前言:中文期刊网精心挑选了高分子材料的力学性能范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
高分子材料的力学性能范文1
1.何为高分子化学
顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。
2.高相对分子质量与高强度
相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。
3.高分子科学的主要内容
既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连
接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。
二、高分子材料化学的应用
材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。
第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。
第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。
第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。
第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。三、高分子化学与高科技的结合
当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。
随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。
第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹材料,如热塑性弹性体等。
第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。
第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。
可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。
四、高分子化学的可持续发展
研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。
参考文献:
[1]冯新德.展望21世纪的高分子化学与工业[J].科学中国人,1997,(11)
高分子材料的力学性能范文2
论文摘要:高分子化学是研究高分子化合物的合成、化学反应、物理化学、物理、加工成型、应用等方面的一门新兴的综合性学科。那么,高分子化学具体内容及高分子与生活、高科技的发展关系如何呢?以下作简单介绍。
人类从一开始即与高分子有密切关系,自然界的动植物包括人体本身,就是以高分子为主要成分而构成的,这些高分子早已被用作原料来制造生产工具和生活资料。人类的主要食物如淀粉、蛋白质等,也都是高分子。只是到了工业上大量合成高分子并得到重要应用以后,这些人工合成的化合物,才取得高分子化合物这个名称。但提到合成高分子材料(聚合物)的应用与发展,人们在想到它们极大地方便我们的生活的同时,很多人会想到“白色污染”,甚至将水污染、大气污染等各种环境问题的产生怪罪于高分子,这说明他们对高分子并不十分了解。当今社会高分子的功用无处不在,而人们认识高分子时,往往忽略了它带给人类生活的巨大变化和种种利益,不了解它为人类文明做出的贡献是巨大的。
一、高分子化学的内涵
1.何为高分子化学
顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。
2.高相对分子质量与高强度
相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。
3.高分子科学的主要内容
既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连
