隧道工程施工的方法范例6篇

前言:中文期刊网精心挑选了隧道工程施工的方法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

隧道工程施工的方法

隧道工程施工的方法范文1

关键词:洞身开挖;衬砌施工;隧道工程;应用形式

水利水电作为我国社会经济发展的重要工程,隧道工程是其重要的组成部分。因此,在隧道工程施工过程中,施工单位应对洞身开挖与衬砌施工技术给予高度的重视,并对洞身开挖与衬砌施工技术形式进行全面的了解,洞身开挖与衬砌施工技术凭借着自身的优势,被我国水利水电施工单位广泛利用。本文以水利水电工程的角度出发,对洞身开挖与衬砌施工方法和技术形式进行简要的分析和阐述,并针对其应用形式提出了一些观点,希望对我国水利水电隧道工程的发展起到一定的帮助。

1隧道洞身开挖施工技术的应用形式

1.1台阶开挖技术形式

在水利水电隧道工程施工过程中,施工单位应根据施工地点,进行全面的了解和分析,针对较为特殊的施工地点,施工人员可利用台阶开挖技术的形式进行全面施工。但在施工过程中,施工人员应对该地点进行相应的保护,以台阶的形式对石土方进行缓慢的挖掘;在挖掘过程中,施工人员应当对台阶的高度进行全面的控制,一般台阶的长度为50~80m,形成封闭成环的形式(见图1),最大程度提高水利水电隧道工程的施工质量。

1.2光面爆破技术形式

在水利水电隧道洞身开挖施工过程中,会受到外界因素的影响,导致隧道发生坍塌、变形等现象。因此,在水利水电隧道工程施工过程中,应对隧道洞身开挖施工技术形式进行有效的利用和分析,尤其是光面爆破施工技术形式。在隧道工程施工过程中,主要利用爆破和机械设备开挖的形式,对隧道工程的洞身进行全面的挖掘工作,并在光面爆破过程中,施工人员对岩石面进行全面的打磨。在施工过程中,施工人员要对隧道洞身进行全面的保护工作,从中心地进行光面爆破工作,但在爆破挖掘时预留相应的核心土层岩柱,一般土层岩柱的高度为5m。在隧道洞身开挖过程中,预留相应的保护厚度,通常其厚度为70~100cm左右,然后在利用人工光面爆破挖掘的形式,作为辅助施工技术,最终形成环比的形式,保证了隧道洞身开挖施工流程的顺利开展。

2衬砌施工技术在水利水电隧道工程的应用形式

2.1在测量放线中的应用形式

测量放线是水利水电隧道工程施工中的重要形式,也是衬砌施工技术应用的重要形式之一。因此,在隧道工程测量过程中,将渠坡基本建成后,再进行全方位的测量。但在测量过程中,施工人员应对各个测量线间的水平程度进行全面的保持,一般控制在2.6m,并在施工过程中,将9.0m的范围作为测量线与测量线间的间隔,同时在测量过程中,施工人员要利用相关的设备,对渠坡的高度进行全面的记录和标记。另外,隧道工程测量放线的过程中,施工人员应当在固定的范围之内,设置相应的高程点,并对其进行科学、合理的利用,最大程度上保证衬砌施工的质量,充分展现其施工技术的优势。

2.2在水利水电隧道给工程养护工程的应用形式

在衬砌施工过程中,主要以利用混凝土材料为主,在水利水电隧道的后期养护工作中很是常见。因此,在水利水电隧道建设过程中,施工人员应高度重视后期养护工作,并在施工过程中,施工人员要对混凝土的振捣、密实等施工工作进行全面的利用。但在水利水电隧道工程后期维护的过程中,应对混凝土的表面进行全面的保护工作。另外,在水利水电隧道养护过程中,施工人员可适当利用喷雾等形式,对混凝土表面进行保护工作,时刻保持其表面的湿润效果,并在混凝土表面盖上相应的保护设备,提高衬砌施工技术的防水性能,充分展现和发挥了衬砌施工技术,也为我国水利水电隧道工程的发展带来了新的发展方向。

2.3在一次支护中的应用形式

在水利水电隧道工程施工过程中,由于工程量较为巨大,所涉及施工环节非常之多,一次支护是其中非常重要的一项。在一次支护过程中,施工人员应利用相应的施工设备,如工膜的形式,利用转载设备,将其工模运至施工现场,再进行铺设工作。水利水电隧道工程一次支护的具体措施:在工膜运输至水利水电隧道工程施工现场时,施工人员应对工膜进行全面的剪裁,再进行土层的碾压工作用。在一次支护过程中,施工人员应高度重视支护边缘的压实工作,可利用沙袋等施工设备进行碾压工作。在碾压工作结束后,将剩余的工膜放置于下个施工环节中,最大程度上提高了水利水电隧道工程建设的质量。在一次支护基本完成以后,施工人员一定要进行反复的压实工作,最大程度保证隧道土层的舒适、平整等性能。在一次支护过程中,施工人员要对每一个土层面间的距离,给予高度的重视,一般每一个土层面间的距离为10cm,最大程度上避免发生干扰的现象。

隧道工程施工的方法范文2

自2000年以来,国内大中型城市的市政基础设施建设速度骤增。在短短的15年内,笔者便参与设计了包括南京、杭州、昆明等近10条长度超过1km的城市明挖市政交通隧道,这些隧道均为城市道路隧道,处在或连接城市的主要干道,大多穿越河道或在城市中心的湖泊底下。由于城市快速发展的需要,对于隧道施工周期要求越来越高。因此,需在较短的施工工期内完成工程并保证质量、特别是一些防水质量要求很高的隧道工程,这就必须考虑使用一些新技术,来完成艰巨的工程任务。现以笔者参与设计的一些隧道工程为例,介绍近年来城市明挖隧道工程防水技术的发展与创新。

1明挖隧道的混凝土自防水技术发展

1.1南京玄武湖隧道

南京玄武湖隧道处于南京城的景观湖中,湖中的土质以淤泥质黏土为主,在结构埋深最深处埋有粉质黏土。这些土层虽然含水率已达饱和,但渗透系数很低。针对这种浅覆土的工程特点,查阅了大量欧美的设计规范、标准,及国内为数不多的工程案例和研究专题,确定了玄武湖隧道结构混凝土的技术参数要求:抗渗等级(暗埋段≥P8,敞开段≥P6)、强度等级(≥C30)、抗冻融指标(>D300)、抗碳化(理论>100a)、抗Cl-侵蚀(Cl-扩散系数<2×10-8cm2/s)、60d干燥收缩率(≤0.025%)和裂缝宽度(≤0.2mm,且不允许出现贯穿)。此处,对于混凝土抗冻融循环的要求,并不是因为本隧道处于严寒地区,而是当时工程界将它作为衡量混凝土长期致密的一个耐久性指标。而对于Cl-扩散系数的测定,因“自然扩散法”检测周期较长,不能作为工程的过程监测,最终确定引进检测周期较短的混凝土电通量检测法。针对混凝土自防水及耐久性设计要求,工程采取了以下技术措施:①对混凝土的胶凝材料、粗细骨料、水等原材料把关,严格控制混凝土的总Cl-和碱含量;②采用优质磨细粉煤灰等活性粉料替代部分水泥充当混凝土的胶凝材料,并严格限制水和胶凝材料的比例;③采用新型的、兼具混凝土膨胀剂及减水剂功能的萘系混凝土外加剂;④对混凝土施工提出了具体的温控、振捣、养护等要求。通过玄武湖隧道工程,得到以下实践经验:

