前言:中文期刊网精心挑选了继电保护的特性范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
继电保护的特性范文1
【关键词】电力继电保护可靠性特点
中图分类号: U224 文献标识码: A
近些年来,随着科学技术的突飞猛进,电子技术及电子计算机网络技术的不断发展,为电力继电保护系统的发展注入了新鲜的活力,使电力继电保护系统、装置、设备朝着计算机化、网络化、信息化、一体化、智能化方向快速发展。这就给我们从事电力继电保护的工作人员提出了新的挑战,因此在当今时代,如何正确抓住电力继电保护系统、设备的特点,来提高电力继电保护的可靠性,安全性,稳定性,对整个电力、电网系统的安全运行具有重要的意义。
一、电力继电保护的含义
什么是继电保护装置呢,它的具体含义是什么呢?根据研究与了解,所谓的继电保护装置就是为了降低电力系统运行的故障隐患,及时处理电力故障,缩减故障处理开支,维护电力系统稳定的一种电气装置。该装置是主要利用继电保护技术原理设计而成,由于其独特的电路保护特性,所以近年来引起人们的关注并得到广泛的利用。电力继电保护装置发展至今,已经成为电力、电网系统安全、稳定、持续运行的可靠保证,也是电力企业发展的重要基础,对人类电力事业的发展具有重要的意义。
二、继电保护装置的要求及特点
1、根据对电力继电保护装置多年的应用经验总结及对未来应用的研究表明,继电保护装置的基本要求有以下几点,即要求可靠性强,速动性强,灵活性强等。所谓的可靠性强所指的就是继电保护装置的发明与使用最基本的目的就是维护电网系统电路的安全运行。但是,在电力保护装置实际运行过程中,由于一些工作人员的操作不当以及电路运行故障等综合因素的影响,导致该装置出现拒动或误动的错误指令。这些指令的发出,不仅不能起到基本的保护作用,反而影响了电路的正常运行。因此,这就要求继电保护装置具有超强的运行可靠性,这就要求我们设计人员和工作人员确保继电保护装置的设计原理的先进性,安装调试的正确性、无误性,其次还要求继电保护装置的各个组件质量的可靠性,最终使继电保护装置达到保护的可靠性、稳定性、安全性。
其次,就是速动性。所谓的速动性指的就是在电流量与继电保护装置的故障报警速率成反比。因此只有提高它的速动性,才能保证在电力系统出现大的突发故障时,及时、有效快速的向工作人员报警,提高故障处理速度,减少经济损失。
最后,就是要求具有超强的灵敏性。其所指的就是继电保护装置内部的程序能够对出现的不同性质、不同问题的故障及时的采取保护措施、发出警报,并且能够对故障进行简单的处理,来降低故障问题所带来的危害与影响。
2、我们来说一说继电保护技术的特点,其主要有以下几个特点。
1、自主化运行率高,使得继电设备具有很强的记忆功能,此外继电保护能更好地实现故障分量保护,提高运行的正确率。
2、兼容性辅助功能强,统一标准做法的选用,便于统一标准,并且装置体积小,减少了盘位数量,在此基础上,还可以扩充其它辅助功能。
3、操作性监控管理好,该技术主要表现在一些核心部件不受外在环境的影响,能够产生一定的使用功效。
三、如何提高继电保护的可靠性
继电保护装置的安装主要是保护电路运行过程中各个电路配件的安全性。提高继电保护装置的可靠性,需要从以下几个方面落实。
1、继电保护装置检验应注意的问题。将整组试验和电流回路升流试验放在本次检验最后进行,这两项工作完成后,严禁再拔插件、改定值、改定值区等工作。
2、定值区问题。定值区数量的激增是电力系统与计算机网络系统发展的一个重要表现,它能够适应继电保护装置运行的不同需求,确保了电力系统运作的稳定性。同时由于定值区数量增加,人们对不同的定值数据管理出现纰漏,为此应该加强对定值区的管理,派遣专业技术人员对其进行操作,并将调整的定值数据及时更改记录。
3、一般性检查。一般性检查虽然不如其他专项检查技术要求难度高,但是其检查质量的好坏也直接关系到继电保护装置的运作。由于一般性检查工作比较琐碎、简单,因此,到目前为止还没有引起人们的重视,一方面没有及时进行一般性检查,另一方面一般性检查敷衍了事,没有得到具体的落实。一般性检查主要包括清洁和固定两个方面。机械表面灰尘过多,可能提高机械的运行温度,降低机械使用寿命,而细小处螺丝和链接的松散,可能存在重大的安全隐患。
