,这与浙江、北京、四川的报道一致。单一重金属的THQ值均低于1,说明经食用菌途径摄入的Pb、Cd、As和Hg未对天津市民健康构成危害,但多种重金属复合污染导致的潜在健康风险却不容忽视,通过计算得出成人和儿童食用食用菌中重金属的THQ值分别为0.639和0.838,接近于限定值1,明显高于单一重金属,应引起注意。另外,本调查只研究了经食用菌摄入的重金属,尽管DI未超出人体每周允许摄入量,THQ值也低于限定值1,但人体通过食物摄入重金属的途径不仅仅是食用菌,还包括蔬菜、水果、肉制品等途径,因此重金属的健康风险仍然较大。另外,通过比对成人和儿童的THQ值,发现儿童的食用菌摄入量虽低于成人,但儿童因摄入食用菌导致的重金属健康风险明显高于成人,儿童更易遭受重金属的暴露风险,因此后续研究应关注重金属对不同人群健康的影响。同时,通过THQ的计算公式可以看出,在所有参数中对THQ值影响最大的参数分别为FIR和C,也就是食用菌的消耗量和食用菌中重金属的含量,即人均摄入量DI。

随着人们生活水平的提高,食用菌的消耗量必将增加。从食用菌培养基质、生产环境等方面进行控制,减少食用菌中重金属的来源将是控制食用菌中重金属的有效途径。因此,后期研究将围绕食用菌中重金属的残留控制技术展开,以期能够降低消费者的重金属暴露水平,控制由重金属产生的健康风险。

参考文献:

[1] DEMIRBAS A. Levels of trace element in the fruit bodies of mushroom growing in the East Black Sea region[J]. Energy Education Science & Technology, 2006,7(2): 67-81.

[2] 贾 彦.北京市食用菌重金属含量调查与风险评价[D].北京中国农业大学,2007.

[3] 陈 黎,刘 俊,张 璐,等.四川地区食用菌中7种重金属含量测定及污染评价[J].食品科学,2010,31(16):220-224.

[4] 李优琴,吴素玲,黄 娟,等.江苏市Q场食用菌重金属、农药污染状况及评价[J].江苏农业学报,2010,26(6):1391-1394.

[5] 徐丽红,张永志,王钢军,等.浙江省食用茵质量安全现状调查研究[J].农业环境科学学报,2007,26(Z):679-685.

[6] 邵满超,陈城超,陈 康,等.广州市石牌市场食用菌重金属含量及评价[J].安徽农业科学,2010,38(23):12673-12675.

[7] GB 5009.12-2010,食品国家安全标准食品中铅的测定[S].

[8] GB/T 5009.15-2003,食品中镉的测定[S].

[9] GB/T 5009.11-2003,食品中总砷及无机砷的测定[S].

[10] GB/T 5009.17-2003,食品中总汞及有机汞的测定[S].

[11] GB 7096-2003,食用菌卫生标准[S].

[12] NY 5095-2006,无公害食品食用菌[S].

[13] NY 5247-2004,无公害食品茶树菇[S].

[14] GB/T 19087-2008,地理标志产品庆元香菇[S].

[15] PASTORELLIA A A,BALDINIA M, STACCHINIA P, et al. Human exposure to lead, cadmium and mercury through fish and seafood product consumption in Italy: a pilot evaluation [J]. Food Additives & Contaminants: Part A, 2012, 29(12):1913-1921.

[16] WANG X L, SATO T, XING B S, et al. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish[J]. Science of the Total Environment, 2005,350(1):28-37.

[17] US EPA. Integrated Risk Information System[EB/OL]. http://www.epa.gov/iris/subst.

[18] WANG Y C, MQIAO, LIU Y X, et al. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China[J]. Journal of Environmental Sciences, 2012, 24(4): 690-698.

[19] 黄晨阳,张金霞.食用菌重金属富集研究进展[J].中国食用菌,2003,23(4):7-9.