1)对于明挖浅埋隧道的混凝土结构设缝,从施工角度出发,主要以减少收缩裂缝为目的,采用了90m间距设置结构变形缝,相邻变形缝间设置两条垂直施工缝(即间距30m),并要求施工缝两侧混凝土的浇筑间隔时间不少于14d。由于混凝土专项设计考虑较全面,再加上完善的施工及养护措施,结构混凝土本体并未产生水化热而造成的收缩裂缝,从而确保了混凝土的高抗渗性。

2)由于隧道浅埋,良好的结构完整性导致隧道内结构温度仅比室外大气温度低2℃左右。在夏季受隧道结构气温升高的影响,两条相邻变形缝间的混凝土结构管节受热膨胀,局部变形缝处会出现混凝土挤压破碎的现象,这种不良现象是由于变形缝间距过长、变形缝宽设计统一而未考虑到季节变化影响而引起的。此次工程设计基本确立了市政地下工程结构混凝土耐久性设计的框架,提出了高性能混凝土高抗渗性、耐久性、可施工性的基本要求。杭州西湖隧道是南京玄武湖隧道结构混凝土工程经验的又一次实践,但由于建设方未根据工程特点对混凝土进行深入研究,工程效果不是很理想。

1.2南京九华山隧道

南京九华山隧道毗邻玄武湖隧道,同处于玄武湖下并穿越南京九华山。在传承了玄武湖隧道的结构混凝土工程实践的基础上,九华山隧道改变了结构设缝原则。在经过对混凝土结构受温度影响及结构约束、徐变等因素综合考量,提出了结构变形缝间距为60m,即相邻变形缝间设置一条垂直施工缝,施工缝两侧混凝土浇筑时间间隔不少于14d;而变形缝缝宽根据混凝土的浇筑季节的不同而有所变化,冬季施工缝宽为2cm,夏季施工则为1.5cm。随着材料技术的发展,在结构混凝土的研究上,聚羧酸高效减水剂对于结构混凝土的耐久性、施工性能均优于萘系的混凝土外加剂,因此有关聚羧酸高效减水剂的运用研究又再次深入。并且,对其耐久性的检测指标及方法做了一些调整,即开始引入Cl-扩散系数的RCM检测法与自然扩散法相结合的检测,并相互验证。此外,无锡蠡湖隧道、苏州独墅湖隧道、南京新模范马路隧道也应用此结构混凝土设计方案,并获得成功,验证了我们对结构混凝土的专项研究是科学的,日后国内有关混凝土结构耐久性设计标准、规范等的和实行,也同样印证了此种设计的正确性。

1.3无锡太湖大道隧道

1.3.1清水混凝土的应用本隧道工程有一段结构是改造原有的铁路下立交,而此下立交的通行能力仅仅能满足单孔双车道的最低限界要求,是整条隧道的宽度限界瓶颈。出于工程特点,设计方决定此段隧道在满足行车限界后,不再预留侧墙装饰的空间,因而采用了不需装饰层的清水混凝土。但由于本隧道工程的高防水等级和设计使用年限要求,且侧墙因限界的缘故不能设置内装饰层,隧道通车后一旦出现渗漏,便会直接反映在无装饰面层遮蔽的隧道侧墙上。为尽量避免发生上述情况,对本隧道设计采用的清水混凝土的抗渗性和耐久性提出较高要求,需将混凝土抗渗与耐久结合考虑,以完善结构混凝土的自防水。此外,工程采用大型定型钢模板,既能达到施工要求,又能满足清水混凝土表面的建筑效果要求,同时解决了渗漏隐患。

1.3.2自密实混凝土的应用本工程金塘桥下盖挖顺作段,因缺乏混凝土振捣空间,采取了自密实混凝土作为结构内衬。由于自密实混凝土流动性好,具有良好的施工性能和填充性能,且骨料不离析,硬化后具有良好的力学性能和耐久性,可以很好地提高混凝土工程质量,加快工程进度,同时改善了工程的施工环境并降低了工程费用。而此后的四川遂宁市观音湖隧道,由于观音湖其实是一条河道的一部分,是在夏季丰水期由于下游水库蓄水而构成的城市景观湖,所以隧道的建设只能利用冬季枯水期的4个月进行。因施工工期短,在设计上也采用了大型定型钢模板进行大规模的结构混凝土进行施工,结果如期完工,工程质量良好。

2明挖隧道外包防水层的新材料运用

隧道工程外防水层的选择是多种的,但成功的工程实践往往是因地制宜、因工程而异的,结合笔者设计的几条隧道工程举例说明。

2.1南京九华山隧道

是九华山湖中放坡开挖暗埋段隧道防水设计,南京九华山隧道采用了华东地区较为典型的隧道外防水做法。考虑到隧道底板处于淤泥质黏土之上、透水性差,因此隧道底板采用了水泥基渗透结晶型防水涂料,利用涂料的反渗透性,使其在底板混凝土固结过程中渗入结构底板混凝土中,以达到底板防水的目的。而聚氨酯防水涂料较之外包防水卷材能更好地与混凝土基面粘合,达到防窜水的目的,同时避免了材料之间的接缝困扰。

2.2无锡太湖大道隧道

是无锡太湖大道隧道主线伸缩缝防水构造。针对本工程顶板双折板拱的结构特点和施工周期短等因素,设计提出了采用喷涂聚脲防水涂料作为顶板外防水层,这也是在隧道施工中开始大规模运用喷涂型防水涂料;而结构底板及侧墙,按照外防内贴的原则,选择采用预铺式防水卷材。与传统的聚氨酯防水涂料相比,喷涂聚脲防水涂料主要具有如下两大优势:一是施工速度快,节省工期。施工速度快不仅体现在喷涂作业先进的施工工艺上,而且聚脲本身可在5s内凝胶,1min即可达到步行强度,也是施工速度的一大保障。二是聚脲防水涂料具有优异的理化性能,其强度高、无需做保护层,可在施工后直接回填土。但喷涂聚脲防水涂料在现场施工中仍存在一些尚需克服的难题,尤其是对于基面的要求较高。在JGJ/T200—2010《喷涂聚脲防水工程技术规程》中明确规定了“基层表面应坚固、密实、平整、干燥,不得有浮浆、孔洞、裂缝、灰尘、油污等,否则应进行打磨、除尘和修补”;但在实际施作顶板防水层的时候,真正做到上述要求并非易事。因此,如何做到力求适应基面、如何优化底涂料等是今后聚脲施工过程中尚需克服的技术难点。预铺防水卷材具有与浇筑表面的混凝土结构粘结密实、不窜水的特点,并且其施工方便快捷、防水质量得到保证,因此得到了越来越多专业防水设计人员的认可。预铺防水卷材可分为P类(主体材料为高分子)和PY类(主体材料为沥青基聚酯胎)两种,设计从材料耐久性考虑,要求使用P类。但这一类材料又有很多品牌,如何甄别选择,则成为工程实践的关键。对于防水卷材的甄选,设计要求施工现场做防水卷材的简易剥离强度试验,通过模拟工程实际从而最终决定选择合适的外包防水卷材,并将试验结果作为设计要求写入相关文件或图纸。试验可按此进行:

1)将预铺防水卷材放在室外暴晒10d,并模拟现场施工实况对其进行人工踩踏;

