纳米技术的特性范例6篇

前言:中文期刊网精心挑选了纳米技术的特性范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

纳米技术的特性

纳米技术的特性范文1

[论文摘要]科技的发展,使我们对物质的结构研究的越来越透彻。纳米技术便由此产生了,主要对纳米材料和纳米涂料的应用加以阐述。

一、纳米的发展历史

纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。

二、纳米技术在防腐中的应用

纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米SiO2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米TiO2、SiO2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。

纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。

纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。

我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。

三、纳米材料在涂料中应用展前景预测

据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。

由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。

在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。

纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。

纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。

四、结语

由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。

参考文献:

[1]桥本和仁等[J].现代化工.1996(8):25~28.

纳米技术的特性范文2

关键词:纳米技术;机电工程;应用;摩擦性能;纳米材料

中图分类号:TP271+.4文献标识码: A 文章编号:

本文对纳米技术在实际应用过程中所存在的各种技术问题进行了探讨。纳米技术的快速发展对于科技发展是非常重大的突破,当前它已经运用在社会各个领域,纳米技术在机电工程中的运用更是成为其核心。表现在很多方面,本文从实例出发,展现纳米技术在机电领域的运用。

1.纳米技术介绍

所谓的纳米技术就是借用单一的分子、原则制造物质的一种科学技术,纳米科学技术已经成为了将很多现代的先进科学技术,作为基础科学技术,并且成为了现代科学和现代技术进行组合的重要产物之一,其中,现代科学主要包括分子生物学、介观物理、量子力学和混沌物理,现代技术主要包括核分析技术、扫描隧道显微镜技术、微电子技术以及计算机技术,纳米技术一定会引发起一系列的全新的科学技术,比如纳米机械学、纳米材科学以及纳米电子学等等。

纳米技术也被称为毫微技术,是对结构尺寸在0.1 nm-100nm范围之内材料的应用和性质的研究,从始至今的相关研究来看,人们将纳米技术分为了二种概念,第一种纳米技术的概念就是指分子纳米技术,这一概念将组合分子机器实用化了,因此,我们可以对所有这类的分子进行任意的组合,并且可以将任何种类分子结构进行制造,但是、这一种概念上的纳米技术仍然没有取得很大的发展;第二种概念将纳米技术看成了微加工技术的极限,第,种概念主要是从生物角度提出的,纳米生物技术中所包含的重要内容已经延伸到了细胞生物计算机开发和DNA分子计算机领域中。

2微型纳米轴承

当前形势下,纳米技术不仅仅是单一的一门新型技术或者学科,纳米技术被广泛的应用到了各类学科之中,其中,在机电工程中进行纳米技术的应用,已经对机电工程技术的变革产生了不可估量的重要作用。纳米技术在机电方面应用甚至是微观机械技术的产生已经成为了我们这个世纪进行研究的、核心的技术,许多国家都在纳米技术方面展开了越来越多甚至越来越深的研究,在机械工程方面,纳米技术在机电工程中应用主要存在微型轴承力面。传统的轴承的体积比较大,其摩擦力也仅仅能够靠来进行减少,但是,仍然不能够将摩擦力进行避免,美国科学家对其行了研究,并且研制出来一种没有摩擦的微型纳米轴承,微型纳米轴承主要包括以下两个特点:

第一,微型,微型纳米轴承的直径仅仅为一根头发半径的万分之一,其应用到机电系统微型的轴承只有1nm,为微型机械的千分之一。

第二,摩擦力极小如果轴承的体积很小,那么,套在一起,管子之间摩擦力就会将微型轴承弱点暴露出来,在其产生的摩擦力很大的时候,会导致微型轴承无法使用。通常制造的微型机械轴承与这种纳米轴承相比较,摩擦力仅仅是其最小值千分之一。