接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。
二、高分子材料化学的应用
材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。
第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。
第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。
第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。
第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。
三、高分子化学与高科技的结合
当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。
随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。
第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹性功能材料,如热塑性弹性体等。
第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。
第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。
可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。
四、高分子化学的可持续发展
研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。
参考文献
高分子材料的力学性能范文3
关键字:功能 高分子材料研究
一.引言
功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%。
所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。
二.功能高分子材料
功能高分子材料按照功能特性通常可分成:分离材料和化学功能材料;电磁功能高分子材料;光功能高分子材料;生物医用高分子材料。 功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。
随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。
一般归纳起来医用高分子材料应符合下列要求:化学稳定性好,在人体接触部分不能发生影响而变化; 组织相容性好,在人体内不发生炎症和排异反应; 不会致癌变;耐生物老化,在人体内材料长期性能无变化; 耐煮沸,灭菌、药液消毒等处理方法;材料来源广、易于加工成型。
经多年研究,能较好符合上述要求的高分子化合物主要有两大类,一类是有机硅化合物,第二类是有机氟化物,最主要的两种产品是硅橡胶和聚四氟乙烯,例如美国GE公司开发了一批主要是有机硅方面的用于医学领域的功能高分子化合物。
三.生物医用高分子材料
目前,除人脑外的大部分人体器官都可用高分子材料来制作。对生物医用高分子材料,除了要求具有医疗功能外,还要强调安全性,即要对人体健康无害。目前在血液相容性高分子、组织相容性高分子、生物降解吸收高分子、硬组织材料用高分子和生物复合高分子材料、医用高分子现场固化材料、医用粘合剂、固定化酶、高分子药物释放和送达体系等都有相应的研究。随着环保概念的提出,生态可降解高分子材料的开发和应用也随之日益受到重视。如聚乳酸塑料PLA,在废弃后自然条件下,通过微生物的分解作用,只需六个月至两年时间即可完全降解,降解反应的产物为水、二氧化碳、乳酸等是植物生长良好的促进剂,对环境无任何污染。