2)在现场安装模板,将日晒处理的预铺防水卷材分别立于模板内侧,然后浇筑一个长方体混凝土试块,试块的配比、养护等要求与隧道主体混凝土相同;

3)进行7d养护后拆模,对卷材进行人工撕扯,观察产品与后浇混凝土试块的粘结情况,可以此判断卷材与混凝土基面的粘结性能。卷材剥离强度试验。试验结果表明,尽管已采取了加强层、空铺等措施,预铺防水卷材在伸缩缝位置仍会因变形量过大而导致卷材被拉裂造成接缝渗水。因此,预铺防水卷材在过变形缝时采取何种措施以适应足够的结构变形,是今后防水层设计需要进一步完善的地方。

2.3四川遂宁市观音湖隧道

观音湖隧道处于观音湖底,隧道顶板零覆土,仅有用于防冲刷和抗浮的石笼覆盖,顶板完全浸泡在水中。因此,结构外防水层必须具有良好的耐水性以及与结构基面紧密粘结的性能。设计上选择了预铺防水卷材(P类)与喷涂非固化橡胶沥青防水涂料作为隧道的外防水层的组合。根据太湖大道隧道的工程经验,卷材方面采用了现场试验性能较突出的PV-100预铺防水卷材(P类,主要材料为HDPE),然而选择喷涂非固化橡胶沥青则是有所考虑的。前面提到,本隧道工期非常紧张,因此在施作外防水涂层之前,要对结构混凝土基面作进一步处理基本是不可能的。其次,结构变形缝接缝处采用外贴式橡胶止水带,且侧墙局部为PV-100预铺防水卷材,采用防水涂料时就要考虑到与这两种材料的粘结。最终,设计选择对结构混凝土基面基本无要求,可在潮湿基面快速施工、能与橡胶和塑料两种材料粘结较好的非固化橡胶沥青防水涂料。当时在现场,通过试验比较选择了具有韩国技术支持的品牌产品,从目前的效果来看,几乎是当时唯一的选择。即为非固化橡胶沥青与橡胶和塑料粘结在一起后撕开的效果,非固化橡胶沥青本体断裂,而橡胶和塑料的粘结面并无脱落现象。

3明挖隧道接缝防水的新技术

接缝防水是隧道工程防水中的重要一环,随着工程材料的进步、工程实践的不断总结,现在的接缝防水也有了很多新的做法,下面介绍几种具有代表性新做法。

3.1垂直缝与水平缝相交处

在隧道纵向的水平施工缝与横向的垂直施工缝或者变形缝在结构的侧墙总是有交点的,但以往设计忽略这个细节,垂直缝的止水措施与水平缝的止水措施即便不相交,也会造成结构缝渗漏的相互影响。

3.2侧墙的水平施工缝

在结构底板与侧墙的转角处,通常会有高出底板面20~30cm的侧墙与底板一起浇筑,这样就会存留一道侧墙上的水平施工缝,这道施工缝往往就会成为渗漏的高发部位,通常称之为“烂根”。在隧道大量改用大型定型钢模板技术之后,设计改变了这条缝的设置位置,这种改变对于施工要求大大降低,施工质量可以得到保证。无锡太湖大道隧道和四川遂宁市观音湖隧道运用了这种新型施工技术,均未出现“烂根”现象。侧墙施工缝部位防水做法,

3.3兜绕成环的外贴式橡胶止水带

以往的明挖隧道顶板伸缩缝外侧通常采用密封胶嵌缝,与侧墙的外贴式止水带在转角处搭接密封,不同防水材料之间的搭接质量难以保证,处理不当往往会导致渗漏,因此设计在遂宁市观音湖隧道的伸缩缝处整环设置了外贴式止水带。为解决外贴式止水带在顶板的安装问题,设计人员在隧道顶板设置了上压模板,将顶板止水带固定在上压模板上,为外贴式止水带的整环设置创造了条件。

3.4外贴式橡胶止水带加贴反应型丁基橡胶腻子带

以往结构变形缝用的外贴式橡胶止水带,均以机械咬合的方式与结构混凝土粘结,在混凝土施工过程中,出现咬合不紧密就会增加接缝渗漏的概率。在无锡蠡湖隧道施工过程中,设计对外贴式橡胶止水带作了适当调整,在止水带两端加贴反应型丁基橡胶腻子带,使其与结构混凝土的粘结又多了一重保障。

4结语

隧道工程施工的方法范文3

关键词:地铁区间隧道盾构机

成都市地铁一期工程为规划地铁一号线的红花堰至世纪广场段,正线全长15.15km,其中地下线长11.92km,高架及过渡段长3.23km。计有车站13座,车辆段及综合基地1处,控制中心1座,主变电所1座。

1环境条件

成都市地铁一期工程位于成都市中心南北主轴线和主要客运交通走廊内,沿线建筑物密集,商贸繁荣,交通十分紧张。线路途经火车北站、骡马市、市体育中心、天府广场、省体育馆、火车南站、行政广场、世纪广场等交通枢纽和主要客流集散点以及待开发的城南市级副中心和高新技术产业开发区。

2地质情况

成都市地铁一期工程沿线第四系地层广布,基岩埋藏较深,由北向南第四系地层厚度逐渐变薄.其厚度36.5-15m,自上而下有下列各层:

2.1人工填筑层(Q4ml)

2.2第四系全新统冲积层(Q4al)

上部为可塑粘土或粉质粘土、粉土,厚0.6~4.1m,北薄南厚。下部为卵石土,湿~饱和,稍密密实,厚2~10m。卵石成份为岩浆岩质、变质岩质,呈圆形、亚圆形,多为微风化,少为中等风化。卵石粒径一般为4-9cm,部分大于12cm,含少量粒径大于20cm的漂石。

2.3第四系上更新统冰水沉积、冲积层(Q3fgl+a1)

当其上无全新统(Q4al)覆盖时,一般具二元结构:上部为可塑粘土、粉质粘土,厚0.8~6.4m;下部为卵石土,饱和,—般中密—密实,少为稍密,厚7.0~15.om,北段沙河附近厚度大于25m,卵石呈圆形、亚圆形,岩浆岩质、变质岩质,多为微风化,少为中等风化,卵石粒径一般为5~8cm,部分大于15cm,由于冰水的携带作用,沉积了较多的大粒径砾石,据试验段地质详勘报告和全线地质咨询报告,现已发现最大粒径达到670nllrl,试验段卵石粒径分析表示:漂石(>200mill):O~22.3%,卵石(20~200mm):45.6%-74.6%,砾石(2—20mm):3.1%-20.1%,砂粒(<2mm):5.3%-38.1%。卵石单轴抗压强度65.5-184MPa,平均102.2MPa,极值为206MPa。在该层中还存在钙质胶结、半胶结的砾石层,硬度大,相当于C10-C20。

2.4第四系中更新统冰水沉积、冲积层(Q2fgl+al)

主要为卵石土,饱和,中密-密实。一般厚3~9m,最薄1.4m,局部大于15m,9陌成份为岩浆岩质、变质岩质,多为中等风化,具弱钙质胶结,粒径3-8cm,部分大于15cm,含少量大于20cm的漂石。

2.5白垩系上统灌口组(K2g)

泥岩,紫红色,泥质结构,中厚~厚层状构造,节理裂隙较发育,岩面埋深14-37m。

地下水主要赋存在卵石土中,水量极其丰富,渗透系数K=12.53-27.4m/d,枯水期地下水位埋深3—5m,丰水期2-4m。

3区间隧道施工方法的选择

施工方法对结构型式的确定和工程造价有决定性影响。施工方法的选定,一方面受沿线工程地质和水文地质条件、环境条件等多种因素的制约,同时也会对工程的难易程度、工期、造价、运营效果等产生直接的影响。