3 纳米技术马达

新一代的纳米技术马达是由美国一家公司生产,这种微型马达的体积只有一般电磁马达体积的二十分之一,它的长度比火柴杆还短很多,但是尽然能够负载四千克的重量,它的寿命却可以达到100多万次。这种马达主要是通过运用纳米技术制造智能材料来取代传统的铜线圈以及磁铁,所有它比传统的马达要更加的轻、噪音很低,成本也更加的低,可以说是世界上最静音的马达。当前这种微型马达在机械中运用的并不是很不多,主要用于汽车的电动车窗,这项研究同时也已经在深圳进行研发和生产。

4纳米磁性液体在旋转轴中的应用

通常情况下,静态密封都是采用金属、塑料或者像胶等等材料制作而成的O型环,将其作为密封的兀件。在旋转的条件下,动态密封一直没有对其问题进行解决,动态密封不能够在高真空、高速的条件进行动态的密封。纳米技术在很大程度上都对磁性液体在旋转轴中的进行起到了促进作用。我国的南京大学也已经成功的进行了硅油、二脂基、烷基以及水基等多种类型磁性液体的制成,电子计算机硬盘处也已经普遍的采用了磁性液体防尘密封,此外。磁性液体也对新型剂的制造起到了一定的促进作用,在机电工程中应用纳米技术的例子举不胜举,以上新兴技术的产生。我们能够很容易的看出纳米技术对机电工程的不断发展起到了深刻的影响。与此同时,与系统的机电工程相比较,由于纳米技术的各种优势才能够使得机电工程产生了显著的效果。

4.1纳米磁性液体在旋转轴中应用之尺寸效应

在纳米技术领域中,最为显著的效果之一是将旋转轴中的传统尺寸竿位进行了缩小,将其毫米单位转化成了纳米,而纳米也就相当于一米的十亿分之一,将纳米技术应用到机电工程中,可以将机械的体积大大降低,最终促使微型机械这种新型的机械的形成和产生.这种产生并不是传统的机械单纯的在尺度上产生了微小的变化,而通常指的就是可以进行成批制作的微传感器、微能源、微驱动器、集合微结构、信号、控制电路等等处置装置为一体的微型机电系统。大部分都是将纳米技术成果进行了运用,因此,它们已经远远的超过了传统机电的范畴和概念,而是基于现代的科学技术之上,并且作为整个的纳米科技中,重要的组成部分,以及用崭新的技术线路和思维方式指导之下的重要产物。

4.2纳米磁性液体在旋转轴中应用

纳米技术使原材料形成了更加微小的形态,其功能更加强大,不仅仅能够对传统材料进行一定的改良,同样能够使新材料源源不断的产出。磁性液体密封的技术更加证明了磁性液体能够被磁场控制这一特性,将纳米单位液体置于磁场之内,最终达到密封效果。与此同时。在运用材料中,我们能够将微量元素融入到基础的材料之中,以便能够达到更好效果。

4.3纳米磁性液体在旋转轴中应用之材料摩擦性能

纳米技术摩擦性能已经成为了其最为显著的特性之一,在机电工程领域中,各种轴承都会产生摩擦,存在着摩擦性能,但是,自从纳米材料出现了以后,各类机械的尺寸和结构都变小了,对于零件过小,其摩擦力就变得尤其重要,如果其摩擦力相对来说比较大,那么就会造成零件的磨损。进而,纳米技术也就对这问题进行了克服,现在已经出现的纳米材料几乎处于无摩擦状态。

4.4纳米技术在机械行业中的发展前景

(1)汽车工业以及机械的滑配原件,例如:滑轨、轴承上应用的纳米陶瓷镀膜能产生磨擦界面,这样可以大大地减低磨损并且能够提高负载。

(2) 塑胶流道的低粘应用,例如:拉丝模、套筒以及热胶道,这样可有效地减少积料碳化的产生概率。

(3)包封短射、射出成型时发生的粘模 、镜面雾化以及拖痕均具有重要的改善,特别是在和顶针上所展现出来的干式,这样更是任何金属都不能表现出来的优异性。

(4)橡胶、IC 封装胶和发泡塑料,因为其具有极高的粘着性, 所以必须借助大量的脱模剂来协助脱模, 这样纳米陶瓷的荷叶效应就可大大地减少脱模剂的使用和模具清理时间。