4、接地问题。①保护屏的各装置机箱、屏柜等的接地,必须接在屏内的铜排上。②电流、电压回路的接地也存在可靠性问题,如接地在端子箱,那么应检查端子箱的接地是否可靠。
四、电力系统继电保护技术的发展
在输变电行业中,单片机控制技术具有先天优势,在控制技术或电子信号方面,可大大提高控制与保护的精度、速度、范围,而且还能与计算机联网,构成系统化管理体系和无人值守的站点,极大地降低了工作人员的劳动强度,提高了安全性。
1、计算机化。随着电路承载输电量的增加,电力系统的工作任务量增大,工作难度系数提升,因此,与计算机技术相互结合,实现继电保护装置的计算机化是未来该装置发展的一个重要方向。计算机化的落实和完善能够提高信息数据处理分析的能力,并提高信息的存储量,方便管理人员及时调阅相关数据。但是,目前的计算机化还不够成熟,需要投入更多的科研力量和研究资金等,只有这样计算机化的发展趋势才能更好的为继电保护装置服务,最终提高电力系统的整体服务质量和经济效益。
2、网络化。计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,它深刻影响着各个工业领域。实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。
3、保护、控制、测量、数据通信一体化。随着继电保护装置与计算机网络系统形成了密切的联系,继电保护装置的功能也突破了原有的保护职能。通过对网络技术的运用,继电保护装置在电路无故障正常运行的条件之下,能够分析电路运行的基本数据,并对数据进行相应的调整、控制和分析,真正实现了继电保护装置保护、控制、测量与数据通信的一体化。
4、自适应控制技术。该技术能根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护。自适应继电保护具有改善系统的响应、增强可靠性和提高经济效益等优点。
5、智能化。近年来,人工智能技术开始被应用在继电保护研究应用。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法可迎刃而解。
结语:综上所述,电力作为当今社会发展的主要能源之一,对国民经济的发展和人民生活水平的提高起着极其重要的作用,而继电保护系统作为电网安全运行的重要保障,就要求我们从事继电保护的工作人员要不断提高自身的专业水平、工作素质、创新能力,不断提高继电保护装置的可靠性,来满足人们生产、生活的需要。
参考文献
继电保护的特性范文2
关键词 保护性耕作;优势;性质;特点;主要技术
中图分类号 S345 文献标识码 A 文章编号 1007-5739(2013)03-0274-01
最近几年保护性耕作在辽宁省彰武县双庙乡发展特别快。通过2008―2011年连续4年的实际应用取得了很好效果,仅玉米作物每年都要增收35~50 t。越来越多的农民认识到要想多收获粮食必须改变传统的种植方法,建立一套适合该地区旱作农业区机械化保护性耕作技术体系。
保护性耕作是通过对农田实行秸秆覆盖还田和免耕少耕,控制沙尘污染和土壤风蚀、水蚀,节能降耗和节本增效,以及提高土壤肥力和抗旱节水能力的一项先进的农业耕作技术。2008年开始双庙乡保护性耕作在白家村、三台子村、明水村,继而又在杜家村、任家村、二台子村全面铺开。2011年在二台子村、杜家村又实施了666.67 hm2秸秆还田保护性耕作面积。项目完成后,项目区旱地玉米平均增产20%,玉米降低生产成本10%~15%,增加农民收入20%~30%,特别是双庙乡玉米面积每年达到2 000 hm2,仅保护性耕作一项就使农民增产玉米2 000 t左右。现将保护性耕作的优势、性质、特点以及主要技术总结如下。
1 保护性耕作在农业方面的优势