成都市地铁一期工程通过交通繁忙、客流集中、房屋密集、地下管线纵横地带,为减少地铁施工对城市交通和市民正常生活的干扰,宜采用暗挖法施工。

3.1矿山法

地铁区间隧道采用矿山法施工,是近年来为适应城市浅埋隧道的需要而发展起来的一种施工方法,也称浅埋暗挖法,目前在我国地铁区间隧道建设中已广泛采用。浅埋暗挖法施工工艺简单、灵活,并可根据施工监控量测的信息反馈来验证或修改设计和施工工艺,以达到安全、经济的目的。

根据线路纵剖面设计,该段区间隧道全部位于饱水的砂卵石地层中,隧道施工前必须在沿线超前进行施工降水,并且由于砂卵石土层松散,无胶结,本身无自稳能力,因此开挖前必须在拱部采用管棚进行超前支护,控制围岩的变形,防止隧道上方围岩坍塌。并通过管棚对地层进行注浆加固,使拱部砂卵石层得到胶结,形成注浆加固圈,以提高砂卵石层的自稳能力。施工时原则上应少扰动围岩,宜采用管超前、短台阶、短进尺,环形开挖留核心土,及时施作初期支护,并修建仰拱尽快形成封闭结构,勤量测及时反馈信息。并及时对初期支护背后进行回填注浆。

1992年施工的成都市顺城街人防工程盐市口地段,采用暗挖人行通道连接,其通道全长55.093m,开挖宽度5.8m,净高5.6m,隧道基底埋置深度为15m,顶部覆盖层厚度7.55m。其工程位于饱水、松散、无胶结的砂卵石地层中,施工中采用了松散围岩浅埋暗挖法,包括大面积井点降水、大管棚注浆超前加固、密排小管棚超前预支护及格栅支撑和模喷混凝土等技术,取得了成功。

成都市顺城街人防工程所处的地质条件及周边环境类似地铁暗挖区间隧道。因此,人行通道的建成是地铁区间隧道采用矿山法施工的一次成功的尝试,为地铁工程提供了十分宝贵的经验,也提出了工程中须解决的技术问题。人行通道施工时曾考虑了小导管超前注浆加固和长管棚超前注浆加固两种方案。小导管施工简单、灵活,无须大的钻机设备,可加快施工进度,费用较低。但根据多组小导管成孔的试验结果证明,在这种密实的的砂卵石地层中,用一般铁路隧道常用的凿岩机钻孔,成孔困难,由于卵石卡钻导致无法钻进,也无法插入钢管,故最终采用了潜孔锤冲击旋转跟管钻进成孔工艺,边钻进边跟管,形成旋转钻进,冲击跟管,岩芯管携出砂石之循环作业系统,采用大管套小管的长管棚方案,取得了成功。

成都市地铁一期工程区间隧道大部分地段通过中密~密实的Q3砂卵石地层,其卵石含量高,且大粒径卵石含量较多,经施工降水后,其地层较紧密,采用常规技术施作超前支护相当困难。因此,如何从设备及工艺上解决超前支护技术,并提高工效,降低造价是成都地铁一期工程能否采用矿山法作为区间隧道主要施工方法的关键及风险所在。根据国内其他城市地铁工程的经验,由于矿山法施工条件所限,往往工程质量控制较难,工程竣工后,衬砌开裂及渗漏水比较普遍。成都地铁区间隧道位于饱水的砂卵石地层,渗透系数大,地下水补给充足,因此,如何保证防水混凝土及防水板施工质量,避免地下水的渗漏,对于确保地铁运营安全和保护周围环境至关重要。

线路出红花堰站后将下穿3栋7层楼住宅房屋(条形基础),铁路站场股道,随着线路向南延伸,还将穿过房屋群、两处河道段及火车南站站场股道。如前所述,采用矿山法施工必须在整个施工过程中实施降水,降水影响范围达到500m左右,由于在粘性土之下或卵石土层中存在饱和状的稍密-松散状态的砂、粉细砂土,因此沲工降水引起上覆土层的固结沉降对两侧浅基础房屋及地下管线将会带来一定的影响。由于成都地铁砂卵石土为松散、无胶结、无自稳能力的地层,因此暗挖沲工通过建筑物下方时,除要保证基础与隧道顶部之间有一定距离外,最主要的是要采取有效措施减少围岩变形,将其沉降量控制在不影响地面建筑物的安全和正常使用范围内。线路通过府河、南河段,由于受邻近车站埋深或既有建筑物的控制,隧道仍然在砂卵石中通过,因此在两处河道段采用矿山法施工在技术经济上是不现实的。

综上所述,根据全线的工程地质和水文地质情况、周围环境条件,目前推荐矿山法作为成都地铁区间隧道主要施工方法条件不成熟,但在区间隧道联络通道或渡线地段可采用矿山法施工。

3.2盾构法

盾构法是暗挖隧道施工中一种先进的工法。盾构法施工不仅施工进度快,而且无噪音,无振动公害,对地面交通及沿线建筑物、地下管线和居民生活等影响较少。由于管片采用高精度厂制预制构件,机械化拼装,因而质量易于控制。盾构技术的发展,尤其是泥水式、土压平衡式盾构的开发、使之在松散的含水砂层、砂夹卵石层、高水压地层等所有地层中进行开挖成为可能,所以当工程地质和水文地质条件以及周围环境情况等难以用矿山法和明挖法施工时,盾构法是较好的选择。上海地铁及广州地铁盾构施工的区间隧道工程质量优良、对城市环境影响小,所取得的成就令人瞩目。因此,地铁区间隧道采用盾构技术已成为发展的必然趋势。继以上两城市采用盾构技术之后,南京、北京、深圳地铁区间隧道,均采用了盾构法施工,目前工程正在实施之中。

3.2.1盾构机类型的选择

盾构施工法是“使用盾构机在地下掘进,边防止开挖面土砂崩塌,边在机内安全地进行开挖作业和衬砌作业,从而构筑成隧道的施工工法”,因此,盾构施工工法,是由稳定开挖面、盾构机挖掘和衬砌三大要素组成。选择盾构施工方法时,在充分掌握各种施工方法特点的基础上,根据工程的围岩条件,选择能保持开挖面稳定的机型,对于确保施工顺利和安全可靠至关重要;成都地铁通过地层为富水的松散、无自稳能力的砂卵石层,砾卵石含量高,且在隧道范围内可能存在随机分布的少量大粒径漂石,因此,所选择的盾构机,既要能确保开挖面的稳定,又能处理少量大粒径漂石。据调查,目前世界上已有相当数量的工程实例及相应的盾构机设备。