(5)纳米陶瓷的低沾粘、低摩擦特性能够使塑胶在模具内的流动性大大提升, 尤其是高精度模具,例如:塑胶镜片、薄光板、汽车聚光灯罩等一些模具应用后对产品的使用均有显著的改善。

纳米技术的特性范文3

陶瓷可以做成刀具,只要在烧制过程中加入纳米材料;打针可以不痛也不出血,药物反而更容易被人体吸收,只要使用无痛纳米微针;液晶显示器可以显示效果更好,只要用纳米微球作液晶板间的“支架”;使用纳米技术,一分钟就能分辨出地沟油;使用纳米技术,中巴车充电三十分钟就能从苏州开到南京……拥有纳米技术,即使没有刘谦,也能见证奇迹。

事实上,纳米技术由来已久。1990年,第一届国际纳米科学技术会议召开,这是纳米技术诞生的重要标志。在此后多年中,纳米技术只是扮演了一个冷冰冰的科学名词。如今,其已经悄然蜕变,并走进了人们的衣食住行。更值得欣慰的是,将来纳米技术还能被广泛应用于七大新兴产业的上游高端环节,引领新兴产业发展,推动战略性新兴产业发展。

据了解,纳米技术理念最早由诺贝尔物理学奖获得者费曼提出。作为一个长度单位,纳米是十亿分之一米。因为在1~100纳米的尺度内,物质特性发生许多不同于宏观世界的物理和化学变化,而正是这些特性,注定纳米技术必将对产业带来颠覆性的革命。

细数纳米技术对世界产生的深远影响:除了大量原创性成果不断涌现,近十项重大突破性技术荣获诺贝尔奖,材料、能源、微电子、生物技术等众多产业领域发生了深刻的变革,产业规模迅速壮大。美国市场研究人员预测,到2014年,全世界纳米技术产业市场规模将到达2.6万亿美元,相当于IT和通信两大行业的总和。

苏州纳米技术产业发展首席顾问,中科院院长、国家纳米领域首席科学家白春礼院士曾这样预测纳米技术产业的未来:会像今天的计算机技术一样普及。他指出,纳米技术是对21世纪一系列高新技术有重要影响的关键技术,将引发人类社会的新一轮产业革命。纳米技术及应用国家工程研究中心主任助理何丹农也曾指出,纳米技术与信息技术、生物技术共同成为21世纪社会发展的三大支柱,它是当今世界大国争夺的战略制高点。

如此,在全球范围内,世界主要国家都把推动新一轮产业革命的纳米技术产业列入国家重大战略性产业并不意外。而各国都在加快布局,抢占纳米技术的战略制高点。韩国、美国、日本、欧盟、俄罗斯等世界主要国家都将纳米技术产业作为国家重大战略性产业,纷纷制定国家层面的发展战略和计划,重视政府资金投入,强化产业国际合作与交流。

韩国最为突出。据了解,韩国正大力发展纳米生物科技、纳米能源、纳米材料技术、纳米环境等产业。韩国甚至还为纳米产业的发展制定了特别法,过去十年财政投入超过20亿美元。此外,韩国政府还整合教育部、科技部等相关政府部门,实施2020计划,渗透新市场,加快纳米产业化。美国也不例外。美国也从2000年开始实施《国家纳米技术计划》,近几年在纳米技术领域的研发投入都保持在每年近20亿美元的规模。

2005年,欧盟制定《欧洲纳米技术发展战略》,欧盟成员国德国、法国、芬兰等分别制定了本国纳米技术发展计划,欧盟及主要成员国已累计投入超过140亿美元。俄罗斯从2001年开始重点推动纳米技术产业,2007年专门成立国有“俄罗斯纳米技术集团”推动产业化发展。此外,埃及、印度、泰国、沙特、南非等国也不甘落后,加大研发投入和产业化促进力度。全球形成争夺纳米科技制高点的竞争态势。