离子交换与吸附树脂是一类带有可离子化基团或其他功能性基团如亲油基团的二维网状交联聚合物。常用的离子交换与吸附树脂多为球状珠粒,其粒径为0.3-1.2 mm。此外,还要具有高的机械性能、较好的化学稳定性、热稳定性、亲水或亲油性、渗透稳定性和高的交换/吸附容量。在水/油中具有足够大的凝胶孔或大孔结构,由于它具有高效快速分析和分离功能,目前已广泛用于硬水软化、废水净化、高纯水制备、海水淡化特别是在食品工业、制药行业、治理污染和催化剂中应用的更为广泛,而且发展迅速。除一般用的离子交换树脂外,近来还发展了具有特殊吸附功能的离子吸附树脂:如高吸油树脂等,这些高分子吸附剂可以从有机溶剂或有机无机混合相体系中吸附有机溶剂如各种油类。
随着医用科技的蓬勃发展和环境污染的日益严重,当今材料技术的发展趋势一是从均质材料向复合材料发展,二是由结构材料往功能材料、多功能材料并重的方向发展。这种发展趋势使得医用复合材料和环境处理材料得到了快速发展。
四.医用高分子材料的发展方向
可生物降解医用高分子材料因其具有良好的生物降解性和生物相容性而受到高度重视, 无论是作为缓释药物还是作为促进组织生长的骨架材料, 都将得到巨大的发展。其中高分子纳米粒子以其特有的优点是近年来国内外一个极为重要的研究热点。
任何一种材料都是通过其表面与环境介质相接触的, 因此材料的开发与应用必然涉及其表面问题的研究。一般高分子材料的表面对外界响应性较弱, 但有些高分子表面的结构形态会因外界条件(如pH、温度、应力、光及电场等) 的改变在极短时间内发生相应的变化, 从而造成表面性质的改变, 此乃智能高分子表面。因此设计这类智能表面将是生物医用高分子材料发展的一个重要方面。通常,在组织工程的应用中,高分子材料支架要负载上生长因子,以促进组织在生物体内的再生,另一方面,把特殊的粘附因子,如粘连蛋白结合到支架上,可使聚合物表面能够促进对某种细胞的粘附,而排斥其它种类的细胞,即支架对细胞进行有选择的粘附。为了使生长因子和粘附因子能够结合到可降解高分子材料上,就需要对材料进行表面改性,而有时表面改性很困难, 因此,可利用与天然聚合物杂化的方法来达到上述目的, 同时由于这些材料有良好的机械性能,又可以弥补天然聚合物强度不高、稳定性差的缺点。可见,生物杂化材料在这方面的表现是相当突出的, 必将成为医用生物高分子材料发展的一个主要趋势。
参考文献:
1、 焦剑.功能高分子材料.化学工业出版社,2007.7
高分子材料的力学性能范文4
关键词:高分子材料;教学;探索和实践
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)24-0219-02
《高分子材料》是材料科学与工程学科的重要组成部分,是材料专业类学生的一门重要课程。但对于非高分子专业的学生,一般只有这一门高分子专业课,且学时有限。为使学生掌握广泛的基础知识、扎实的专业知识,该课程要将《高分子物理》、《高分子化学》、《高分子材料加工》等课程内容融为一体,并加强与其他材料科学的相互贯通。笔者在几年的教学实践中不断探索,对这门课的教学内容、教学方法和教学效果评价体系等方面进行了总结。
一、明晰教学目标、突出教学重点、合理安排教学内容
通过《高分子材料》的教学,需要学生掌握“高分子材料科学基础”、“高分子化学”、“高分子物理”、“高分子成型加工”、“通用高分子材料”等理论知识。在有限的学时条件下,要使对于高分子完全陌生的学生理解并掌握这些基本概念与原理,授课内容的选择是非常重要的。在内容选取上,我们的原则是既要让学生掌握相关的理论知识,又要有所侧重,并注重课程与先修课程的联系和课程前后内容的衔接等。高分子材料的制备、结构、加工及性能之间存在着一系列的有机联系,我们讲述的内容既要有独立性又应注意前后的关联性。首先,结合以前所学知识,让学生掌握高分子材料科学的基础知识。其次,高分子化学部分,我们着重讲解聚合反应机理。高分子的合成按机理主要分为逐步聚合与连锁聚合。连锁聚合中,以自由基聚合研究得最为透彻,我们分别结合反应过程的热力学和动力学,分析自由基聚合各个阶段的特点。至于离子聚合和定向聚合等内容,给定思考题安排学生课后学习。对于学生自学有疑问的地方,教师可以在答疑时给予指导。逐步聚合中,又可分为线形缩聚和体型缩聚,我们一般只讲述线形缩聚部分,体型缩聚安排为课后学习内容。高分子物理部分,我们集中讲述高聚物的结构与性能间的关系。通过掌握高分子材料的合成原理和方法,了解高分子材料结构与性能之间的关系,从而逐步形成较为完整的高分子材料科学知识体系。为了培养实用性、创新型人才,我们在教学中还及时更新教学内容,将新知识、新理论和新技术充实到教学内容中,为学生提供符合时代需要的教学内容。