如瑞士的Grauholz隧道是—座长5.5km的铁路双线隧道,内径10.6m。通过地段地质十分复杂,由于冰河时代阿尔卑斯山的冰川汇人该地区,松散的土壤沉积物构成了该地区的整个地质构造:粘土、细砂、中砂及卵石,还可能遇到抗压强度高达200MPa,尺寸超过几米的大块砾石。由于隧道两端洞口区段由富含地下水的松散沉积物构成,中间段通过稳定岩层,盾构机选用直径为11.6m的混合式盾构,在松散地层中采用泥浆盾构的开挖方式,利用锚固在刀盘上的刀具切割大砾石,在岩层地段采用敞开式掘进方式。又如德国汉堡4座易北河公路隧道,隧道长3.1km,内径12.35m,隧道沿线遇砂、淤泥、冰河漂流物以及直径大于2m的大块漂石。隧道掘进采用直径14.2m的混合式盾构机,以泥浆支护其开挖面,完成了其中2561m地段的隧道工程。英国FyldeCoastal水利改建工程、加拿大Shcppald大街地铁隧道,成功的采用盾构机刀盘上的滚刀处理了地层中卵石。在日本,由于地质条件复杂,位于山地河流带多为砂卵石且含有大漂石地层。据不完全统计,在最大卵石粒径>400mm的砂卵石地层中,采用盾构法施工的工程实例见表1。由此表明在日本采用土压平衡式盾构或泥水式盾构在砂卵石且含有大粒径卵石地层中进行盾构隧道施工已有相当多的工程实例。

在自稳性差的饱水砂卵石地层中,为了保持开挖面的稳定应选择密封式盾构机,但究竟是选用泥水式盾构还是土压平衡式盾构机呢?下面将从开挖面稳定、大粒径漂石处理方式、排土设备、造价四个方面进行比较。

3.2.2开挖面的稳定

泥水式盾构是在盾构正面与支承环前面装置隔板的密封仓中,注入适当压力的泥浆,并与大刀盘切削下来的土体混合,经充分搅拌后形成高浓度的泥水,然后用排泥泵及管道输送至地面。由于有一定压力的高浓度泥水可在较短时间内使开挖面土体的表面形成透水性很低的泥膜,使泥水压力通过泥膜向土层传递,形成地层土水压力的平衡力。泥水盾构对地层扰动最小,地面沉降小(可控制在10mm),易于保护周围环境,如广州地铁一号线黄沙—公园前地段,隧道通过饱水砂层、淤泥等软弱地层,地面有密集的明末清初旧房,地铁施工采用两台泥水式盾构,成功的完成了四个区间盾构隧道,地面沉降基本控制在10mm以内。因此采用泥水式盾构通过建筑和铁路股道,安全性高。

土压平衡式盾构是指在推进时靠由刀盘切削下来的土体使开挖面地层保持稳定的盾构。盾构的前端紧靠刀盘设置密封仓,盾构推进时,前端刀盘旋转切削土体,切削下来的土体进人密封土仓,当土仓内的土体足够多时,可与开挖面上的土、水压力相抗衡,使开挖面地层保持稳定。盾构在砂卵石地层中掘进时,因土的摩阻力大,渗透系数高,地下水丰富,单靠掘削土提供的被动土压力,常不足以抵抗开挖面的水、土压力;此外,由于土体的流动性差,使在密封仓内充满卵石土后,原有的盾构推力和刀盘扭矩常不足以维持正常推进切削的需要,密封仓内的碴土也不易于流人螺旋输送机和排出地面。因此,应向开挖面、土仓内、螺旋输送机内注人掭加剂(膨润土或高效发泡剂),通过刀盘开挖搅拌作用,使注入的添加剂和开挖下来的土砂混合,而将泥土转变为具有流动性好和不透水的泥土,及时充满土仓和螺旋输送机体内的全部空间,通过盾构千斤顶的推力使泥土受压,与开挖面土压和水压平衡,以稳定开挖面。这类盾构称为加泥式土压平衡盾构。

由于土压平衡式盾构,可通过控制排土量或进土量,较好的维持正面水土压力的平衡,在水位高,含砂量大的地段,可加入添加剂,提高土砂的流动性和不透水性,以保持开挖面的稳定。由于它对不同的地层有较好的适应性,所以目前土压平衡式盾构机已占绝对优势,国内地铁绝大多数选用土压平衡式盾构机施工区间隧道,均取得了较好的效果。与泥水式盾构相比,在砂、砾石层中掘进时,只需加适当的添加剂,就能保持开挖面的稳定,但省去了分离设备,因而加泥式土压平衡盾构的出现是盾构法技术的一大进步。

3.2.3大粒径漂石处理力式

成都地铁区间隧道主要通过Q3,砂卵石地层,根据试验段地质详勘资料分析及全线地质咨询报告,漂石占0-22.3%(重量比),已发现最大漂石粒径670mm,在局部地段大粒径漂石富集成群,因此,无论选用何种盾构机,都有大粒径漂石破碎问题。

由于泥水式盾构是采用排泥管和排泥泵进行出土,—般可以连续输送的砾石长径应小于排泥管直径的1/3。通常排泥管直径为100-200mm,因此被排除的砾石直径最多为50-70mm。试验段地质详勘资料表明,在Q3层中粒径大于80~60mm的漂卵石,达到了2.4-75.7%(平均达31.61%),也就是说,在排泥管之前有较多数量的石块需进行破碎,从目前掌握的资料可有两种处理力式。

①工作面破碎+机内破碎

在工作面利用刀盘上布置的滚动刀将大粒径的漂石破碎至300-400mm,然后通过刀盘上的开口将卵石土放进机内进行第二次破碎,其破碎设备可放在压力仓内,也可设在后方排泥管之前,将砾石再次破碎后,才进入排泥管。

②工作面破碎+砾石分级

工作面刀盘上的滚刀将大粒径漂石进行第一次破碎之后,利用在压力仓与排泥管之间设置的旋转式分级器进行砾石分级处理,将粒径大于50—70mm的砾石分离出来,采用斗车等运输工具运至洞外。

因此,在含有大粒径砂卵石地层中采用泥水式盾构,需要对砾石进行两次处理,出土效率必然降低。

(2)加泥式土压平衡盾构

加泥式土压平衡盾构是采用螺旋输送器进行排土,由于配备的螺旋机直径受到盾构机尺寸的限制,所以可能排除的卵石直锄;受到限制,如中轴式螺旋输送器直径为700mm时,通过最大砾石粒径为250mm,采用带式螺旋输送器虽然可以连续排除砾石的粒径要大得多,但是对于少见>600mm的漂石输送亦有困难,所以仍需利用刀盘上的滚刀将大粒径的漂石破碎至300~400mm左占,然后通过刀盘上的开口放进机内后采用带式螺旋输送器排土,所以采用加泥式土压平衡盾构只进行一次破碎,且破碎的数量较少,出土效率高。

3.2.4排土设备

(1)泥水式盾构

泥水式盾构是通过排泥管和排泥泵将土石送至地面泥浆处理场,经分离后的泥浆再通过送泥管输送至工作面。由于开挖下来的石土为砂卵、碎土石,对排泥管和泵的摩耗较大。在管路弯曲部位或盾构机不可能更换的部位,应采取厚管壁管道等措施。排泥泵的能力必须能确保所需的流量和扬程,还必须确保碴土中的固体物能够顺利通过。

(2)加泥式土压平衡盾构

排土设备可选择中轴式螺旋输送器或带式螺旋输送器。中轴式螺旋输送器可连续排除石块的粒径受限,但是止水性和耐压陛较好。带式螺旋输送器可排除400mm石块,但止水性差。为解决带式螺旋输送器产生土砂喷发现象,除加人添加剂外,可在输送器上加设滑动闸门、锥阀等止水装置,或采用两段带式螺旋输送器来解决。