在纳米技术领域,中国也不落人后。中国从20世纪80年代起就一直高度重视纳米技术,作为较早开展纳米技术研究的国家之一,2001年就成立国家纳米科技指导协调委员会,同年7月科技部等五部委《国家纳米科技发展纲要(2001~2010)》。

科技部技术研究司司长张先恩指出,上世纪80年代初,中国纳米领域的量几乎为零,进入21世纪以来,呈曲线上升的趋势。直至去年,中国的量占全世界总量的20%,同时论文的引用次数也在增长,其中中科院的论文的引用次数位居全国首位。

数据显示,2001~2009年,中国用于纳米科技的研发经费超过26亿元人民币。“973”计划、“863”计划设立纳米技术专项,吸引了包括国家杰青、中科院百人、教育部长江学者在内的约342名高端人才从事纳米技术研究,在基础研究方向取得众多原创性技术成果;清华大学等50所大学和中科院的36个研究所从事纳米技术研究;2009年,我国发表纳米科技SCI-E论文总数首次超越美国,跃居世界第一,专利申请量世界第二;先后建设“国家纳米技术科学中心”和“纳米技术及应用国家工程研究中心”等国家纳米科技研发载体。

纳米技术的前景更得到产业界的认可。众多世界500强企业看好纳米技术产业的战略前景。美国IBM公司持续20几年推进纳米技术研发,在多个领域拥有突破性的优势。2010年4月,韩国三星公司开始建设“三星纳米城”,全面推进纳米级超精密半导体产业。日本的索尼公司积极布局纳米科技,在半导体显示及存储领域已经取得优势地位。

毋庸置疑,发展纳米技术与相关产业,对提升国家及区域竞争力的巨大战略意义。然而,与物联网等相关产业类似,纳米技术问世也已有20余年时间,但现在,技术产业化过程并不理想。“纳米技术成果产业化之路走得并不顺畅。”业内人士告诉记者。

科技部万钢部长(国家纳米科技指导协调委员会主任)在总结过去十年中国纳米科学领域取得的成果时指出,中国已迈入纳米大国行列,但还不是纳米强国。这主要表现为产业化水平低,无规模企业广泛参与,不能有效推进协调纳米技术资源。亟待从产业发展角度对国家纳米技术产业进行整体规划,形成良好的技术成果产业化机制。

在联想之星副总裁梁青看来,这正是纳米技术产业化面临的最大问题。“没有设备、没有原料、没有应用,一切都要从新开始。这也是我们在投资过程中面临的最头痛的问题。材料做出来了,但还得等6年才能实现部件销售,应用时间更长。因为周期长,投资额也很大。”

他告诉记者,“纳米技术是变革性的,不是改良性的。其产业化周期很长,需要产业链上下游的协调与配合。正常情况下,要先做出材料,再做出配件,再做出应用。但现实的情景是,很多部件企业会认为,上游材料没有大规模生产前,不敢冒然采用,而材料大规模生产至少要两三年,部件大规模生产也要两三年,应用同样如此。它们之间的矛盾很明显。”

然而,在纳米技术产业,国外并没有成功经验可以借鉴。梁青指出,“因为,在纳米技术领域,中国并不落后。但国外有更多的钱,更好的投资环境,企业不是那么急功近利,而国内中小企业功利性比较强。现在,很多地方政府和学研机构对科技成果产业化也有疑虑。国家科技经费投资研发出某项技术,后被企业以某种方式获取的状况时有发生。当然,更应该看到,技术如果一直放在研究所里就不值钱。”

不久前的一项调查结果显示,日本80家大企业中,有大约40%的企业设置了专门机构,已经或者即将着手发展这一高新科技。三菱、伊藤忠和丸红等综合商社已经或计划同美国的风险企业设立合资公司,把纳米技术列为新的发展项目。富士通公司设立了纳米技术研究中心,住友电工公司也组织了纳米技术研究班子。