二、积极探索教学方法,提高课堂教学效果
在《高分子材料》的几年教授过程中,为提高课堂教学效果,笔者一直不断探索,总结了一系列教学方法。
1.表格教学法。《高分子材料》的课程中,有很多教学内容可以通过对比进行讲解,比如聚合物的聚合机理中的连锁聚合和逐步聚合、自由基聚合的各种实施方法等。笔者在实践中,发现表格教学法是个很有效的教学方法。该方法运用比较,比传统直述法更清晰,利于学生掌握相关知识的区别和联系,从而更好地接受知识,并对各知识点有更深刻的理解。比如在讲述高分子材料的合成方法时,可以先用表格列出本体聚合、悬浮聚合、乳液聚合和溶液聚合四种实施方法,再在第一列列出配方、聚合场所、聚合机理、生产特征、产品特性、生产实例等与各实施方法对应的属性,然后一边讲解,一边将各属性填充,让学生接受知识点的同时也学习各属性的异同,从而加强对相关内容的理解和接受,也更利于学生记住相关内容。
2.示例教学法。示例教学法可以引发学生的学习动机,帮助学生理解抽象的事物和概念,发展学生的求知欲望。学生刚开始学习高分子材料,对有关知识和内容了解不多,专业术语比较陌生,但是日常生活中都接触过多种性能各异的高分子材料制品,对高分子材料性能的差异性有一定的感性认识。在讲课时可以引入这些实际的材料,既能提高学生的学习兴趣,也有利于更好地理解所学知识。比如在讲述高聚物粘弹性这部分内容时,高聚物区别于其他材料的最大特点是其粘弹性,由于高聚物分子运动的松弛时间正好我们能用肉眼观察到,所以才表现出这些现象。
3.启发教学法。《高分子材料》的教学中有不少抽象的概念、逻辑推理的演绎过程。老师在课堂上一味讲授专业知识和术语,学生学习热情不高。通过一边讲解,一边结合学科知识适当提出问题的启发式教学方式,能提高学生的学习兴趣和积极性,并能把一部分走神的学生拉回来。如讲到高分子结构时,先提出一个问题:“为什么橡胶和塑料的力学性能有这么大的差异?”给予学生适当时间思考后,再具体讲解高分子材料的结构,让学生带着问题听课,不但启迪了学生的思维,也使他们对所学内容有了更深刻的理解。
4.互动教学法。为了培养能解决实际问题的高素质人才,《高分子材料》的教学中,不应让学生死记硬背和生搬硬套,而应结合实际问题让学生思考,激发学生的发散思维。如讲到橡胶性能时,请同学们思考“如何提高橡胶的耐热温度”,再提示学生利用所学的高分子物理部分知识,从优化橡胶的结构入手,发动学生积极讨论,启迪思维,培养运用基础理论知识分析实际问题的能力。这种讨论式的教学方法,既活跃了学习气氛,启发学生思考问题,又可使学生对知识更好理解和掌握。在讲述高分子材料的合成时,经常通过合成反应式来表示合成过程和机理。我们一方面在课件编写中注意到让所有的反应方程式都不是一下显示出来,而是模仿板书一步一步显示,让学生有充分思考、接受的时间;另一方面,部分反应方程式让学生自己来写,旁边同学互相检查。通过这种方式,使学生更加熟悉并能深刻理解反应过程,其他同学的检查也能让同学发现自己意识不到的细节上容易出错的地方,了解出错的原因,补充没有掌握的知识点。
三、改革考核方式,提高学生综合素质
《高分子材料》的教学评价不但要考查学生基本理论知识的掌握情况,也要考查学生的再学习和独立思考解决问题的能力。为此,我们改变单一的一份试卷定成绩这种缺乏准确性和全面性的考试制度,将成绩的考核纳入每个教学环节中,为每个学生制订具体考核表,跟踪学生学习进展,使学生在学习中能随时了解自己的学习情况,督促自己不断学习、不断提高。其中考试方面根据课程的要求建立了《高分子材料试题库》,逐年对试题库的内容进行改进和更新,每年从试题库中抽取试题组成A、B两份试卷,严格考试要求和评分标准;另一方面,让学生选择一种新型高分子材料,查阅相关文献资料,描述它的合成、制备、结构、性能及应用前景,并撰写小论文;同时,增加学生课堂讨论、实验、作业等平时成绩的评分标准和比例。通过改革考核和评价体系,激励了学生的学习热情,锻炼了学生的实际能力,有利于培养高素质人才。