3.2.5设备费用

泥水式盾构需配置庞大的泥浆分离设备,费用高,占地面积大。成都地铁拟定的盾构始发井地段难以找到其场地。加泥式土压平衡盾构开挖出来的含部分添加剂的土石如不进行处理,则可省去大笔分离设备费用和场地。两者相比较加泥式土压平衡盾构机设备费用低。

3.2.6推荐采用的盾构机类型

(1)技术经济比较

以下从十一个方面对泥水式盾构和加泥式土压平衡盾构进行比较(表2)

表2泥水式盾构与加泥式土压平衡盾构优缺点比较

(2)类似工程经验

隧道工程施工的方法范文4

【关键词】隧道施工;风险管理;措施;研究;现状

前言

伴随着我国经济以及世界经济发展进程的不断加快,我国的社会发展也在一前所未有的速度向前发展。国与国、地区与地区、城市与城市连接更加紧密,除了高科技网络化连接外,直接连接方式还有四通八达的交通线【1】。尤其是在十二五期间,我国的高速公路、铁路以及最新兴起的城际交通轨道和市内交通轨道的兴建也正在以前所未有的速度快速发展,我们已经兴建和正在兴建的隧道工程数目正在不断增加。但是,从技术上与理论上来讲,隧道工程都是一种具有独特之处的工程形式,因为隧道工程不但具有一般的道路施工所具有的基本特点,还具有极强的隐蔽性、施工的极端复杂性,同时还会受到地层条件以及周围环境不确定性的显著影响。这些基本的特点都从很大程度上加大了隧道工程施工的难度,也给隧道工程的施工带来了更多的风险,因此就从更大程度上对隧道工程施工现场的风险管理提出了各种要求。

隧道工程施工的基本内涵和重要意义

2.1隧道工程施工风险管理的基本内容

隧道工程风险管理具有复杂性、动态性和开放性的基本特点,受到自身因素以及来自很多方面的外界因素的影响,并且在这些因素的影响下隧道工程的风险评估所产生的后果具有很大的差异性。隧道工程施工风险管理复杂性主要体现在系统因素确定性和不确定性同时并存,比如对工程质体的描述:岩体节理发育程度、围岩级别、岩体质量指标、岩体完整性系数、岩体物理力学参数等,都具有随机的不确定性【2】,系统的动态性具体表现为时间和空间之间的关系,隧道工程施工的风险管理系统会伴随着时间以及地点的变化而不断发生变化。隧道工程施工的风险管理系统稳定性和强度则会随着施工时间的延长有一定程度的缩小。此系统的开放性则主要指的是在工程施工的过程中不断地与外界发生信息、能源、材料交换等。

2.2隧道工程施工风险管理的重要意义

隧道工程的施工具有周期较长、不确定因素较多以及风险性大和容易发生意外事故等基本特点。隧道工程施工的风险管理便显得尤为重要,便成为关系到隧道工程项目能否顺利完成和减小其他各项损失的关键因素。同时,隧道工程施工的风险管理还关系到提高投资的使用效益、控制工期的进度和质量,加强整个工程施工的控制水准的关键环节,更是市场经济运行机制发挥作用的重要基础和保障。

隧道工程的施工特点决定了在此工程中存在较多的潜在人为因素以及非人为因素影响工程的安全性和其他施工质量,这成为造成施工过程中巨大经济损失以及严重人身伤害甚至是人身伤亡的重要原因。如何正确的了解此类事故发生的原因和概率,如何对此类事故发生的后果以及损失进行尽可能相近的估计,以及如何采取科学性和有效性并存的措施解决这些问题是风险管理所面临的主要内容,也是风险管理的核心内容。

隧道工程项目风险管理在项目管理中的地位是不容忽视的,但是这一管理由具有其他各种类型的管理所不具有的强大功能。如何积极地开展隧道工程风险管理以实现隧道工程施工的总体效益最大化是一项值得我们研究的重大课题,具有非常重要的理论意义与现实意义。第一,可以帮助相关人员更好的了解工程的目标、应该完成的任务以及在隧道施工过程中所面临的主要风险,在充分认识的基础上可以较好的加强各个部门之间的合作,可以从更大程度上规避风险。第二,隧道工程施工风险管理可以使决策更加具有科学性,因为在进行风险评估管理的过程中管理者与决策人员能够对工程的工期以及成本等基本内容做出更加详细的了解,可以在此基础上制定更加科学与可行的施工方案。第三,可以更好地提高所有工程参与人员的风险分配的基本意识。第四,有利于提高所有工程参与人员的风险管理意识以及风险管理水平,从根本上做到更好的控制风险和避免事故、减少风险。总之,建立隧道工程风险管理体系是为了实现对于该工程中所出现的风险的主动控制和及时发现,以尽可能地实现投资、工期、质量和安全控制。伴随着经济的不断发展以及科学技术和社会的不断进步,社会对于隧道工程施工质量的要求也越来越高,隧道工程的风险管理作为一种先进的风险管理与预测模式正在受到更加广泛的关注。

做好隧道施工的风险管理的主要措施

3.1选择科学与合理的施工方法

伴随着隧道施工技术的不断发展与不断进步,新的施工方法正在以前所未有的速度出现。我们如何让对这些方法进行选择,如何在多种方法中选择具有针对性的方法进行施工是一项技术性的问题也是施工单位综合能力的具体体现。长期以来大量的施工实践已经证实所采取的施工方法是否具有科学性与合理性直接关系到施工的质量与效益,采用合理与科学的施工方法不但能够避免地质条件的不足引起的损失和风险,还可以较好的规避因为对于地质条件的判断不足引起的潜在风险。并且这也是一种锻炼队伍,提高企业的管理质量以及增强企业抵御风险能力的有效途径。

3.2加强风险的辨识

风险辨识是隧道工程施工风险管理中的一个关键环节,主要的目的是要通过各种科学与可行的方法找出可能存在的潜在风险,并且要在进行充分的调查研究的基础上对这些风险可能会引起的后果和危险做出定量的评估。风险辨识是隧道工程施工风险分析中的一个重要基础性环节,是做好整个工程风险分析工作的前提条件和基础性工作。能否正确识别风险和判断风险的程度,对风险分析能否取得较好的效果具有极为重要的影响。风险辨识的方法很多,常用的风险辨识方法有专家调查法、故障树法、情景分析法、决策树法、流程图法、检查表法等。由于隧道的有些危险很难在短时间内用统计的方法或其他方法得到证实,因此,建议采用专家调查论证的方法【3】。

3.3做好风险估计

隧道工程施工的风险管理中也是一个至关重要的环节,主要是以风险事件发生的概率为基本依据,以可能会发生的后果为基本的预测指标做好风险预测,并且要根据判断的结果对风险评估进行等级确定。这是一项极具复杂性和精密性工作,不能够仅仅从风险发生的概率大小上适用于隧道工程风险估计的常见方法有专家打分法、层次分析法、工程风险模糊估计法等【3】。

3.4遵循风险管理的基本准则

隧道工程施工的风险管理的基本准则是全过程的风险管理。全过程风险管理指的是在对施工风险因素进行充分的风险分析和风险预测基础上,针对可能存在的风险因素以及可能会出现的风险进行科学合理的评估,把评估结果作为风险决策的基本依据,以此来避免和减少风险发现发生的概率,或者转移风险。在风险管理中,隧道工程施工的各参与方共同创造一个良好的合作环境是进行全过程风险管理的有力保障。为了达到这个目的,伙伴关系是有价值的工具。在合作过程中,项目各方之间应进行良好的沟通与交流,制定以降低业主成本和提高承包商的利润、减少工期延迟等的风险管理共赢原则。

结语

在隧道工程施工的实践中,我们应该进行不断的研究与不断的总结,进一步的认识风险管理在隧道工程施工中的重要意义,争取形成一套具有完整性、系统性、科学性与综合性的风险管理体系,为提高建设质量和效益保驾护航。

【参考文献】

[1]王世海. 浅谈隧道工程施工的风险管理[J].四川建材,2011,(03).