一是保肥。地表覆盖的秸秆腐烂后形成大量有机肥,可明显提高土壤表层有机质含量,同时速效氮、速效钾及各种微量元素的含量都有所增加,使土壤结构明显改善。二是保土。由于秸秆覆盖地表及不翻转土壤,减少了地表径流及风蚀、水蚀造成的土壤流失。三是保水。由于秸秆覆盖地表,减少雨水的地表径流和蒸发,增加了土壤入渗能力。四是减少劳动力、机械投入及作业程序,节约生产成本。五是保护生态环境。由于根茬固土和免耕秸秆覆盖,土壤不再翻耕,减少风、沙、尘的扬起,保护了生态环境[1]。六是增产效果明显。双庙乡杜家村一农户在自己家的土地上连续3年进行了秸秆还田保护性耕作试验。保护性耕作区的玉米与传统耕作相比,平均增产25%。特别是在大旱之年,抗旱效果更加明显,在前年后期作物干旱情况下,试验区的玉米产量达到10 125 kg/hm2,而传统耕作产量仅7 350 kg/hm2,产量提高了37.8%。
2 保护性耕作的性质及其特点
保护性耕作技术是相对人蓄力的保护性耕作而言,其主要作业如深松、秸秆还田、免耕播种等需要使用机械来完成[2]。保护性耕作技术是用大量的秸秆、残茬覆盖地表,将耕作减少到只要能保证种子发芽即可,并且主要用农药来控制病虫害的一种新型耕作技术。
保护性耕作技术的主要内容:一是秸秆残茬与表土处理;二是免耕施肥播种;三是杂草及病虫害防治;四是合理深松[3]。
保护性耕作技术特点:一是秸秆腐烂形成大量有机质,增加土壤肥力,改善土壤结构;二是深松打破犁底层,有利于雨水下渗保存和作物根系的生长,提高雨水的贮量;三是作物秸秆覆盖地表,减少雨水地表径流和水分蒸发,提高雨水的利用率;四是减少对土壤耕作层的破坏,降低生产成本[4]。
保护性耕作过程为:表土处理(浅旋、耙压或者深松)―免耕播种机播种―除草、防治病虫害―联合收割机收获(秸秆粉碎一次完成);而传统的生产过程为:深耕翻―耙压―运土杂肥―施肥整地―播种―镇压―防草、病虫害―收获―拉运秸秆[5]。从两者的生产过程可以看出其区别:保证足够的秸秆覆盖地表、减少耕作次数、生产成本低、粮食产量增加。
3 主要技术
3.1 秸秆覆盖技术
秸秆覆盖按覆盖量可分为:全量覆盖、部分覆盖、留茬覆盖。按照覆盖状态可分为:立秆覆盖、倒秆覆盖、粉碎覆盖。
3.2 免耕及少耕技术
免耕是除播种之外不再进行任何耕作,少耕包括深松与表土耕作。免耕需要一定的条件,否则长期免耕可能发生土壤板结、播种质量下降、作物根系发育变差、早衰减产等问题[6]。免耕要求的条件有:土质为砂壤土、有足够的秸秆覆盖、腐烂较快,机具性能过关,驾驶员和农户有足够的管理能力等[7],否则应该开展深松作业。深松一般采用间隔深松,30 cm即可,3~4年进行1次。少耕作业是表土耕作,播种前进行地表浅松以提高地温和消灭杂草,浅松机的平铲从地表下8~10 cm处通过[8]。
3.3 杂草病虫害防治技术
杂草种子大部分分布在土壤5 cm以内的浅表土中,向下呈递减分布,且萌发比较集中,主要使用化学药剂进行除草。针对恶性杂草和大型杂草要进行人工除草[9]。
4 结语
双庙乡乃至彰武县是以农业为主的乡,是典型的旱作农业区,灾害频繁,成为影响农业生产最大的灾害。一是水土流失严重,沙尘暴猖獗。二是受经济基础的制约,农业水利化设施基础薄弱,农业抗御自然灾害的能力极低。三是土壤瘠薄,有机质含量低。保护性耕作对降低农业生产成本、
提高农产品产量和品质、增强农产品市场竞争力、增加农民收入、加快全面建设小康步伐具有十分重要的意义。
5 参考文献
[1] 李思达,车晓刚,计晓明.发挥保护性耕作技术优势促进可持续性粮食生产[J].中国农业信息,2011(4):34-36.
[2] 赵玉敏,辛艳梅,刘艳红,等.发挥保护性耕作技术优势促进可持续性粮食生产[J].中国农业信息,2010(7):34-35,43.
[3] 李晓安,李俭丰,马秀中.保护性耕作技术抗干旱优势明显[J].农机科技推广,2009(3):29.
[4] 王玉玲,刘桂芝,王爱萍,等.少免耕之保护性耕作技术探究[J].现代农业科技,2008(11):252,254.
[5] 刘斌,张绍飞.保护性耕作技术作业规程[J].农村牧区机械化,2012(3):4-5.
[6] 杨宗信.宁夏海原县保护性耕作探索[J].农业科技与信息,2012(13):48-49.