通过《高分子材料学》教学的探索和实践,初步探索了课程的教学思路和方法。在今后的教学中,我们还将不断总结经验,进一步完善教学过程中的各个环节,培养出既掌握专业知识,又具备分析问题、解决问题能力的能适应以后工作和科研需要的高素质人才。
参考文献:
[1]刘晶如,俞强,张洪文,等.高分子物理课程教学改革与实践[J].高分子通报,2010,(11):111-113.
[2]张镭.高分子化学教学的改革与探索[J].高分子材料科学与工程,2002,18(3):202-203.
[3]毛瑞.《陶瓷工艺学》教学的探索与实践[J].陶瓷研究与职业教育,2007,5(4):44-46.
高分子材料的力学性能范文5
一、功能高分子材料的介绍以及其研究现状
1.功能高分子材料的简介
功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子。
2.功能高分子材料的研究现状
在原来高分子材料的基础上,可将功能高分子材料分为两类:一类是以改进其性能为目的的高功能高分子材料;另一类是为赋予其某种新功能的新型功能高分子材料。
2.1高功能高分子材料
2.1.1光功能高分子材料
光功能高分子材料是指能够对光进行透射、吸收、储存、转换的一类高分子材料,可制成各种透镜、棱镜、塑料光导纤维、塑料石英复合光导纤维、感光树脂、光固化涂料及黏合剂等。这类材料主要包括光记录材料、光导材料、光加工材料、光转换系统材料、光学用塑料、光导电用材料、光合作用材料、光显示用材料等。在光的作用下,实现对光的传输、吸收、贮存、转换的高分子材料即为光功能高分子材料
2.1.2生物医用高分子材料
生物医用高分子材料需要满足的基本条件:除具有医疗功能外,还要强调安全性,即要对人体健康无害。不会因与体液或血液接触而发生变化;对周围组织不会引起炎症反应;不会产生遗传毒性和致癌;不会产生免疫毒性;长期植入体内也应保持所需的拉伸强度和弹性等物理机械性能;具有良好的血液相容性;能经受必要的灭菌过程而不变形;易于加工成所需要的、复杂的形态。
2.1.3电功能高分子材料
导电高分子材料通常是指一类具有导电功能、电导率在10-6S/cm以上的聚合物材料。这类高分子材料具有密度小、易加工、耐腐蚀、可大面积成膜,以及电导率可在绝缘体-半导体-金属态(10-9到105S/cm)的范围里变化。按照材料结构和制备方法的不同可把导电高分子材料分为结构型(或本征型)导电高分子材料和复合型导电高分子材料两大类。
2.2新型功能高分子材料
2.2.1高吸水性高分子材料
高吸水性树脂是一种三维网络结构的新型功能高分子材料,它不溶于水而大量吸水膨胀形成高含水凝胶。高吸水性树脂的主要性能是具有吸水性和保水性。它可吸收自身重量数百倍至上千倍的水,自身含有强亲水性基团同时具有一定交联度。,此外,高吸水性树脂的保水性能极好,即使受压也不会渗水,而且具有吸收氨等臭气的功能。高吸水性树脂在石油、化工、轻工、建筑等部门被用作堵水剂、脱水剂、增粘剂、密封材料等;在农业上可以做土壤改良剂、保水剂、植物无土栽培材料、种子覆盖材料,并可用以改造沙漠,防止土壤流失等;在日常生活中,高吸水性树脂可用作吸水性抹布、餐巾、鞋垫、一次性尿布等。
2.2.2形状记忆功能高分子材料
形状记忆功能高分子材料自19世纪80年现热致形状记忆高分子材料,人们开始广泛关注作为功能材料的一个分支——形状记忆功能高分子材料。形状记忆功能材料的特点是形状记忆性,它是一种能循环多次的可逆变化。即具有特定形状的聚合物受到外力作用,发生变形并被保持下来;一旦给予适当的条件(力、热、光、电、磁),就会恢复到原始状态。
2.2.3生物可降解高分子材料
生物降解高分子材料具有无毒、可生物降解及良好的生物相容性等优点,所以其应用领域非常广,市场潜力非常大。高分子的降解主要是各种生物酶的水解,其中聚乳酸类高分子是已开发应用于生命科学新型生物可降解材料,生物降解高分子材料除了在包装、餐饮业、农业、医药领域的应用外,在一次性日用品、渔网具、尿布、卫生巾、化妆品、手套、鞋套、头套、桌布、园艺等多方面都存在着潜在的市场,有很好的发展前景。
二、新型高分子材料的应用
现代高分子材料是相对于传统材料如玻璃而言是后起的材料,但其发展的速度应用的广泛性却大大超越了传统材料。高分子材料不仅可以用于结构材料,也可以用于功能材料。