[20] 徐丽红,陈俏彪,叶长文,等.食用菌对培养基中有害重金属的吸收富集规律研究[J].农业环境科学学报,2005,24(Z):42-47.

重金属对环境的影响范文6

【关键词】土壤;长期定位施肥;重金属

土壤是人类生存和发展的基本物质基础,也是农业生产的基础,土壤环境质量直接影响农产品的质量及人类健康。土壤污染使本来就紧张的耕地资源更加短缺,土壤中的污染物具有迁移性和滞留性,有可能继续造成新的土地污染,给农业发展带来很大的不利影响[1]。土壤污染再造成严重的经济损失的同事,也给人民的身体健康带来极大的威胁,不单单损害到当下人们的身体健康,甚至严重危及后代子孙的利益,不利于经济的可持续发展。随着农业的发展,肥料用量的增加,肥料中重金属在土壤中累积成了土壤中重金属污染的重要部分,施肥引起的土壤环境污染已引起广泛关注。其中,肥料中报道较多的一类污染物,主要包括镉、铬、铅、铜、锌、镍等[2]。长期定位试验以长期固定的管理模式管理土壤,具有时间的长期性、信息丰富、准确可靠等优点,是研究不同施肥制度和耕作条件下土壤环境质量演变的重要手段。

1 土壤中的重金属的来源

土壤重金属的来源主要有两类,即自然源和人为源。自然源主要来自大气降尘;人为源主要来自污水灌溉、工业废弃物得不当堆置、矿业活动、农药和化肥等。其中Cd、Cr、Cu、K、Ni、Pb、Zn等金属元素是我国土壤环境质量标准中有着明确限量指标的元素,这些元素及其化合物是土壤中最常见的污染物质。

2 土壤中重金属对人类的影响

土壤从古至今一直是人类生存和发展不可或缺的物质基础,经济萧条过,但是人们对土壤的热爱和渴望一点没有因为其他因素有过任何的改变,土壤环境质量的好坏直接影响农业生产的产品的质量及其间接使用者的健康[3]。土壤的过度使用及污染使得本来就供给不足的耕地资源更是捉襟见肘,土壤资源的损失给人们的生产生活带来了巨大的压力。更重要的是,土壤中的污染物具有迁移性和滞留性,也就是说,在现有土壤已经被污染的同时,极有可能继续造成新的土壤污染,给农业发展带来很打的不利。土壤污染损失在造成严重的经济损失的同时,也给人民的身体健康带来的极大的威胁,不单单威胁到人民现在的身体健康,也对子孙后代的生产生活健康带去极大的安全隐患,不利于经济的可持续发展。

土壤污染也对其他方面存在一定程度上的影响[4],例如,土壤污染直接体现在地下水的水质;农作物的生长即粮食,蔬菜的产量;食品质量安全费用等等,土壤污染造成严重且长久的损失。国内外学者对重金属的研究一直没有间断过,研究的重点不约而同的选择了对重金属有效性的研究上[5],传统研究重金属有效性的思路主要集中在重金属全量的有效性及如何利用高等植物的毒理试验、微生物的活性等评价重金属的生物有效性[6],但不可否认的是,土壤中重金属元素的存在形态才应是衡量其环境效应的关键参数[7]。因此,对重金属形态的研究才是打破现有研究瓶颈的重要因素。

3 土壤中重金属污染的特点及危害

重金属进入土壤,其难移动性导致大量积累,造成土壤环境污染,从而影响到植物的生长,对动物、微生物、土壤酶的活动产生潜在威胁,关系到人类的健康[8]。重金属的积累必然影响到土壤理化性质和生物效应的变化,致使土壤肥力和质量降低。土壤重金属的含量及活性受施肥影响较大,许多重金属既是植物生长必需元素,又是环境污染元素。这些元素一旦过量,就会对土壤生物和植物生长产生毒害。在土壤环境中重金属污染特点可以分为两部分:一是土壤环境中重金属自身的特点,二是区别与水体和大气等介质中的特点[9]。