[7] 秦红梅.旱作地区保护性耕作技术的应用[J].现代农业装备,2012(5):64-65.
继电保护的特性范文3
关键词:继电保护,故障信息,小波变换,自适应。
中图分类号: TM774 文献标识码: A 文章编号:
1、引言
继电保护是一门理论和实践并重的科学技术,与电力系统的发展息息相关。19世纪末,人们为了防止发生短路时损坏设备就已经开始利用熔断器这一中介,从而建立了过电流保护原理。1905~1908年出现电流差动保护,而自1910年起,方向性电流保护的广泛使用,更是推动了20世纪20年代初距离保护的产生。到20世纪30年代初,已经出现了快速动作的高频保护[1]。因此,从继电保护的基本原理来看,现今普遍应用的继电保护原理基本上在20年代末就已建立,迄今在保护原理方面没有出现突破性发展。从实现保护装置的硬件来看,自1901年出现感应型继电器开始,大体经历了机电式、整流式、晶体管式、集成电路式、微型计算机式等发展阶段。因此,纵观继电保护将近100年的技术发展史可以看出,虽然继电保护的基本原理早已提出,但它总是根据电力系统发展的需要,不断通过相关科学技术的最新成果得到发展和完善[2]。
2、故障信息与继电保护技术
检测故障信息、识别故障信号是继电保护的首要任务,它据此做出是否保护出口跳闸的决定。因此,故障信息的识别、处理和利用是继电保护技术发展的基础,不断发掘和利用故障信息对继电保护技术的进一步发展有着重要意义。
新型继电保护的重要理论之一是建立在暂态故障信息基础上的小电流接地保护与行波保护。而应用暂态量发展出的利用高频故障电压、电流信号的超高速继电保护原理,已经被广泛使用并获得了许多重要成果,例如利用高频故障电压信号,对串补超高压输电线路的保护设置。该保护原理是基于故障点高频故障电压信号的非联合保护,但仍具有联合保护方案的优势;该方案使用组合调谐设备和输电线路阻波器来检测保护区域内的高频暂态故障信号(频率为70~81 kHz,可根据实际情况而定),使用其带阻特性可以区分内部故障和外部故障;该装置使用一个特殊设计的信号处理器来获取高频电压信号,可以完全满足超高压串补线路对保护装置的可靠性和安全性要求[3]。
总之,为了满足电力系统快速发展的需求,故障信息的发掘、提取与利用是继电保护技术发展的重要课题。新算法的引入为高频暂态信号的应用提供了可能性,但行波保护尚未成熟,仍存在一些有待探讨的问题。
3、计算机在继电保护领域中的应用
计算机在继电保护中的应用可以分为以下两类:
a. 计算机的出现,使许多原有理论得以最大程度得实现。例如早期就有人提出神经网络在电力系统中的应用问题,但训练神经网络所需的庞杂计算量以及传统计算方法对继电保护快速性的约束都限制了该理论的实际应用。而计算机的高速运算能力却轻松解决了这一问题。
b. 借助计算机开发的新理论与新技术,继电保护领域迎来了新一轮的革新。这其中较为成功的案例就是建立在暂态量基础上的、充分利用了计算机特性的行波保护原理。
虽然计算机在继电保护中的作用举足轻重,但其应用仍然存在一些问题。目前研究开发的多为通用型和用于自动控制系统的芯片,尚无继电保护装置专用芯片。由于电力系统继电保护对实时性和可靠性有着近乎苛刻的要求,开发微机型继电保护装置的专用芯片是计算机在继电保护领域中得到进一步发展应用所不可或缺的基础。
4、小波变换与继电保护
近几十年来,小波变换理论在工程界引起了极大反响,它被认为是傅里叶变换的重大发展,目前已在宇航、通信、遥感技术、数值分析等领域中被广泛应用。