这些新型的高分子材料在人类的社会生活、医药卫生、工业生产和尖端技术等方方面面都有广泛的应用。在生物的医用材料界中研制出的一系列的改性聚碳酸亚丙酯(PM-PPC)的新型高分子材料是腹壁缺损修复的高效材料;在工业污水的处理中,可以利用新型高分子材料的物理法除去油田中的污水;开发的苯乙烯、聚丙烯等热塑性树脂及聚酰亚胺等热固性树脂复合材料,这些材料比模量和比强度比金属还高,是国防、尖端技术等方面不可缺少的材料;同样,在药物的传递系统中应用新型的高分子材料,在包转材料中的应用,在药剂学中应用等等。
三、开发新型高分子材料的重要意义
从上世纪30年代高分子材料的出现开始到现代,世界工业科学不再只是满足与对基础高分子材料的开发研究,从90代开始,科学家们就将注意力转到了高智能的高分子材料的开发上。新型高分子材料的开发主要是集中在制造工艺的改进上,以提高产品的性能,减少环境的污染,节约资源。目前而言,合成树脂新品种、新牌号和专用树脂仍然层出不穷,以茂金属催化剂为代表的新一代聚烯烃催化剂开发仍然是高分子材料技术开发的热点之一。在开发新聚合方法方面,着重于阴离子活性聚合、基团转移聚合和微乳液聚合的丁业化。同时,也更加重视在降低和防止高分子材料生产和使用过程中造成的环境污染。新型高分子材料的开发,不但能够满足现代工业发展对于材料工业的高要求,更重要的是能够促进能源与资源的节约,减少环境的污染,提高生产的能力,体现现代科技的高速发展。加快高分子材料回收、再生技术的开发和推广应用,大力开展有利于保护环境的可降解高分子材料的研究开发。
四、结束语
材料是人类用来制造各种产品的物质,是人类生活和生产的物质基础,是一个国家工业发展的重要基础和标志。我国国民经济和高技术已进入高速发展时期,需要日益增多的高性能、廉价的高分子材料,环境保护则要求发展环境协调、高效益的高分子材料制备和改性新技术,实施高分子材料绿色工程。作为材料重要组成部分的高分子材料随着时代的发展,技术的进步,越来越能影响人类的生活,工业的进步。
参考文献
[1]严瑞芳.高分子形状记忆材料.材料科学技术百科全书[M].北京:中国大百科全书出版社,2008:382~383.
[2]陈莉主编.智能高分子材料[M].北京:化学工业出版社,2006.
[3]何天白,胡汉杰主编,功能高分子与新技术,北京:化学工业出版社,2009.
高分子材料的力学性能范文6
[关键词] 骨组织工程;支架材料;力学性能;弹性模量
[中图分类号] R318.08[文献标识码] B[文章编号] 1673-7210(2010)11(b)-116-02
支架材料是骨组织工程研究的一个重点。骨支架材料要求除良好的生物相容性、生物降解性、骨传导性、诱导性外,还需良好的力学性能[1]。支架材料植入体内,需要支架材料与相邻组织的力学性能相匹配[2],因此对各种支架材料的力学性能需要应有足够的认识。尽管对松质骨力学性能的研究很多[3-4],但很少有对不同支架材料的力学性能进行对比。本文对生物衍生松质骨、多孔聚乙烯、聚乳酸、聚羟基乙酸、磷酸三钙共聚物的力学性能作了对比研究。由于生物衍生骨已被广泛应用于骨缺损的临床治疗,研究中选择了四种不同密度的生物衍生松质骨作为样本。
1 材料与方法
1.1 试样的制备
参照第四军医大学等生物衍生松质骨(bio-derived cancellous bone, BDCB)的制作过程[5]:选用新鲜成年牛股骨端部,去除所附软组织、软骨组织及周边皮质骨量,制成10 mm×5 mm×5 mm的松质骨长方体骨块,长向沿承重方向。用50℃清水反复冲洗并清除骨髓(可用超声波清洗),用蒸馏水浸洗12 h,恒温(37℃)烘干箱烘干;将骨块放入1∶1氯仿/甲醇溶液中浸泡、脱脂12 h(室温),取出骨块用蒸馏水浸洗2 h后烘干;再放入37℃、30%的H2O2溶液中脱蛋白36 h,用蒸馏水于室温下浸泡透析12 h;取出骨块干燥后将骨块再次放入1∶1氯仿/甲醇溶液中浸泡、脱脂12 h(室温),取出骨块用蒸馏水浸洗;然后用乙醇浸泡24 h,取出用蒸馏水冲洗、浸泡24 h,再烘干;60Co灭菌消毒,封存保留、待用。松质骨支架如图1。选择四种表观密度0.25、0.44、0.56、0.69 g/cm3的BDCB作为样品。高分子材料-多孔聚乙烯(porous polyethylene,PPE),聚乙烯经过发泡获得的多孔、连通的聚乙烯支架,支架为10 mm×5 mm×5 mm的长方体,表观密度为0.44 g/cm3。复合材料-聚乳酸、聚羟基乙酸、磷酸三钙共聚物支架,支架为10 mm×10 mm×9 mm的长方体,表观密度为0.28 g/cm3(PLGA-TCP,由清华大学一次成型中心提供见图1。