隧道工程施工的方法范文5

关键词:高职;隧道工程施工与安全;教学模式

近年来,随着我国交通基础设施建设的快速发展,地下及隧道工程数量和规模不断增加。截至2013年底,我国建成的公路隧道有10022处,总里程为805.27万米;沈阳、成都、西安等城市正在建设地铁工程,工程建设规模如此巨大,遇到的岩土及地下工程灾害问题也越来越多,对各种复杂工程灾害问题的处置,需要工程技术人员具有一定的理论基础、实践经验和从事科研的能力,在地下及隧道工程快速发展的背景下,辽宁省交通高等专科学校道桥系在道桥(安全)专业中开设了“隧道工程施工与安全”课程,并将其作为专业骨干课程之一[1]。

围绕面向公路与城市道路和桥梁与隧道建设第一线,培养学生“不仅要掌握扎实的基础理论知识,还要具有创新能力和实践能力”这一高职教育目标,有鉴于此,部分学者从教学模式、教学方法和教学手段等方面对隧道工程施工的教学改革进行了研究,力图在提高隧道工程的课堂教学质量的同时,培养学生的专业素质以及工程实践和创新能力[2]。这些研究大大促进隧道工程施工教学的改革,但是从实际教学效果来看,还有继续提升的空间。本文结合我国对地下及隧道工程人才的迫切需要,道桥(安全)教研室对“隧道工程施工与安全”的教学内容、教学方法及教学模式方面进行了改革。以此来促进课程教学的规范化、系统化建设,提高教学质量。

1 教学存在问题分析

1.1 教学学时偏少,往往难于满足教学需求。教学学时少与教学内容多是当前高职课程教学环节当中的一个突出问题,这就很难在规定的时间内把课程内容讲透、讲通、讲精,也使得学生对课程内容的掌握和熟练应用的难度加大,导致学生理解不透彻,从而影响了学生的定岗实训。

1.2 教学模式单一,学生被动接受知识传播。现有的教学方式,大多采取“板书+多媒体”的形式,再配以必要的图片和说明,通过教师的灌输和学生的被动接收,实现知识的传播,这就导致学生的主观能动性差,缺乏独立思考,无法掌握课堂教学的精髓,从而影响了知识的实际应用。

1.3 课程教学与实践脱节严重,影响对所学知识的理解与掌握。隧道工程施工实践性、应用性强,很多施工技术和施工工艺只有在现场亲眼所见,才能知其所以然。现实情况是很多学校由于资金限制或缺少能够实习的场地,学生只能靠课堂上的想象,难以深入理解隧道工程的设计方法与施工工艺[3]。

2 以工作过程为导向的n程设计

所谓工作过程是指为完成既定工作任务、达到预期目标而进行的完整的工作程序。随着素质教育的不断推进,以工作过程为导向的课程打破了传统的以知识传授为课堂垄断的教学模式,将实践引入课堂,让学生在课堂上能够围绕工作任务,将实践工作过程和职业课堂教育相结合,将理论和实践相结合,促进学生理论联系实际的能力,推动职业教育的实用性发展。

2.1 基于工作过程,开展情景式教学

根据隧道工程施工与安全课程的教学大纲,隧道工程施工与安全的过程学习包括完成实训场地的认识学习、典型施工设备认知、熟悉施工工艺流程、学习施工方法及隧道施工安全管理、预防措施与事故处理、维护作业等主要内容。学习情景是基于工作过程的行动导向课程教学实践,改变了传统的教师按章逐节开展教学的生硬程序,从全局把握工作流程,发挥学生学习的主体性和主动性。

教学设计上以工作过程为认知核心,按照现场认知、知识教学、仿真实训、顶岗实习等四个过程环节来组织,运用计算机信息技术,运用模拟场景和课件展示,让学生在情景化的教学环境中,采用资讯、决策、计划、实施、检查、评估等六步工作法培养学生对工作过程的整体把握和技能掌握。

2.1.1 现场认知

隧道工程施工与安全的现场认知,就是在认识实习时,参观隧道施工现场,在项目部相关技术人员带领下,进入隧道施工现场,对隧道的各个施工环节及结构进行讲解,学生在技术人员的讲解下熟悉隧道各部分结构,使学生对隧道结构有一定的感官认识,为今后学习隧道施工方面的知识打下坚实的基础。

2.1.2 知识教学

根据《隧道工程施工与安全》教学大纲,将隧道工程施工分为两大模块,模块一为入门知识教学模块,主要讲解隧道的尝试、构造、围岩的稳定性、隧道设计及隧道的基本施工方法等内容;通过模块一的学习使学生对隧道施工的基本知识有一定的了解;模块二为实例实训教学,主要讲解隧道施工监测、开挖与出渣技术、初期支护、注浆加固、防排水、二衬及附属设施等内容,通过实例实训内容巩固知识点、更好地应用于实践。

2.1.3 仿真实训

利用实训场地,在教学过程中,将仿真实训与理论教学相结合。利用现有的实训场地内容,将仿真实训分为初期支护、二次衬砌、洞口施工、施工量测、盾构施工及盖挖逆作法等内容。通过模拟施工现场,将理论教学内容应用到现场实际当中,逐步讲解,加强学生对隧道的结构及每个施工环节的认识,为以后从事隧道工程施工奠定一定的基础[4]。

2.1.4 顶岗实习

学生通过对隧道工程施工与安全这门课程学习,已经对隧道施工方面的知识有一定的了解,再利用定岗实训去施工单位进行实习,在施工现场,围绕隧道项目工程施工的各个环节,和施工企业的相关人员一起,结合课堂上的授课内容,对学生进行实地的教学,真正地做到理论和实际相结合。加强学生的直观性,有效地吸引学生的注意力,提高学生的学习兴趣。使学习更有目的性,为能更快的适应未来工作奠定基础,同时增强了学生的事业心、责任心。通过现场教学,强化了学生多方面能力,丰富了学生的专业知识和社会知识、提高了学生的综合能力和整体素质。

2.2 根据典型化的工作任务确定课程学习性工作任务

根据学生的认知特点和隧道施工能力形成的规律,通过隧道工程施工的学习,让学生在技能操作中,将知识与技能进行整合,在实践中积累工作一线经验,实现理论实践一体化、课堂与实习地点一体化,最大限度地将工作过程和学习过程进行有机整合。在学生原有的知识体系和最终要实现的目标之间搭建桥梁,使学生结合隧道施工实际,掌握隧道施工及维护过程的基本知识和主要技术技能,实现具有高尚职业道德、技术熟练的工程技能型人才的完美转身。