众所周知,继电保护的首要任务是正确检测出故障。而电力系统中出现故障时通常都伴有奇异性或突变性,这对继电保护提出了更高的要求。为了增大输电线传输容量和提高系统稳定性,减小继电保护装置的动作时间是一种简单有效的措施。目前,利用小波变换的奇异性检测及模极大值理论已提出了实现故障起动和选相的方法,这种方法的主要特点就是快速性和可靠性。小波变换分析的应用能为快速可靠地检出行波信息提供有效保障,基于小波变换的继电保护装置必将在电力系统发挥其巨大作用。
5、自适应继电保护
自适应继电保护是20世纪80年代提出的一个较新的研究课题,它是根据电力系统运行情况和故障状态的变化,实时改变保护原理、性能、特性、定值的一种技术方法。自适应原理在继电保护领域的主要应用有自适应重合闸、自适应馈线保护、对串补输电线路的自适应保护以及自适应行波保护。下面以反时限过电流保护为例说明自适应过电流保护的基本原理。
在最大负荷电流IHmax的条件下,过电流保护的整定值为:
IDz= KIHmax(1)
根据式(1)可选用一条反时限特性,表示为:
t = f(I) (2)
当线路故障时,如果短路电流小于式(1)的定值,按上述特性动作的过电流保护将不能检出故障,但通过对负荷电流的实时监视,便可根据实际负荷电流IH自动改变定值,使保护具有更灵敏的另一条反时限特性:
t =φ (I)(3)
运用自适应原理的继电保护能克服同类型传统继电保护中长期存在的问题,它是继电保护智能化的一个重要组成部分。计算机为自适应继电保护的进一步发展提供了良好的技术支持。
总体来讲,新型继电保护的发展趋势是高速化、智能化与一体化。对故障信息的研究与利用是发掘继电保护新原理的基础;计算机为充分利用故障信息提供了技术支持;新算法为继电保护的进一步发展提供了拓展空间;而自适应保护则是继电保护智能化发展的趋势。
参考文献
[1] 葛耀中. (1996). 新型继电保护与故障测距原理与技术[M]. 西安: 西安交通大学出版社.
继电保护的特性范文4
关键词 继电保护;状态检修;保护检验
中图分类号TM7 文献标识码A 文章编号 1674-6708(2011)46-0035-01
近年来,随着计算机和通信技术的迅猛发展,不论在原理上还是技术上,电力系统继电保护都发生了巨大变化。安全性和可靠性是继电保护及自动化装置的一个至关重要的因素,继电保护系统随着电力系统的不断发展,容量越不断急剧增大。随着电力的发展和创新,电网的结构突出了两个最为重要的特性―复杂性和广泛性,其分布范围和复杂程度与日俱增,维护的工作量和成本当然会呈直线上升态势。另外,随着二次设备数量的大幅度增加,继电保护动作的安全性和可靠性就显得尤为重要,对继电保护安全性能检修措施的研究与探讨就很有必要,能够极大程度上解决当务之急。继电保护的地位在电力系统中日益重要,很多负面效应也随之产生,如:检修管理人员的工作量不断加大,设备的频繁检修缩短了设备寿命,降低了经济效益等等,因此继电保护的检修策略及措施的重要性就表现得比较充分。
1继电保护性能检修适用范围及装置的状态识别
继电保护的状态检修的实施取决于对设备状态的正确评价,依赖于现场设备运行数据的实时搜集、处理,因此,装置本身必须具备自检、上送、通信的功能,其使用范围也就只能是智能型的保护装置,单纯依靠人力进行数据收集、整理是不可能完成的和不现实的。所以,继电保护状态检修的适用于智能性的保护装置,如微机型继电保护装置,而不适用于电磁型、晶体管型等非微机型保护装置。继电保护装置在电力系统中的状态通常都是静止的,一旦电力系统发生故障或异常时,继电保护装置才会根据检测到的系统故障的电器参数而启动,然后通过自身的逻辑回路加以识别,灵敏可靠并有选择性地将故障快速切除或给出相应的预警启示。继电保护装置状态在人们的印象和了解范畴内往往是以静止状态所呈现的,当然,电力系统无不存在故障或异常时,保护装置也就不会产生保护动作和预警。