1.2 样品压缩性能的检测方法
将样品纵向立于材料万能实验机(Instran)的加载平台上与加载平台垂直,上下面与加载平台平行。施加垂直压力,横梁移动速度为1 mm/min,应力-应变曲线直接给出。正常的生理应变范围为100~3 000 με[6-8]。按正常生理应变范围分别计算弹性模量。
2 结果
三种支架材料的应力-应变曲线见图2a。表观密度为0.25、0.44 g/cm3的BDCB在3%的应变范围内出现屈服。以表观密度0.44 g/cm3 BDCB的应力-应变曲线为例,随着应变增加,在很小应变范围内应力近似线性增加,接着非线性增加,并形成第一个波峰;达到5 000 με时应力达到极大值2.2 MPa,BDCB有部分骨小梁开始屈服,应力又有所下降后继续增加,形成持续时间更长的第二个波峰。应变在正常生理应变3 000 με范围内应力-应变曲线见图2b,三种材料支架的应力与应变关系从整体上看都近似线性关系。如果从小应力范围看(0~0.1 MPa),应力-应变曲线见图2c,在0~500 με应变范围内应力与应变近似线性关系。
按不同应变范围分别给出弹性模量见表1。在三种支架材料中,不同密度BDCB支架的弹性模量都高于PLGA-TCP 和 PPE支架,密度同样是0.44 g/cm3,BDCB的弹性模量约是PPE支架的4倍;密度(0.25~0.28 g/cm3)相似,BDCB的弹性模量也远远高于PLGA-TCP。但超过骨正常生理应变范围后应变达到3%时,中等、低密度的BDCB都已发生了材料屈服,而人工复合材料没有发生。在应变范围内(0~3 000 με),同一个样品多次重复实验,三种材料都具有较好的弹性,实验结果重复性好。
表1不同材料(样品种类和密度)按不同应变范围内的弹性模量(MPa)
f 代表样品发生了屈服
3 结论
对比三种支架材料的力学性能,天然衍生材料-生物衍生松质骨的弹性模量高于高分子材料-聚乙烯,也高于复合材料-聚乳酸、聚羟基乙酸、磷酸三钙共聚物。在大应变条件下人工复合材料没有发生材料屈服,这一点优于中、低密度的生物衍生松质骨。在支架的力学性能方面人工合成支架材料与天然材料存在差距,还需改进。另外按不同应变范围检测支架材料的弹性模量,这种更细致地研究材料力学性能方法可为支架材料植入体内与相邻组织的力学性能更好地匹配做准备,临床上合理使用支架材料。
[参考文献]
[1]李轶,冉炜,王改玲,等.新型骨组织工程支架材料生物相容性的体内研究[J].华西口腔医学杂志[J].2009,26(4):447-450.
[2]杨春蓉.骨组织工程支架研究现状及面临的问题[J].中国组织工程研究与临床康复.2009,13(8):1529-1532.
[3]于涛,孙长江,马洪顺.正常股骨头与坏死股骨头松质骨的蠕变特性:45°方向取样比较[J].中国组织工程研究与临床康复,2010,13(17):1595-1598.
[4]卢子兴,裴鹤.各向异性松质骨压缩模量和强度的数值预测[J].中国生物医学工程学报.2010,29(3):468-472.
[5]何创龙.骨胶原基质的制备、理化性能及其生物相容性研究[D].重庆:重庆大学博士学位论文,2004:3.
[6]Frost HM. From Wolff's law to the Utah paradigm: insights about bone physiology and its clinical applications [J]. Anat Rec,2001,262(4):398-419.
[7]黎小坚,Harold M Frost,朱绍舜,等.基础骨生物学新观[J].中国骨质疏松杂志,2001,7(2):152-157.