隧道施工基层技术工作岗位群工作的主要内容,包括技术交底、技术检查、技术指导、质量评定、安全检查、工程试验、进度控制、数量核实[5]。

将这些工作内容转化为教学内容,也就是“岗位上做什么,老师要教什么,学生就学什么”。学生学了什么,到工作岗位上就上手就快,动手能力就强。企业也欢迎,学生也顺利。

3 课程考核

为考查学生对所学知识的掌握程度,课程结束后需以一定方式对每位学生考核。考虑隧道工程施工与安全课程隶属工程科学且极富应用实践性的特点,考核不应简单以期末试卷为单一评判形式。结合实际教学体会与经验,笔者认为考核宜由3部分组成:(1)课堂表现和平时作业(15%)。考查学生出勤率、听课表现(提问与回答问题),及课后作业完成情况;(2)理论考试(占60%)。改革传统的笔试形式,在试题的设计上和分数上尽量做到既考查学生基本知识的掌握,又通^案例分析考查其对工程实际问题的分析、解决能力;(3)实践技能(占25%)。主要目的是对学生学习技能和动手能力的考查,通过设置某一隧道工程施工事故案例,要求学生运用所学知识,查阅文献资料,参考相关行业规范及技术标准,对某一工程问题作资料整理、事故分析、解决措施、事故总结等综合训练,锻炼学生解决实际工程方面的问题。

结束语

随着我国交通基础设施建设的快速发展,地下及隧道工程建设的规模和数量不断增加,急需大量具有专业知识和技能的隧道工程施工和管理等方面的技术人才。“隧道工程施工与安全”作为道路桥梁工程技术(安全方向)专业的主干课程之一,积极探索科学、有效的教学方法和手段对于激发学生学习主动性、提高教学品质及促进高素质专业技术人才的培养有重要意义。在借鉴相关成功经验的基础上,结合自身教学实践,对该课的教学设计进行了探讨,并提出了相关建议,对于该课程的安排、讲授具有一定指导作用。

参考文献

[1]张雷.论高等职业教育专业人才培养模式的构建[J].职业技术教育,2000,(16):16-21.

[2]孙明磊,朱正国.“隧道工程”课程教学改革与实践[J].教师,2009,(20):60-61.

[3]李晓龙,郭成超.“隧道工程”课程教学模式探讨[J].中国电力教育,2011,29(3):96-98.

隧道工程施工的方法范文6

关键词:隧道工程;施工技术;质量控制

1路桥隧道工程施工技术管理和质量控制问题

因城市交通拥堵,路桥隧道施工规模日渐增加,施工单位为在激烈的市场竞争中占据一席之地,往往过度关注工期和效益,忽略施工技术和质量控制,导致工程结束之后仍存在一系列安全问题。其一,软土地基情况在路桥隧道施工中比较常见,施工单位一味追求进度,违背规章制度,台背填土过快,对地基造成破坏,固结度不足,出现桥头跳车情况。尤其是在一些沿海沿江地区,以黏土分布为主,土壤含水量高,孔隙大,压缩性高,软土地基处理不当,以至于发生桥头跳车,影响行车安全的同时,对路面产生破坏。其二,开展路桥隧道施工工作时,没有按照正确的标准进行路床碾压施工,路面碾压度与要求的密实度不符合,以至于路面平整度不足,且不够牢固。其三,路桥隧道施工过程中,没有按照工程标准选购排水管道,导致材料质量不达标,管道出现裂痕,出现局部地面松散及路面坍塌情况[1]。

2路桥隧道工程施工技术管理与质量控制方法

2.1严格控制路桥隧道施工设计

路桥隧道工程质量取决于施工设计合理与否,因而,需对路桥隧道工程施工设计进行严格控制,达到良好的工程效果。具体而言,结合实际工程背景,制定科学合理的施工方法,聘请专业施工团队,将施工队伍细分为测量队、掘进队、衬砌队等,分别负责对不同工序进行施工。除此之外,一定要严格落实前期设计工作,将路桥隧道工程中涉及到的各个要素涵盖在内,使路桥隧道施工设计更加完整,便于后续各项施工工作的开展。

2.2兼顾路床碾压技术质量控制

路床碾压完成情况直接决定了路桥隧道工程施工质量。路桥隧道工程实践中,要严格参照具体标准,对路床的标准高度和坡度等进行严格把控,分别做好排水、防水工作,以免出现道路积水情况。完成碾压工作之后,对压实度进行全面检测,确保其与施工要求相符。反之,压实度不达标,要在第一时间将具体处理方案制定出来。以某地区路床施工为例,开挖之初,对碾压要求和坡度等都提出了明确规定,兼顾坡度平整的同时,按照先轻厚重、先低后高、先慢后快的碾压原则。经测试,压实度达标,停止碾压。如果出现大面积松软情况,要及时与监管部门沟通,重新进行方案修改。倘若为小面积松软,采用局部挖掘晾晒方法进行处理,或者增加挖掘深度,开展换填工作[2]。

2.3严格控制排水管道质量

路桥隧道工程中,排水管道设计非常关键。对排水管道材料质量进行严格控制,与质量检测部门沟通,审核通过后,提供质量检验单和合格证书等,以最快速度解决质量问题。同时,控制管道接口填料质量,按照严格标准进行选择,兼顾接口缝清洁。如果存在水泥填料,先将其润湿。如果为油性填料,需要先将原料干燥,继而开展涂抹工作,确保砂浆饱满度,无遗漏情况。当下水管道和检查井处于连接状态时,先润湿下水管道表面,继而进行水泥抹面,以免因排水管道泄漏,出现人员伤亡。具体工程实践中,还要核实市政污水网、雨水出口等,确保其与设计要求吻合。

2.4增强过渡段填料质量

填筑路桥隧道过渡段时,结合施工路段实际情况,选择填筑材料,并进行土壤实验,优先选择高质量填料对路基进行填充,确保路基密实度与设计标准吻合。实验过程中,对施工地点土壤塑限和液限程度进行考量,完成土壤击实和筛分工作之后,对土壤松铺厚度和压实度之间的关系进行分析。通过实验选出最佳填料。与此同时,还要对填料源进行控制,确保填料质量,增加填料检测频率,确保其在过渡段填充过程中的稳定性,以免出现不合格填料,保障路桥隧道工程整体施工质量。

2.5构建完整的规章制度

无论路桥隧道工程施工技术管理,还是质量控制,都要以完整的规章制度为依托。路桥隧道工程施工过程中涉及到的相关内容比较多,离不开各技术部门和质量监督部门的参与。结合路桥隧道工程具体情况,对施工部门进行科学安排,确保各项施工工作的顺利开展。技术人员要在隧道施工之前进行地质检测,依据围堰等级对设计方案进行优选。以班组会议形式,督促技术人员核查现场环境和施工情况,及时排除危险源,确定场地安全后,方可施工,并做好安全防护工作,严格按照规章制度,做好进出人员记录工作[3,4]。

3结语

路桥隧道工程中涉及到的施工技术比较多,质量控制难度大。无论是施工单位领导,还是一线施工人员,都要明确路桥隧道工程施工技术管理与质量控制问题,对路桥隧道施工设计进行严格控制,兼顾路床碾压技术、排水管道、过渡段填料质量控制等,以此为背景,对规章制度进行构建,达到良好的路桥隧道工程施工效果,提高整体道路桥梁工程质量[5,6]。

参考文献

[1]于涛.论路桥隧道工程施工技术管理与质量控制[J].中国标准化,2018(2):121-123.

[2]邹强.浅谈路桥隧道工程施工技术管理与质量控制[J].商品与质量,2017(50):132-134.

[3]汪黎明.浅谈路桥工程施工技术管理与质量控制[J].四川建材,2017,43(12):267-268.

[4]王伟,付蔚.浅谈路桥工程施工技术管理的有效对策[J].黑龙江科学,2016(08):58-59.