因此,在电力系统中,继电保护装置在电力系统发生故障时,是否能准确快速地产生动作,发挥预警机制,这才是我们最需要的,也是继电保护性能检测的关键之处。只有在以下3种情况下才能充分发挥继电保护装置的动态特性:设备故障保护动作――继电保护装置试验和传动――保护装置误动。因为继电保护装置是一个静态的系统,所以如果我们想分析研究继电保护装置的特性,就必须要把握住其逻辑功能从而产生一些试验测试,即保护检验。我们通过模拟继电保护装置在电力事故和异常情况下所感受到的参数,使继电保护装置启动,检查继电保护装置应具有的逻辑功能和动作特性,从而了解和掌握继电保护装置状况。这些试验检测对继电保护装置的校验是非常有必要开展的,意义也非常明显,同时,它也需要定期进行检验、测试。
2保证继电保护性能检修安全性同步提高的相关措施
继电保护系统可靠性贯穿于设计、选型、制造、运行维护、整定计算和调试的整个过程,而继电保护装置的安全性和合理性的设计则是决定继电保护系统可靠性的一个重要标志,发挥着不可替代的作用。由于继电保护装置的投入运营,受到各方面因素的多层影响,所以谈其绝对可靠,那是不可能的,但是我们可以通过制定相应的各种规定和防范事故方案,采取相应的有效预防措施,从而消除隐患,在这样的情况下,继电保护系统的安全性还是可以达到理想目标的。我们可以从以下几个方面系统地提高继电保护系统检修安全性的措施:1)在保护装置制造过程中,务必要把好质量关,提高整体质量水平。我们可以通过杜绝不合格的劣质元件混入,从而保证高质量的元器件;2)晶体管保护装置设计中应着重考虑其所安装的空间务必要在与高压室隔离,从而免遭高压强电流、断路故障以及切合闸操作电弧的影响。我们还要防止晶体管受到环境中污染物的损害,一般需安装空调;机电型继电器外壳与底座间也要加胶垫密封,做到抵制灰尘和有害气体侵入;3)电力系统动态稳定性方面需重点考虑;继电保护系统需要具备快速切除故障的能力,因此输电线路或设备的主保护重要采用多重化设施,两套主保护并列运行。为了使保护装置在发生故障时有选择性动作,保护装置的设计和整定计算等方面应考虑周全,选择合理的元器件相互配合才能提高保护装置动作的可靠性。
3结论
随着电力系统的飞速发展,继电保护体系也得到了广阔的发展空间,开辟出了一条独特有保障的新道路。国家电网随着社会发展,其安全性和可靠性也广受人民关注,也是与居民生活息息相关的一项坚实而不可动摇的保障线。伴随经济发展和电力系统强大压力下的要求和责任也将会一直推动继电保护状态检修领域的持续进步和探索发展。继电保护的状态检修涉及到管理工作成为电力系统工作的重中之重,其作用发挥承上启下,是连接电力系统正常运作与人民生活和谐运转的枢纽。继电保护装置不论从设计、选型、安装,还是调试、验收、检修等各个环节,我们都需要产生整体观念,加强和保证此体系的全过程管理,特别是在设备初始状态方面要把好关。与此同时,状态检修还需要有先进的检测手段和高水平的综合判定能力作依靠,我们需要在不断的发展创新过程中,踏实上进,以国家科技的崛起为支点,着力掌握核心技术,从而真正把握设备的状态,制定出科学合理的检修策略,这样才能坚定不移地为继电保护系统的安全稳定运行提供指导性方针和发展性策略。
参考文献
[1]李银红,王星华,骆新,段献忠,柳焕章,刘天斌.电力系统继电保护整定计算软件的研究[J].继电器,2001(12).
[2]张锋,李银红,段献忠.电力系统继电保护整定计算中运行方式的组合问题[J].继电器,2002(7).
[3]曾耿晖,李银红,段献忠. 电力系统继电保护定值的在线校核[J].继电器,2002(1).
[4]柳焕章.阻抗保护分析中电压平面与阻抗平面的变换[J].中国电机工程学报,2004(1).