重金属的性质使然,其在土壤中具有难移动,污染危害周期性长的特点,所以关于重金属在土壤中环境行为的研究越来越收到重视。重金属的污染主要与其移动息相关,但重金属的传输和迁移都是以特定的形态来完成的[10-15]。从重金属理化性来分析,土壤中重金属不同形态间能力特性都是有差异的。在土壤中的迁移表现也各不相同,其迁移能力大小有直接决定了重金属生物的有效性以及对生态环境的危害程度。有些重金属是植物生长所需要的,但是过量的重金属则会引起植物体生理功能的紊乱[16]。植物体会产生营养不良,发生病变等异常。土壤微生物不能通过生物作用降解土壤中的重金属。所以重金属在土壤中不断的积累,被微生物吸收富集后通过食物链在人体体内积累,以此来危害人体健康。农作物中重金属主要来自土壤,这种污染具有隐蔽性高,长期存在并且不可逆转的特点,作物中重金属通过食物链的传递,给人体带来健康的风险。现有的研究结果表明,植物体能够吸收累积多少土壤中的重金属,主要取决于重金属元素的有效态,而农业生产中大量使用的化肥农药会改变土壤理化性质,从而影响到土壤中重金属有效态含量的变化,使有效态重金属比重增加,重金属移动性提高,毒性危害性提高,是产生农业面源污染的主要途径[17]。对于现代经济型农业而言,施肥可以有效的提高产能,提高土地利用效率,但是随着施肥总量的累积,土壤中重金属含量也必然随之增加,对土壤的本体有极大的破坏严重,对植物体及人体的危害也随之增大。

4 长期定位施肥对土壤中重金属影响的研究现状

长期定位试验有着其他如短期培养,定位培养等试验所不具备的解释问题的能力[18]。因为种种针对特定实验的需求人们对长期定位试验至今依然有着浓厚的兴趣。英、美等发达国家早已建立了多个时间长达50年以上的定位试验基地,其中兴建于1843年的英国洛桑试验站的长期定位试验至今已持续160多年的实验操作。有些长期定位试验项目常延续数十年乃至上百年之久[19],为了解某新兴农业耕作方式在同一条件下反复长期采用可能带来的后果提供了宝贵的科学资料,便于我们在农耕施肥选种方面做出更有益的选择。我国于20世纪70年代末至80年代初在全国化肥试验网中布置了一批肥料长期定位试验[20]。1987年又在全国重点农区和主要土壤类型上建立了9个土壤肥力和肥料效益长期定位监测基地[21]。到1994年共有超过10年的定位试验60多个。吉林农大试验田便是较早的一批重点农区和主要土壤类型的实验基地[22]。这些试验基本上反映了我国长期施肥的作物产量和土壤肥力变化规律,为我国不同地区肥料的宏观需求,合理配比和施用,以及因地因作物制宜生产专用肥料提供了依据。

5 土壤中重金属污染的防治及修复

对土壤污染的预防:控制和减少土壤对污染源的接触,是最有利快捷的方式。修复方式有以下几点:

(1)加大工业上三废排放的监管;

(2)加强土壤污灌区的监测和管理;

(3)合理的使用化肥及农药;

(4)增加土壤容量和提高土壤净化能力。

6 总结

就目前来看,对于土壤中重金属有效性的研究主要集中在两点。(1)土壤中全量的有效性;(2)怎样有效的利用高等作物的毒理研究以及运用微生物的活性去评价重金属的生物有效性。在整个过程中,衡量土壤中重金属对环境影响的效应,单单考虑重金属的总量是不足以全面说明其环境效应的,重金属元素的形态才是衡量的关键参数。

【参考文献】

[1]A. Navas, H. Lindhorfer. Geochemical speciation of heavy metals in semiarid soils of the central Ebro Valley (Spain)[J]. Environment International, 2003,29(1):61-68.