在日本,企业界是发展纳米技术的主力军。与之不同,中国在纳米技术产业化过程中,并未实现“以企业为主体”。尽管从纳米领域的专利方面看,中科院申请的数量已经位居世界排名的首位,但是与其他国家相比,中国的专利大都是研究机构在申请,而在国外企业却占主导,“这也说明中国纳米企业科研的进展还有很大的努力空间。”张先恩说。

何丹农认为,在纳米技术成果集成方面,要始终坚持把市场需求作为出发点和归宿点,选择具有市场前景的技术和成果。由于纳米技术的跨学科性、实验和技术上的局限性、技术的成熟度不够、研究成本高周期长等问题,仅靠一个工业部门或者研究机构将无法加快推动纳米技术产业化进程,所以,急需采用合理的产业化与投融资模式。

梁青认为,在纳米技术产业并没有规模化的企业,而这制约了产业化的进程。“事实上,只有像联想、3M等大型企业才会考虑三五年后的事情,一般的中小企业无暇,也没有实力去考虑长远。所以,它们就宁愿等着,反正没有威胁,它并不着急。而最着急的是新创立的企业,但它们也是干着急。很多纳米产业投资进去后,都出现越来越难熬的状况。”

当然,资本的助力对纳米技术产业化来说也必不可少,然而,现在资本市场偏好投资中后期项目,而不愿意投资早期项目?而这对于更多处在孵化阶段的纳米技术产业的融资环境更是雪上加霜。梁青说,“很多项目就是在从科技部到发改委的阶段,中间有一个断层,没有人管。但是,对国家来说,如果不做纳米技术,可能会丧失未来。”

他建议,“能不能让政府投资,材料、部件、应用等三个层面的企业一起干。在遵循市场规律的同时,给予足够的扶持政策,消除企业对规模化生产的疑虑。这等于把一个串行动作,变成一个并行的。如果能做到这一点,产业就能非常快地推进,长远对行业是有好处的。”

纳米技术的特性范文4

【关键词】纳米材料;纳米技术;应用

有人曾经预测在21世纪纳米技术将成为超过网络技术和基因技术的“决定性技术”,由此纳米材料将成为最有前途的材料。世界各国相继投入巨资进行研究,美国从2000年启动了国家纳米计划,国际纳米结构材料会议自1992年以来每两年召开一次,与纳米技术有关的国际期刊也很多。

一、纳米材料的特殊性质

纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、剂等领域。

(一)力学性质

高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

(二)磁学性质

当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。目前巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。

(三)电学性质

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研制出由碳纳米管组成的逻辑电路。

(四)热学性质

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。

(五)光学性质

纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中应用广泛。由于量子尺寸效应,纳米半导体微粒的吸收光谱一般存在蓝移现象,其光吸收率很大,所以可应用于红外线感测器材料。

(六)生物医药材料应用

纳米粒子比红血细胞(6~9nm)小得多,可以在血液中自由运动,如果利用纳米粒子研制成机器人,注入人体血管内,就可以对人体进行全身健康检查和治疗,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物等,还可吞噬病毒,杀死癌细胞。在医药方面,可在纳米材料的尺寸上直接利用原子、分子的排布制造具有特定功能的药品纳米材料粒子将使药物在人体内的输运更加方便。

二、纳米技术现状

目前在欧美日上已有多家厂商相继将纳米粉末和纳米元件产业化,我国也在国际环境影响下创立了一(下转第37页)(上接第26页)些影响不大的纳米材料开发公司。美国2001年通过了“国家纳米技术启动计划(National Technology Initiative)”,年度拨款已达到5亿美圆以上。美国科技战略的重点已由过去的国家通信基础构想转向国家纳米技术计划。布什总统上台后,制定了新的发展纳米技术的战略规划目标:到2010年在全国培养80万名纳米技术人才,纳米技术创造的GDP要达到万亿美圆以上,并由此提供200万个就业岗位。2003年,在美国政府支持下,英特尔、蕙普、IBM及康柏4家公司正式成立研究中心,在硅谷建立了世界上第一条纳米芯生产线。许多大学也相继建立了一系列纳米技术研究中心。在商业上,纳米技术已经被用于陶瓷、金属、聚合物的纳米粒子、纳米结构合金、着色剂与化妆品、电子元件等的制备。