继电保护的特性范文5
众所周知,配电网系统规模较大、信息聚集点众多、结构组成复杂,因此与其相配的继电保护装置也随之分布在配电网系统中不同的位置,其应用范围上至变电站下到变电站内部与配电系统直接相关联的设备,以及在电网中开闭所、中压配电馈线、低压配电网以及配变站等。继电保护装置长久以来就是配电网中的重要组成部分,其发展经历与电力系统中的继保装置是完全相同的,由最初的电磁型继电保护装置,发展至晶体管型继电保护装置,在电力电子器件广泛应用后又出现了集成电路型继电保护装置。时至今日,伴随计算机技术的日新月异,所使用的继电保护装置多数属于微机型继电保护装置,但仍有各种类型的继电保护装置应用于不同的配电网系统中以适用不同层次电网的要求。伴随着微机系统继电保护装置性能更加优良、操作更加方便、维护更加简单,其在高压特高压电网中的推广逐渐成功,其应用日益广泛,更加深得人心。越来越多地适用于中低压配电网的继电保护装置也被不断开发应用。
2配电网保护存在的问题
电力系统继电保护的主要工作任务是切除系统中的故障设备以保障系统的正常运行。由于技术等各方面的原因,由常规继电保护装置构成的继电保护系统是一种非自适应继电保护系统,其动作特性不能随着电力系统的运行方式的变化而自行改变。常规继电保护的整定值是按照离线最严重的情况进行的,而且在运行中基本保持不变。因此,在常规继电保护整定计算过程中不得不按照每套保护对应的电力系统最大运行方式来计算保护的动作值,按照每套保护对应的电力系统最小运行方式来校验保护的灵敏度。这种按最严重的运行条件确认保护整定值的方法,虽可保证在电力系统各种运行方式下发生故障时,继电保护能正确动作,但同时存在着两个缺点:一是按照该方法确定的继电保护整定值,对电力系统其它运行方式来讲不是最佳的整定值;二是在电力系统最小运行方式下最不利的故障时,继电保护系统的性能会严重变坏甚至导致拒动现象。这两个缺点不但限制了电网运行的灵活性,而且也降低了电网运行的稳定性。正是在这样的背景下提出了自适应保护的概念。自适应保护是指根据电力系统运行方式和故障状态的变化能实时改变保护性能、特性或定值的保护。随着具有高速运算和逻辑判断能力、强大的记忆能力以及其固有的可编程性的微机保护在电力系统中的广泛应用和通信手段与通信技术的不断发展与进步,实现自适应继电保护已成为可能。
3遗传算法的配电网自适应保护
自适应继电保护是在上世纪80年代提出的一个较新的研究课题。它的最主要任务就是解决目前继电保护装置中所无法解决的问题,使得继电保护装置更趋于完善,现在所研制的适用于输电线路和配电系统元件的各类型微机继电保护装置,已经具备完全取代传统装置的能力,能够迅速将电力系统中发生故障的电气元件进行切除,使其免于遭受损坏,并使得其它无故障线路迅速恢复正常运行。遗传算法,是建立于达尔文的生物论以及孟德尔遗传学说基础之上的一种借鉴生物界自然选择和自然遗传机制的高度并行、随机、自适应搜索算法,具有坚实的生物学基础。遗传算法强调从生物群体观点出发,看待种群优化问题。依据遗传算法的思想,我们把所求问题中的每一个点都看做是一个个体,这些个体组成了群体,正因为如此,种群中的每一个个体都可以代表一个优化问题的可行解。本论文提出的基于遗传算法的配电网自适应继电保护,该保护是利用电网全局信息、保护定值在线整定的新型保护。
4基于Matlab算法的仿真和分析
继电保护的特性范文6
论文摘要:文章就继电保护技术在电力系统中的运用作了相关探析,描述了继电保护技术在电力系统中的运用特性,旨在从继电技术的发展及其运用对提高电力系统的质量、减少电力损耗等方面来阐述其重要作用。现行的继电保护技术主要是微机继电保护系统,其速动性能、稳定性能和安全性能等都优于传统的保护技术。
中图分类号:F407.61 文献标识码:A 文章编号:
继电保护技术的发展是电力安全发展趋势的一种必然选择,也是企业在供电过程中不可缺少的一种重要应用工程。该技术的运用必将随着电力的不断发展而提升。在现代化的电力需求中,家电设备增多、企业用电机器增多、发电机容量增大等多种客观方面的原因使得电力系统中正常工作电流和短路电流都不断增大。这就需要一种既能够保护机器正常运转,又能够对短路等用电现象提出及时警报的技术。无疑,继电保护技术便应运而生。本世纪初随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。本文试就继电技术的发展运用作探析。
一、继电保护技术的理解