[2]IMPELLITTERI C A, SAXE J K, COCHRAN M, et al. Predicting the bioavaillability of copper and zinc in soils: Modeling the artitioning[Z].

of potential bilavailable copper and zinc from solid to soil solution[J].Environmental Toxicology and Chemistry, 2003,22(6):1380-1386.

[3]FERNANDEZ A J, TERNERO M, BARRAGAN F J, et al. An approach to haracterization of sources of urban airborne particles through heavy metal speciation[J]. Chemosphere-Global Change Science,2000(2):23-136.

[4]SASTRE J, HERNANDEZ E, RODRIGUEZ R, et al. Use of sorption and extraction tests to predict the dynamics of the interaction of trace elements in agricultural soils contaminated by a mine tailing accident [J]. Science of the Total Environment, 2004,329:261-281.

[5]韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1499-1502.HAN Chunmei, WANG Linshan, GONG Zongqiang, et al. Chemicalforms of soil heavy metals and their vironmental significance[J].Chinese Journal of Ecology, 2005,24(12):1499-1502.

[6]周生路,李江涛,等.长江三角洲地区土壤重金属生物有效性的研究:以江苏省昆山市为例[J].土壤学报,2008,45(2):240-248.

[7]ZHONG Xiaolan, ZHOU Shenglu, LI Jiangtao, et al. Bioavailability of soil heavy metals in the Yangtze River Delta: A case study of Kunshan City in Jiangsu Province[J]. Acta Pedologica Sinica, 2008,45(2):240-248.

[8]万红友,周生路,赵其国.苏南典型区土壤基本性质时空变化:以昆山市为例[J].地理研究,2006,25(2):303-310.

[9]WAN Hongyou, Zhou Shenglu, ZHAO Qiguo. Study on spatial and temporal variability of soil basic properties in typical area of southern Jiangsu Province: A case study in Kunshan City[J]. Geographical Research,2006,25(2):303-310.

[10]QUEVAUVILLER P, RAURET G., LOPEZ-SANCHEZ J F. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure[J]. The Science of the Total Environment, 1997,205:223-234.

[11]SAHQUILLO A, LOPEZ-SANCHEZ J F, RUBIL R, et al. Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction[Z].

[12]Sheppard S C , Grant C A, Sheppard M I , et al .Heav y metals in the environment risk indicato r f or ag ricultural inputs of trace elements to Canadian soils [J].J EnvironQua l,2009,38(3):919-932.

[13]L. Fanfani, P. Zuddas , A. Chessa. Heavy metals speciation analysis as a tool for studying mine tailings weathering[J]. Journal of Geochemical Exploration, 1997,58(2-3):241-248.

[14]A. Barona, F. Romero, C. Elejalde. Speciation of selected heavy metals in soils and plant availability[J]. Journal of Hazardous Materials, 1994,37(1):233-239.

[15]A. Kot, J. Namiesik. The role of speciation in analytical chemistry[J].TrAC Trends in Analytical Chemistry, 2000,19(2-3):69-79.

[16]陈怀满.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002,10.

[17]刘志红,刘丽,李英.进口化肥中有害元素砷、镉、铅、铬的普查分析[J].磷肥与复肥,2007,22(2):77-78.

[18]陈芳,董元华,安琼,等.长期肥料定位试验条件下土壤中重金属的含量变化[J].土壤,2005,37(3):308-311.

[19]任顺荣,邵玉翠,高宝岩,等.长期定位施肥对土壤重金属含量的影响[J].水土保持学报,2005,19(4):96-99.

[20]鲁洪娟,孔文杰,张晓玲,等.有机无机肥配施对稻-油系统中重金属污染风险和产品质量的影响[J].浙江大学学报,2009,35(1):111-118. LU Hong-juan, KONG Wen-jie, ZHANG Xiao-ling, et al. Risk of heavy metal pollution and product quality in rice-rape cropping system as affected by integrated fertilization with commercial organic manure and chemical fertilizers[J]. Journal of Zhe jiang University, 2009,35(1):111-118.