目前美国在纳米合成、纳米装置精密加工、纳米生物技术、纳米基础理论等多方面处于世界领先地位。欧洲在涂层和新仪器应用方面处于世界领先地位。早在“尤里卡计划”中就将纳米技术研究纳入其中,现在又将纳米技术列入欧盟2002——2006科研框架计划。日本在纳米设备和强化纳米结构领域处于世界先进地位。日本政府把纳米技术列入国家科技发展战略4大重点领域,加大预算投入,制定了宏伟而严密的“纳米技术发展计划”。日本的各个大学、研究机构和企业界也纷纷以各种方式投入到纳米技术开发大潮中来。

中国在上世纪80年代,将纳米材料科学列入国家“863计划”、和国家自然基金项目,投资上亿元用于有关纳米材料和技术的研究项目。但我国的纳米技术水平与欧美等国的差距很大。目前我国有50 多个大学20多家研究机构和300多所企业从事纳米研究,已经建立了10多条纳米技术生产线,以纳米技术注册的公司100多个,主要生产超细纳米粉末、生物化学纳米粉末等初级产品。

三、前景展望

经过几十年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。

纳米技术目前从整体上看虽然仍然处于实验研究和小规模生产阶段,但从历史的角度看:上世纪70年代重视微米科技的国家如今都已成为发达国家。当今重视发展纳米技术的国家很可能在21世纪成为先进国家。纳米技术对我们既是严峻的挑战,又是难得的机遇。必须加倍重视纳米技术和纳米基础理论的研究,为我国在21世纪实现经济腾飞奠定坚实的基础。整个人类社会将因纳米技术的发展和商业化而产生根本性的变革。

纳米技术的特性范文5

[关键词] 纳米技术 体育 道德

纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。纳米材料的光、电、热、磁等物理性质与常规材料不同,出现诸多新奇特性和优良性能,在材料、电子、光电等领域得到广泛的应用。现代体育运动是随着科学技术的进步而发展的,现代科学技术及其成果在体育运动中的广泛渗透与应用,给体育运动带来勃勃生机。在现代体育中,纳米技术越来越多的应用于运动器材和装备中。根据著名商业经济杂志《Forbes》2003和2004年十大纳米产品统计,医用清洁类、服装纺织类的许多产品都率先为运动员所用,与体育运动相关的纳米产品几乎占据50%。

一、以减阻作用为主的产品

涉及减阻作用的产品,主要是那些速度竞争的项目。如2000年奥运会上的“Fastskin泳衣”是以聚四氟乙烯为主的材料制成。研制这种泳装的目的是要减少人体与水的运动阻力,并通过弹性材料使运动员更合理地分配肌肉和关节的负荷,更容易产生运动动力。运动船艇减阻涂层是以强疏水光固化含氟蜡为基质材料,将纳米粒子通过表面修饰和特殊工艺处理,使之均匀分散于基质蜡中形成的。

二、以减少重量、增加性能等综合作用的产品

在球拍中,网球拍、羽毛球拍、乒乓球拍已经率先采用纳米技术,它们在减轻球拍重量的前提下,增加其性能,如弹性、耐用度、手感等;而自行车、跑鞋作为实现最快速度的装备,则要求以重量轻,抗冲撞能力强为前提。如2005年环法自行车赛上,瑞士Phonak队的运动员骑着车架中含有碳纳米管的自行车参与比赛,这款自行车车架重不到一公斤,并且具有很好的刚性与强度。