继电保护技术是指在正常用电的过程中,能够对电路故障进行及时的警报,并能够有效地防止事故发生的一项技术,其核心是继电保护的装置。继电保护的装置随着现代电力的发展变化也由原先的机电整流式向集成微机处理式过渡。尤其是近三十年以来,将计算机运用技术融入继电保护装置,使得微机继电保护技术得到了长足的发展,也使得保护的性能得到进一步的增强。
继电保护技术的主要特点是:(1)自主化运行率提高,计算机的数据处理技术能够使得继电设备具有很强的记忆功能,加之自动控制等技术的综合运用,使得继电保护能更好地实现故障分量保护,提高运行的正确率;(2)兼容性辅助功能强,继电保护技术在保护装置的制造上采用了比较通用兼容的做法,便于统一标准,并且装置体积小,减少了盘位数量,在此基础上,还可以扩充其它辅助功能;(3)操作性监控管理好,该技术主要表现在一些核心部件不受外在化境的影响,能够产生一定的使用功效。与此同时,该保护技术能够通过计算机信息系统,具有一定的可监控性能,大大降低了成本。
二、继电保护技术的在电力系统中的运用特性
(一)继电保护技术的智能化运用特性增强
现代化的电力管理越来越体现了智能化的控制管理模式,具有一定的人工智能化的特征。这些特征,一方面使得电力系统在管理上减少了不必要的资源浪费;另一方面为其他各项技术的运用提供了广阔的技术空间。正是在这样的技术背景下,继电保护技术出现了一定的人工智能化,使得保护装置在设计上更具有合理性和科学性。
这些智能化的信息特征使得继电保护技术在发展的过程中逐渐地进入了自动化的发展进程。目前,在我国主要大城市供电公司的继电保护设备中已采用了模拟人工神经网络(ANN)来进行对用电的保护。因此,进一步推进了继电保护技术智能化的发展前景。据现有的资料介绍,在输电过程中出现的短路现象一般有几十种,如果出现这样的情况用人工进行排除,至少需要12小时以上。但若是采用上述的神经网络继电保护方法,可通过采集的数据样本对发生故障进行检测,从而能在半小时之内得出故障出现的原因,大大缩短了维修时间。这些人工智能方法通过计算机辅助体统的帮助运用,可使得电力运输效率大大加强。
(二)继电保护技术的网络化更新发展显著
继电技术的运用离不开计算机网络的支持。这种网络化的技术,不仅给继电技术提供了可操作检查的直观空间范围,也给其发展更新提供了更为广泛的动力支持和保障。这也正是继电技术开放性发展的必然要求。继电保护的主要功能在于保护电力系统的安全稳定,而这种保护离不开计算机网络的数据模拟生成系统,需要依据计算机通过数据采集和分析来检测故障存在的原因,进而发出警报。
这些网络化的发展,一方面,能够通过数据的的采集和模拟生成,综合分析可能出现的各种故障;另一方面,在显示故障的同时,能够准确地反映出故障的缘由、位置的情况,便于工作人员能够采取有效的解决策略。例如,现在的各种环保节能发电厂就是采用了该种装置,通过总调度室计算机监控,不仅能够知晓现有线路的运行前那个框,还能够对各条线路出现的短路等现象作出判断,以便维护人员能够进行及时正常地维修。
(三)继电保护技术的自适应性发展迅猛
继电保护技术的自适应性也是值得关注的方面。我们知道自适应控制技术在继电保护中的应用具有如下的作用:(1)使得继电保护更具有一种适应性,能够适应多种故障的检测;(2)有效延长保护时间,能够使得电气设备产生更长的使用寿命;(3)能够提高经济效率,即这种保护能够针对用电过程中出现的问题进行排除,不仅减少了人工操作的麻烦,还能够节省成本。
当前电力系统在发展过程中出现的各种问题,除了需要一定的人工操作之外,采用继电保护技术的自适应性技术,一方面,能够真正发挥继电保护的“保护”功能,使得人们的生产生活得以顺利地开展,满足人们的发展需要;另一方面,能够使得这种适应性能面对各种形势的变化发展,最大限度地提高电力设备的使用寿命,以减少故障的发生。这种适应性应该离不开计算机网络环境的支持。因此,就更具有广泛的适应性能。
三、继电保护技术的发展前景
(一)电子数据主动化的特性显著
随着计算机数据自动化的发展,继电保护技术的现代化发展也必然得到充分的体现,即电子数据主动化性能必将得到显现。
(二)继电保护功能将进一步拓宽
在计算机辅助设计功能的帮助下,继电技术的功能性必将得到进一步的增强,可根据故障的显性进行适当的控制运用。
(三)继电保护技术的运用方便灵活
在该项技术的指引下,使得电力线路维护调试也更方便。在运行过程中,操作者可根据电流值,可进行适当调整。
综上所述,继电保护技术在电力系统网络化的发展趋势中,定会综合各种学科的发展,必将步入更为广阔的发展空间,由数字时代跨入信息化时代,增强电力发展的安全性。
参考文献
[1]葛耀中.新型继电保护与故障测距原理与技术[M].西安交通大学出版社,1996.
[2]王梅义.高压电网继电保护运行技术[M].电力工业出版社,1981.