三、以增强弹性或增加牢度为主的产品

在田径比赛中,跑道的好坏往往决定径赛运动员的成绩,纳米跑道是在传统的制造跑道的材料――聚氨酯中加入一定比例的纳米粉体得到的纳米聚氨酯,经过实验对比,纳米跑道不但秉承了一般聚氨酯塑胶的特点,而且有更佳的耐磨、阻燃及防霉性能。其优良的回弹值及压缩复原性更是备受运动员推崇,在纳米跑道中比赛,运动员会有更惬意的感觉,可创造出更优异的成绩。撑杆跳用的撑杆从过去竹竿到玻璃钢尼龙,再到现在的纳米碳纤维材料,已使世界纪录提升了2米多。这些以增加比赛器械弹性作用的新材料为比赛的精彩程度增添了科技含量。

四、以疏水作用为主的产品

用纳米技术处理过的疏水织物面料不仅有超疏水、疏油的作用,而且能保持原有织物的任何特性与特征。这种疏水层可以减弱纺织品表面张力,从而促成水珠形成从织物表面滑落,而不是被织物吸收,但水蒸气和热量却可以畅通无阻地通过此面料,排出体外。在这些疏水产品中,以滑雪服在竞技体育中应用最为普遍,倘若赛艇、皮划艇等水上项目运动员身着纳米防水服,冬日训练便不用忍受湿衣冷衫之苦。

五、以防护和保健作用为主的产品

纳米药物在医学领域中具有极其重要的地位,在提高药物的生物利用度、减少副作用等方面起着十分重要的作用。纳米中药由于小的粒径和大的选择吸附能力,可能有更强的穿透能力,从而使更多的纳米中药穿透皮肤屏障,进入血液循环。

总之,随着纳米科技的不断发展,如何将纳米科技真正用于体育运动,使运动员的运动能力和技术水平得到更充分的发挥,运动成绩的提高更加有保证已经成为研究重点。然而,人类对纳米材料的认识尚属起步阶段,对它可能对机体产生的潜在危害方面却缺乏足够的重视,世界范围内还没有任何研究机构对纳米材料进行过安全性评价,纳米技术的不合理使用存在影响运动员的身心健康,违背奥林匹克精神和体育伦理道德的潜在危险。例如,纳米药物由于小的粒径可以穿透皮肤屏障,进入血液循环,发挥比常规药物更好的功效,但是反过来,药物粒径变小后它的毒副作用也得到不同程度的增大,现已证实常规药物被纳米颗粒物装载后,急性毒性、细胞毒性、肾毒性等明显增强。器材的高科技化可能会削弱运动员在竞技体育中的主体地位,从而变相剥夺运动员的竞赛权利、若运动成绩的提高在较大程度上依赖于器械和服装的高科技化,可能会带来一些新的不公平、器材作弊也可能会成为兴奋剂的另一种表现形式。因此竞技体育在充分享受纳米技术带来巨大恩惠的同时,也面临严峻的挑战。必要全面、客观、公正审视纳米技术,为纳米时代竞技体育的健康稳定发展提供理论上的依据,顺应奥运会提出的更干净、更人性、更团结这一精神。

参考文献:

[1]余卫东胡燕王开利卞志昕阎逢元任玉枝周志勇:纳米技术在竞技体育中的应用[J].体育科研,2006,27(3):33~35

[2]李马仁:纳米技术与中国竞技体育的发展[J].哈尔滨体育学院学报,2006,24(4):4~5

[3]谭蕾刘小湘:现代奥林匹克运动的科技化趋势[J].辽宁体育科技,2005,27(3):13~14

[4]任玉枝王开利余卫东周志勇郑樊慧:纳米拒水、抗菌技术在竞技运动服装中的应用研究[J].体育科研,2006,27(3):36~38

[5]徐红梅:现代生物技术和纳米技术的发展对竞技体育的影响[J].南京林业大学学报(人文社会科学版),2005,5(4): 124~125

纳米技术的特性范文6

关键词: 纳米技术意义展望

一、纳米技术的内涵

纳米技术是一门在0.1―100nm空间尺度内操纵原子和分子,对材料进行加工、制造具有特定性能的产品,或对物质进行研究、掌握其原子和分子的规律和特征的高新技术学科,被认为是“今后十年最可能使人类发生巨大变化的十项技术”之一。

纳米技术包含下列四个主要方面:(1)纳米材料。当物质到纳米尺度以后,即0.1―100nm这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,又不同于宏观的物质的特殊性能构成的材料,即为纳米材料。(2)纳米动力学。主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。用的是一种类似于集成电器设计和制造的新工艺,特点是部件很小,刻蚀的深度往往要求数十至数百μm,而宽度误差很小。(3)纳米生物学和纳米药物学。如在云母表面用纳米微粒度的胶体金固定dna的粒子,dna的精细结构,等等。纳米生物学发展到一定技术时,可以用纳米材料制成具有识别能力的纳米生物细胞,并可以吸收癌细胞的生物医药,注入人体内,用于定向杀癌细胞。(4)纳米电子学。包括基于量子效应的纳米电子器件,纳米结构的光/电性质,纳米电子材料的表征,以及原子操纵和原子组装,等等。当前电子技术的趋势要求器件和系统更小、更快、更冷。更快,是指响应速度要快。更冷,是指单个器件的功耗要小。但是更小并非没有限度,纳米技术是建设者的最后疆界,它的影响将是巨大的。

二、研发纳米技术的重要意义

在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术、新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方英寸400G的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉。高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。纳米材料和纳米结构的应用将对调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。

研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(0.1―100nrn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,因而纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,又不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件及纳米复合传统材料改性正孕育着新的突破。

纳米技术作为一门新兴的学科,被誉为21世纪最具有发展前景的技术,是对未来经济和社会发展产生重大影响的一种关键性前沿技术。纳米技术在社会上的应用前景非常广阔,纳米技术不仅会推动新产品的开发,而且将为改善人们的生活环境,提高生活质量作出不可估量的贡献。纳米技术将成为21世纪新型技术的发展新方向,相信在不久的将来,我们将跨入一个全新的时代。

三、对纳米技术未来发展的展望

纳米技术将从根本上改变未来制造的两种基本类型方式――连续制造和离散制造。连续制造是指批量物质或材料的生产,例如化学品或金属卷材。离散制造是指单个配件的生产,例如螺栓或元件(集成电路)或组装系统(计算机)。对于纳米尺度制造来说,原子、分子与团簇都是生产“原料”。因此,纳米尺度制造的生产工艺和设备与目前应用于大于100nm的微制造工艺与设备将会有很大不同。纳米制造未来的研究方向包括以下几个。

1.材料开发

了解和模拟纳米尺度物质合成、操控及监测的现象和工艺,这是开发新型纳米制造技术所需的;开发表征、监测、筛选、分离和控制纳米结构大小/形状/多分散性和表面或体积特征的方法。

2.制造纳米系统的材料操控与控制

分子、大分子、纳米颗粒及纳米尺度组件的定位、定向、分散、集群和导向自我组装,非共价键和信息内容是不可或缺的;纳米材料的包装和输运,如通过超声和纳米流化床;纳米自组装结构融入功能器件和系统。

3.与微观和宏观系统相结合

把自下而上和自上而下的制备技术融入低本高效的优化生产制造中;制造技术的尺度放大、并行和集成能力,如平行探针或束阵列等方法。

4.制造工具

改造和控制表面组成/结构,以确保随后组装的稳定性和功能性;开发可支撑的、用户与环境友好、廉价而高产的制图技术;开发和运用纳米结构复制方法;纳米制造结构和性能的低本高效清除/修复/接缝技术,等等。

5.测量和标准工具

纳米颗粒与结构的化学和结构表征技术(除几何形状特征外);开发三维加工和非破坏性表面下探测技术;把在线传感与监测技术同制造方法融合在一起;远程制作和远程表征设备和仪器,等等。

参考文献: