前言:中文期刊网精心挑选了智能制造系统的特征范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
智能制造系统的特征范文1
中图分类号:V262 文献标识码:A 文章编号:1009-2374(2013)11-0015-02
智能制造从本质上来说是一种以人机一体化为特点的系统,主要由人类专家和智能机器这两个方面所构成。从实际应用的角度上来说,智能制造表现出了突出的智能性、柔性以及集成性特征。将存在于人类专家思维中的智能活动以计算机模拟的方式所呈现,实现对问题或现象的综合分析、判断、推理、思考以及最终的决策。在制造领域中,智能制造可以说能够实现对部分脑力劳动的有效替代。而要想确保智能制造达到上述应用目的,最核心的一点在于确保智能机器运行的高效性与稳定性。如果将智能制造视作一个整体的话,那么智能机器无疑就可以说是整个整体的物理基础所在。在当前技术条件支持下,制造领域广泛应用的智能加工机床、工具和材料传送装置以及相关试验检测装置均属于智能机器的研究范畴。
挤压铸造是一种新型产品毛坯制造方法,它的制造原理是:在对铸型型腔内部进行液态金属浇筑作业的过程当中,对其施加一定量的机械压力,以保障浇筑过程中的液态金属能够成型、凝固并稳定,最终获取相应的铸件。传统意义上的挤压铸造工艺需要以摩擦压力机为基础所完成。这种方式因为受到压力和不能保压的局限,制造出来的产品容易形成气泡、缩松和缩孔。而通过对挤压铸造方式的合理应用,使得所成型铸件在成形稳定性能以及补缩性能方面均显著提升,机械能力也由此得到强化。此种铸造方法现阶段已经广泛应用于军工、汽车、航空等领域中。不仅如此,采用挤压铸造的方法还能大大降低能源消耗,这一点与现阶段整个社会可持续性发展的要求是充分契合的。
而挤压铸造设备作为在挤压铸造生产作业实施过程中的基础性设备,整个挤压铸造工艺质量在很大程度上受到了挤压铸造设备运行性能的影响,因此备受关注。特别是在铸造领域不断深化智能制造的过程当中,现代意义上的挤压铸造设备也应当具备突出的智能制造性能。本文试针对这一问题做详细分析与说明。
1 智能制造的特征
智能制造与传统模式最大的区别就是它具有智能化,而它的智能化主要包括以下几个方面:
一是自组织能力,即要求挤压铸造设备能够以生产指令为依据,自动地完成相应的挤压铸造生产任务。
二是自适应能力,即同一台挤压铸造设备能够支持并高效完成不同生产产品以及不同生产需求条件下的生产
任务。
三是自律能力,即确保挤压铸造设备所对应智能制造系统当中的各个单元均能够严格遵循统一的指令进行任务活动。
四是自学习能力,即要求挤压铸造设备能够在实践活动不断丰富的过程当中,实现对智能制造系统知识库的完善,达到提高智能基础活动能力水平的目的。
五是自维护能力,即要求挤压铸造设备所对应的智能制造系统能够在部分构成单元出现故障的情况下,对其自我修复。
六是自诊断能力,即智能制造系统发生故障时,能够实现对出现运行故障单元的自动诊断与识别,通过前面所提到的自维护能力,对发生故障段远程进行自动切换技术的修复,以保障挤压铸造设备中智能系统使用的持续性与有效性。
七是协作能力,即要求挤压铸造设备中智能系统下属构成单元能够协调配合。
2 现在挤压铸造设备的智能制造内涵
挤压铸造设备是挤压铸造工艺生产的必要设备。它根据挤压铸造工艺要求,以现代设计理论为基础,结合计算机技术、液压技术、自动控制技术及传感器技术而开发设计,主要工作是控制挤压铸造生产提供流程和参数。受智能制造的影响,现代挤压铸造设备强调集成,同时要求具有支持智能制造的功能,是智能制造模式的产物。实践表明,运用挤压铸造设备,有效地提高了挤压铸造生产工艺水平和生产效率。如今,日本、瑞士、荷兰、意大利都有专门生产挤压铸造设备的公司,并且取得了很大的成就,挤压铸造设备具有很高的实时控制功能和自动化水平,而日本的挤压铸造水平又遥遥领先。
现代挤压铸造设备普遍具有自组织能力、自适应能力、自维护能力、智能状态监测和协助能力,这是现代挤压铸造设备的智能特征,这些能力保证了挤压铸造设备运行的时候具有智能。同时,它和其他智能机器组成一个智能系统共同运作时就使该系统具有完整的智能机制,实现了智能制造的目标。
随着现代工业的蓬勃发展和国防装备的不断更新,挤压铸造工艺对设备提出了更多更高的要求,也使挤压铸造设备的设计和制造得到了很大的改进和进步。但是对挤压铸造设备的研究并没有止步,我们优秀的研究者和设计者依然在不停对挤压铸造设备研究和发展。今后的挤压铸造设备发展将会发展得更加先进、更加智能。比如为了改善和提高铸件的性能,可以利用挤压铸造在金属熔液凝固过程中,通过冲头的挤压作用而设计大吨位挤压铸造设备。但是这种设备受限于挤压铸造机的吨位,普通的挤压铸造铸件的重量通常小于30kg,这就使挤压铸造工作的应用范围受到了极大的限制。因此,大吨位挤压铸造机的研究和设计是目前的一个难题,无论国内还是国外都还在为此进行不懈的努力和研究,由此可见,挤压设备在未来还有一个很大的发展空间。
除了对挤压铸造设备的吨位改进以外,另一个热点就是对浇注系统的改进。虽然浇注系统在挤压铸造生产过程中退居二线,只是起辅的作用,但是它却是影响挤压铸造铸件的质量和生产效率的关键因素。现在挤压铸造的浇注系统主要有两种:直接浇料和间接输液,前者有着生产效率低、金属熔液容易氧化的缺陷;而后者虽然提高了效率,可以降低金属熔液氧化,但是成本和可靠性很低。因此,对挤压铸造的浇注方式的改进,也是摆在研究者和设计者面前的一个亟待解决的难题。
最后是对模具温度的控制:在铸造过程中,模具的温度直接关系着铸件的质量,挤压铸造也一样。而随着铸件质量要求越来越高,传统的模具温度控制方式已经满足不了生产需要。如何能更加精确地控制模具的温度,提高铸件的质量,将是挤压铸造设备在今后的发展过程中必须解决的问题。
3 结语
智能是21世纪热议的话题,也是未来科技发展的趋势。对于我国而言,在近年来的发展过程当中,挤压设备的设计和生产也取得了很大的成绩,但是与国际先进水平相比还是有很大差距,因此,我国使用的先进的挤压铸造设备还要依赖于进口。从这一角度上来说,我国需要加大对挤压铸造设备的研究力度,在未来,我们要把目标放在开发自动化程度高、结构工艺合理、出大吨位的挤压铸造设备上,赶上国际化水平。
参考文献
[1]左世全.我国应将发展智能制造业提升到战略高度[J].中国科技投资,2012,(31):47-50.
[2]通过“智能制造”有效应对21世纪制造业面临的四大挑战[J].自动化博览,2012,(12):2.
[3]智能制造装备产业“十二五”发展规划出台[J].现代技术陶瓷,2012,(4):12.
[4]宋雷,邵明,游东东.挤压铸造设备的研究进展与发展趋势[J].铸造,2010,(10):1039-1043.
智能制造系统的特征范文2
关键词:人工智能;控制;专家;监控
中图分类号:TP29 文献标识码:B 文章编号:1009-9166(2010)029(C)-0208-01
一、智能控制在各行各业的应用
1、工业过程中的智能控制
生产过程的智能控制主要包括两个方面:局部级和全局级。局部级的智能控制是指将智能引入工艺过程中的某一单元进行控制器设计,例如智能PID控制器、专家控制器、神经元网络控制器等。研究热点是智能PID控制器,因为其在参数的整定和在线自适应调整方面具有明显的优势,且可用于控制一些非线性的复杂对象。
2、机械制造中的智能控制
在现代先进制造系统中,需要依赖那些不够完备和不够精确的数据来解决难以或无法预测的情况,人工智能技术为解决这一难题提供了有效的解决方案。智能控制随之也被广泛地应用于机械制造行业,它利用模糊数学、神经网络的方法对制造过程进行动态环境建模,利用传感器融合技术来进行信息的预处理和综合。
3、电力电子学研究领域中的智能控制
电力系统中发电机、变压器、电动机等电机电器设备的设计、生产、运行、控制是一个复杂的过程,国内外的电气工作者将人工智能技术引入到电气设备的优化设计、故障诊断及控制中,取得了良好的控制效果。遗传算法是一种先进的优化算法,采用此方法来对电器设备的设计进行优化,可以降低成本,缩短计算时间,提高产品设计的效率和质量。
二、生活中的智能监控开发实例
智能监控归纳起来,无外乎以下两个层面:一是从图像中获得更多的信息,实现系统的预警功能;一是系统具有更高的友好性和可操作性,适应日益增大的系统规模。两者的实质都是要改变传统视频监控系统对图像信息的处理方式。确实图像识别技术在安防系统中应用前景是非常广阔的,安防系统智能化的一个主要方向。目前,它们的应用主要有两种方式:
1、验证:是把当事人的身份与正在发生的行为联系在一起,确认其合法性。这是安全防范系统的典型应用,把人的生物特征视作一把钥匙或一张卡。验证系统因可对特征的输入加以更多的控制,系统的可靠性和稳定性好,也相对成熟,已广泛地应用于出入管理系统中。它的基本工作方式是把特征输入装置读取的特征与系统存储的有限量的特征样本(这些样本代表了一定的授权)进行比对,来确定请求合法性。通常系统的存储样本的数量不是很多,现场特征输入的条件又可以加以控制,所以,系统的识别率很高(误识率和误拒率很低)。由于生物特征来自人自身,不需要进行同一认证,具有极高的安全性,因此、适用于高安全性要求的场所。
2、识别:对输入特征与存储在数据库中的大量的参考进行比对,来确定目标的身份。这样的系统首先要建立一个海量的基础样本数据库,如各城市人口的指纹库等。对于人脸等生物特征,要求输入的环境与建库的环境具有足够的相关性,以保证输入特征与样本特征的可比性。所以,建立一个稍加控制的环境,以排除或限制影响特征采集不真实(失真、不完整、伪装)的各种因素是系统应用的必要条件。如边防检查系统设立专门的人员通道来采集出入境人员的面部特征;机场安检信息系统在验征台处摄取旅客的面部图像。
三、智能监控关键技术
实现智能监控,各厂家提出了不同的技术方案,但关键点都集中于图像内容分析技术。这是正确的方向,可以说图像内容分析技术的发展过程就是智能监控的发展过程。智能监控的实现必须有图像内容分析技术的突破作为支撑。智能监控技术的发展过程或图像内容分析技术的研究可分为以下几个阶段:
1、将(运动)目标从视频图像中分离出来。这是体现图像技术的优势,实现目标探测的前题。传统的视频(运动)探测其实是亮度探测,并没有发挥图像技术的特点。确定图像中是否有探测目标(人、物等),并将目标从背景图像中分离出来是图像内容分析的首要任务,进而对目标分类、统计、关联。判断图像中有无目标、目标的复合或离散是图像过滤的基础。
2、对目标进行行为分析,判定其运动的方向、方式,并能发现和告警异常的行为;产生目标的运动轨迹,并能进行目标的自动跟踪。实现运动目标的跟踪是很难的事,它要求系统能分析、预测目标的运动轨迹,并能实时地作出修正。同时,由于运动过程与伺服机构间传递函数的非线性,伺服系统也是很复杂的。
3、在复杂环境下实现目标的分离、行为分析和运动跟踪,特别是实现多目标的跟踪。
上述两点目前已有产品和应用,但基本上在简单环境下,针对少数目标的情况。在复杂环境(既通常的视频监控环境)下实现这些功能,是图像内容分析技术具有真正应用价值的关键。同时、解决多个图像的综合分析,图像间目标的关联,目标跟踪的连续。这都是市场迫切需要,目前还没有解决的问题。
这个过程是逐步发展、与时俱进的,没有终极的结果。实现智能监控的目标,要经过不断的技术积累,特别是核心技术的突破,它需要一个过程,不可能一蹴而就,认为监控技术智能化已经实现的观点是不确切的。
作者单位:湖北省咸宁职业技术学院网络中心
参考文献:
[1]王建国,丁祖军.《智能控制》课程教学改革探讨《科技信息》,2009年第36期.
智能制造系统的特征范文3
关键字:智能制造体系;整体架构;功能特征;柔性化
1 前言
智能制造是最新的制造模式之一,具有广阔的发展前景,智能制造从本质上说是一个智能化的信息处理系统,对外操控机器人的动作,完成产品的制造和加工。该系统属于一种开放性的体系,原料、信息和能量都是开放的。智能制造是新世纪制造业振兴的发展方向,是我国实现制造业跨越的必经之路。
2 智能制造系统研究现状
2.1 智能制造系统内涵分析
智能制造体系是上世纪八十年代有先进的工业化国家率先提出的,主要包含只能制造技术和智能制造系统两部分。总体来看,智能制造体系指的是应用集成工程的思想,通过制造软件专家系统、机器人视觉和控制等先进技术,最终达到智能装配生产线上的机器人能够在人工不进行干预的情况下完场生产任务。智能制造的目的是人的脑力活动转化为制造机器人的智能化思维。智能化制造体系的物理基础是智能化机器人,所必需的设备包括智能加工机床、工具和设备的智能化输送平台以及装配设备等。
2.2 智能制造体系国内外研究现状
智能制造在上世纪八十年代提出之后,在国际范围内形成了三个主要的研究中心,分别是美国、欧洲和日本。最初的内涵指的是智能机床,智能机床能够完场熟练机械师操作普通机床完成的所有功能,具有一定的智能性。后来的智能制造概念得到发展和延伸,进而形成了一种开放性的操作系统,日本于1990年完成了世界范围内第一个智能制造工厂,融合了人工智能技术的机器人同时具备视觉的触觉功能。相对而言,我国在该领域的研究起步较晚,九十年代后才申请成立了第一个智能制造国家级项目。在理论研究领域主要集中于智能制造基础理论分析、智能化单元制造与控制、智能机器人的研发等。
智能制造的应用正在世界范围内兴起,它是制造技术发展,特别是制造信息技术发展的必然,是自动化和集成技术向纵深发展的结果。然而,虽然智能制造得到了学术界的广泛重视和深入研究,然而却难以得到工业界的广泛应用和推广,同时近几年关于智能制造系统新理论方面的研究遇到了瓶颈,其问题在于智能制造系统的体系架构尚未研究透彻,同时对于智能制造系统的发展趋势没有比较好的掌控。
3 智能制造体系架构研究
3.1 智能制造体系整体架构分析
智能制造的总体架构自下而上包括业务层、运作层、功能系统、功能单元、支撑技术五个层次。智能生产线各个层次间相辅相成,联系密切,其中系统以需求订单为输入,以信息系统为核心,集成自动化上下料等多个子功能系统,以基本功能单元及支撑技术为依托,推动智能制造生产线的正常运作,实现大批量产品定制及个性化客户服务的目标,从而最大化地满足客户和市场需求。其中各个层次的内容及构成如下:(1)系统业务层:即系统目标,是为客户提供大批量定制产品及个性化的客户服务。(2)系统运作层:主要包含精益化、数字化和敏捷化等最新技术。(3)功能系统层:设备预警,优化加工参数,监控生产的全过程,精度检测的在线实现,最终通过信息技术系统进行集成。(4)功能单元层:此部分承担设备和加工装备的信息传输,使用传感网络和通信网络技术。(5)支撑技术层:系统设计技术主要有传感技术和模块化技术,设备故障诊断和维修系统,安全维护和设备及信号的有效识别。
3.2 智能制造体系亟待解决的问题
智能制造想要完全提出人工干预,实现完全意义上的机器自主控制与分析,就需要建立一个智能化、数字化、信息化程度较高的企业管理网络,通过该网络完成产品的设计、装配制造直至仓储物流的全过程控制,其中还包括问题产品和故障设备的自动处理和维修。但是现阶段我国制造装配企业在各个制造要素的互联互通方面存在不小问题,主要体现在智能制造体系各功能单元之间横向、纵向集成通讯、端口到端口的信号传输。数据格式、通讯协议和语言识别等基础性的内容还没有完全解决。随着物联网、大数据和云计算等最新技术的融合,各功能单元之间的通讯是必须要解决的问题。人机交互、设备与设备之间、生产制造和仓储物流之间的信息交互都是困扰智能制造体系构建和发展的一大难题。
4 智能制造体系发展趋势分析
4.1 智能制造体系柔性化发展方向分析
智能制造体系的柔性化方向石油柔性智能装配引发的,基本的基本思路为:柔性装配的研究层次从上到下分为柔性工装、柔性工艺规划和柔性车间调度。主要涉及的研究思路包含结构优化设计、工装驱动数据自动生成、装配顺序规划和分配方法研究以及智能调度技术。柔性化发展是基于只能装配生产线上可能出现的各种问题及产品,所提出的新型发展方向。这其中可变参数和柔性调度是最重要的研究领域。
4.2 智能制造体系精益化发展方向分析
精益化的研究发祥包括四个方面的内容:(1智能制造环境下的自适应快速换模技术;(2)设备自诊断、自适应和自修复技术所组成的全员设备维护技术;(3)生产流程自动化的3P技术,该技术能够将生产过程中的资源浪费在设计和工艺研究等源头环节中进行降低;(4)均衡混流生产技术,该技术是基于对生产计划的合理规划以及现场动态调整和调配等智能制造手段进行的。
4.3 智能制造体系敏捷化的发展方向
敏捷化主要有以下连两个研究方向:首先,对于客户订单变化的快速响应是只能制造的一大特点,通过前期客户需求的调查,在大数据分析的基础上,使用神经网络等算法对客户的订单可能发生的情况进行预测,并拟合相应的相应曲线,得到响应基本函数,然后优化设计生产关键因素,最终大幅度减少客户需求响应的时间。其次是对于功能单元的设计和配制。在使用智能制造生a线的时候,需要对参与生产的各要素(包括软件设计、硬件要求和工艺流程设计等)归类的功能模块划分。在功能划分之后组建各自成体系的模块单元,并配置相应的算法,以达到提升智能制造体系柔性化和可重构性的目的。
5 结语
工业时代经历了三次大的变革,现在的工业4.0时代最主要的特征是智能化和远程控制,重点在于利用互联网技术、物联网技术、信息处理技术和智能机器人技术,最终实现产品加工的更高层次的自动化。本文通过对智能制造体系的深入分析,认为我国虽在在该领域取得了举世瞩目的成就,但是在智能化的本质和原理方面的研究仍然不足,未来建议在智能制造柔性化、精益化和敏捷化方面开展研究。
参考文献
[1] 张明建. 基于CPS的智能制造系统功能架构研究[J]. 宁德师范学院学报(自然科学版), 2016, 28(2):138-142.
[2] 郑茂宽, 明新国, 李淼,等. 智能制造系统总体架构及发展趋势探讨[C]// 2013先进智能制造技术发展研讨会. 2013.
[3] 韦莎. 智能制造系统架构研究[J]. 信息技术与标准化, 2016(4).
[4] 罗欣. 智能数控系统体系结构及其实现技术研究[D]. 华中理工大学, 2001.
智能制造系统的特征范文4
【关键词】机械制造;自动化;发展趋势
近些年,机械自动化技术得到了快速发展,自动化技术被广泛地应用在当代的机械制造行业,该技术涉及的范围较大、综合性强,是机械制造在激烈的市场竞争环境下提升自身竞争力的重要措施。我国高度重视机械制造业的自动化程度,并制定相关的措施拓展自动化技术的应用范围。通过了解掌握新阶段机械制造自动化的特征,能够有效推进我国机械制造行业的自动化进程。
1 机械制造自动化的特征
自动化的提出最早提出是20世纪30年代,起初的意思是通过特殊的方式使机器部件的转移无需人力搬运。目前,机械制造企业通过自动化技术,使生产对象能够顺利自动生产,促进生产过程的改善。现代机械制造技术主要有以下几点特征。首先,机械制造自动化是基本特征是取代人力。生产活动通过自动化技术代替了繁琐的体力劳动,运用科学的智能系统实现工作的自动化,依据不同的指令来完成简易的操作。操作人员和机械以及自动化设备形成一个整体系统,此系统可以得到协调的运行和调控,并促进各环节之间工作的优化。其次,机械制造自动化不仅包含具体的加工制造,还对产品的生命周期造成影响。机械制造自动化技术围绕着产品的整个生产环节,很大程度上有效降低了人力资源和物质资源的使用,促进机械制造企业生产效率的提高,为企业带来了巨大的经济利益。最后,机械制造自动化不但取代了工作人员的体力劳动和脑力劳动,还使整个生产过程安全系数提高。机械自动化产品自身存在保护系统,如果在运行过程中出现问题,能够自行分析解决。这就提升了生产产品的安全性。
2 机械制造自动化的发展趋势
随着我国改革开放的不断深入,制造业的自动化进程也在不断推进。综合以上对机械制造自动化特征的了解,我国机械制造自动化将会朝着更好的方向发展。
2.1 机械制造自动化技术的网络化
在过去的很长一段时期内,全球范围内的机械制造企业在产品的设计过程中,都是先利用图纸构思,然后根据图纸上的方案进行试验性生产,用这样的方式来完成产品的设计过程。这样做的方法存在一定的不足。例如一定程度上浪费了人力、物力、时间和大量的资金。随着科学技术的快速发展,电脑信息技术和软件技术也日益进步,信息网络对人们的生活方式产生了深远的影响。通过计算机软件,工作人员可以模拟在生产过程中的操作任务,凭借互联网信息技术,可以在有效的时间内对信息资料采取及时的传达,使远隔千里的双方可以进行有效的交流、协作,给机械制造企业的生产带来了极大的便利。因此机械自动化技术的网络化趋势的是必然。
2.2 机械制造自动化技术的数字化
机械制造自动化技术的数字化是贯穿整个自动化过程中的关键部分。数字化主要表现在机械制造生产的过程中,各类信息包括图像、文字、技术等都将通过数字的形式传输,利用广大的网络平台,使企业内部的信息可以有效传达。企业依据市场信息,采集相关的资料,利用网络上的数据库和多媒体等各种数字化技术,分析产品的基本信息,模拟产品的生产,完成对原型的制作,促使生产产品和消费市场能够有效响应,以达到客户的需求。世界各地的机械制造企业通过信息网络,根据自身的需求,利用电子商务平台,对信息采用有效的传递,为不同企业共同设计开发产品提供可能。因此机械制造信息技术的数字化也是势在必行。
2.3 机械制造自动化技术的节能化
机械制造的自动化过程,一定程度上取代了人类的体力劳动和智力劳动,还有效地减少了不必要的物质资源,避免了资源的浪费,充分体现了机械制造的节能化。随着世界范围内的资源不断缩减,世界各国都在号召节能、保护环境。人类社会的发展必然得与自然和谐相处,人类应该从各领域促进人和自然的和谐,制造技术的自动化也应做到这一点。制造业产品的设计、制造、销售、应用都应考虑到节能问题。生产的产品从某种角度上来讲,又是一件艺术品,当一种新的科学技术被运用时,应该考虑到它能否实现绿色节能,促进生产效率的提高的同时,有没有造成资源的浪费,从而实现经济的可持续发展。
2.4 机械制造自动化技术的智能化
随着科学技术的进步,很多领域都实现了智能化。实现机械制造自动化技术的智能化会给机械制造企业带来巨大的竞争优势。机械制造过程中采用的大多是智能系统,该系统主要依靠智能设备和专业的操作人员共同完成,此系统能够有效解决生产过程中产生的各种问题,具有自我调控能力。智能制造技术依靠人和设备的协调配合,拓展了操作人员在机械制造过程中的脑力活动,对整个制造过程进行优化处理,促进企业生产效率的提高和避免了不必要资源的浪费。随着社会生产力的不断提升,人类的思想将会往更深层次发展,智能化的技术是人类拓展思维的重要手段。机械制造自动化的智能化发展趋势需要依靠人类在思想领域的不断探究,进而促进智能化在机械制造行业的进一步发展。
3 结束语
综上所述,机械制造自动化技术是机械生产过程中的重要技术手段,对机械制造行业的起着积极的作用,极大程度促进了机械制造的进步,提升了机械制造企业的生产效率。在以后的实践过程中,企业应该加大对自动化技术的探索,顺应机械制造自动化的发展趋势,增加机械制造行业的技术含量,促使自动化在机械制造行业发挥更大的积极作用。
【参考文献】
[1]叶德军.浅析自动化技术在机械制造的发展趋势[J].工业设计,2011(12).
[2]任士一.浅谈机械自动化技术及其在机械制造中的应用[J].机电信息,2012(04).
智能制造系统的特征范文5
关键词:智能制造产业;发展模式;路径创新
中图分类号:F426 文献标志码:A 文章编号:1673-291X(2016)33-0035-03
引言
《中国制造2025》,将“推进信息化与工业化深度融合”作为主要战略任务之一,提出研究制定智能制造发展战略、加快发展智能制造装备和产品、推进制造过程智能化、深化互联网在制造领域的应用等具体任务。而《关于积极推进“互联网+”行动的指导意见》和《关于开展2016年智能制造试点示范项目推荐的通知》等文件,提出在产业发展过程中重点推进智能制造、大规模个性化定制、网络化协同制造和服务型制造,打造智能协同制造技术服务平台,形成智能制造业协同发展的产业生态体系;以推进智能制造产业发展为主攻方向,提升工业共性技术能力,促进产业化创新和转型升级,促进制造业的数字化、网络化和智能化,建立起一个全新的智能工业体系,打造智能制造产业生态链,构成新常态下经济增长新动力。
智能制造是基于新一代信息技术,在现代传感技术、网络技术、自动化技术以及人工智能的基础上,以信息深度自感知、智慧优化自决策、精准控制自执行为主要特征,包括从智能制造单元扩展到车间、生产线、企业、供应链等环节在内的制造生态系统。智能制造的实现主要通过信息―物理系统(CPS),实现网络信息系统和实体空间的深度融合,形成智能决策与控制,从而推进整个制造业的智能化发展。为此,对智能制造产业的发展模式、现路径等内容的研究,显得非常有现实意义。
一、智能制造产业发展新模式
(一)“政府+企业”发展模式
“政府+企业”发展模式指智能制造业在发展过程中由政府作为其主要支配力量,政府为企业的发展提供资金、人才等资源,企业在政府的大力支持下优先享用政府资源,受政府相关政策的保护,从而不断发展壮大,最终成长为智能制造业的“舵手型”企业。这类企业往往涉及一些与国家利益直接相关的产业领域,或是与国家的重要发展战略息息相关,因而这些企业受到政府部门的调节和支配,能够在政府的大力扶持下迅速成长起来。
(二)“智能制造业产业化创新平台”协同发展模式
智能制造业产业化创新平台由政府和产业链上的“舵手型”企业共同发起,平台由“舵手型”企业以创新的商业模式驱动运营。激发平台的产、学、研和企业的协同创新智慧,通过该平台共享和增值,促进创新要素发挥乘数效应的作用。该创新平台的有效运营由政府的产业政策驱动,全面涵盖智能制造产业发展的利益相关方,促进智能制造业的良性发展。保证所有相关基础技术与组件的自主创新能力,提供开放、实时的运行环境,数字生态系统的优化整合、数据分析以及协同的功能,促进智能制造业产业化创新平台的共享运行。面向智能制造的全过程、全产业链、产品全生命周期,建立起智能产业部门的协作,发展网络化协同制造新生产模式,支持产业与互联网的融合,制定智能制造的共性技术标准、关键技术标准和行业应用标准与规范,并在相应领域推广;实现智能制造产业系统中的物理对象与相应的虚拟对象之间无缝协同融合;推动实施国家重点研发计划,实施智能制造重大产业工程,强化制造业自动化、数字化、智能化基础技术和产业支撑能力,加快构筑自动控制与感知、工业云与智能服务平台、工业互联网等制造新比较优势,增强智能制造业数字化连接能力、数据增值能力、网络集成能力、智能认知能力、智能优化配置的能力,促进全产业链的智能协同。
(三)“工业4.0”引领发展模式
发达国家大力推进再工业化与制造业回归,推进网络信息技术、人工智能与制造业的深度融合。重点关注互联网、智能技术对制造业发生的作用,其中CPS是网络世界与实体世界的融合,具有在空间和时间维度感知和处理外部环境复杂性的能力,对产业互联网与工业互联网产生巨大影响。在美国,这种影响将重点发生在智能生产设备、流程、自动化、控制、网络和新产品设计等产业。CPS能够实现管理大数据、提升机器互联、建设智能化、提升对设备管理弹性和自适应能力等目标。对制造业的硬件设备、工厂、移动设备、物流、服务和人和过程进行连接、整合、分析和动态调整,具有跨界协同的特征。要重点推进能适应“工业4.0”的智能制造业发展模式,提升智能化制造业的CPS能力。首先,实体空间的数字化能力,将设备、移动终端、工厂、流程、服务等供应链中所有环节等“实体空间”要素,进行数字化呈现与连接的能力,实现万物智慧互联;其次,大数据基础上,网络空间对数据进行集成分析,发展人―机智能交换,提升认知层的智能决策能力;最后,网络―实体空间交互能力,形成智能价值网络、商业生态,实现智能协同增值。
二、智能制造产业发展的创新路径
(一)提升重点领域智能机器人智慧能力
面向《中国制造2025》十大重点领域,聚焦智能生产、智能工厂、智能企业的智能机器人的智慧能力提升,攻克智慧机器人关键技术,围绕重大科技领域,培育智慧生活、现代服务、特殊作业等方面的需求,重点发展人机协作智慧机器人、双臂机器人等标志性智慧机器人产品,引导智慧机器人向中高端发展,推进专业服务机器人实现系列化、商品化,促进服务机器人向更广领域发展。
(二)大力发展智慧机器人关键零部件
从优化设计、材料优选、制造工艺、装配技术、专用制造智能装备、智能产业化能力等多方面入手,实施技术创新,突破技术壁垒,解决智能工业机器人用的关键零部件性能、可靠性差,使用寿命短等问题。聚焦感知、控制、决策、执行等智能制造核心关键环节,突破关键核心与关键零部件,开发智能工业机器人、增材智能制造装备、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备等核心技术装备,以装备为支撑,全面提升高高性能机器人专用伺服电机和驱动器、智能控制器、智能传感器、智能末端执行器等五大关键零部件的质量稳定性和产业化生产能力,推动智能制造产业发展。
(三)推进智能制造产业共性关键技术产业化创新
积极跟踪智能机器人的发展趋势,推进新一代智能机器人共性技术产业化创新,建立健全智能制造机器人的创新平台。充分利用和整合现有科技资源和研发力量,组建面向全产业链的智能机器人创新中心,打造政产学研用(企业)紧密结合的协同创新载体。重点聚焦人工智能、机器人深度学习等基础前沿技术和共性关键技术,突破高性能智能机器人的设计、精确参数辨识补偿、协同作业与调度、编程等工业机器人的关键技术;重点突破智能制造模块化、标准化体系结构设计、信息技术融合、生肌电感知与融合等服务机器人关键技术;重点开展,突破机器人通用控制软件平台、人机共存等新一代智能机器人核心技术。同时,推进智能制造共性关键技术标准体系建设以及检测体系认证与应用。
(四)打造“舵手型”企业和“智能工厂”
引导企业开展产业链横向和纵向整合,支持互网企业与智能制造企业的共享联合,通过联合重组、合资合作及跨界融合,加快培育智能化管理水平高、创新能力强、市场竞争力和产业整合能力强的“舵手型”企业,打造市场渗透力强的智能制造机器人知名品牌,充分发挥“舵手型”企业带动作用,以“舵手型”企业为引领形成良好的智能制造产业生态系统,形成全产业链协同发展的局面。通过“舵手型”企业,打造“智慧工厂”,以制造资源、生产操作流程和产品为核心,以产品生命周期数据为基础,应用仿真技术、虚拟现实技术、实验验证技术等,使产品在生产工位、生产单元、生产线以及整个工厂实现智能化生产和运营。在信息化、网络化、数字化以及智能化都成熟的前提下,从基础IT与自动化,到业务流程变革,再到系统集成,参照CPS以及工业4.0的技术标准,建立智能车间、智能化工厂、智能化企业以及整个智能制造产业生态系统。
三、智能制造产业发展的供给侧对策
(一)加强智能制造产业发展的政策引导
实施智能制造产业发展的分布规划,在制造的优势行业、重点企业,开展智能制造发展的应用示范,政策鼓励企业建设智能车间、智能工厂和智能企业,推进智能制造和智能生产;分层推进智能化技术应用,推进智能技术产业应用。在互联网、物联网、云计算、大数据等泛在信息的强力支持下,推进智能化制造产业支撑能力建设,加强工业互联网等网络基础设施建设,推动制造企业的互联网化和智能化,突破和发展智能化关键共性技术和高端核心智能工业软件、智能制造装备及其关键部件和装置研发和生产,通过供给侧结构性改革,建立和完善有利于智能制造产业创新升级、推进智能制造的制度环境,促进智能制造产业的升级发展。
(二)促进创新体系有效智能协同
智能制造产业化水平的关键是制造业的创新能力。我国在工业无线技术、标准及其产业化,关键数据技术和安全核心技术等智能制造产业和工业互联网领域,发展水平还很低。制造业总体技术水平还处于由电气化向数字化迈进的阶段,而智能制造的支撑是数字化和智能化。按照德国工业4.0的划分,发达工业国家智能制造推进的是由工业3.0向工业4.0的发展,而我国智能制造需要的是工业2.0、工业3.0和工业4.0的同步推进。不断探索“互联网+”与各行业融合创新的新模式,以网络为纽带,实现人、机、物的互联互通,加快高速、互联、安全、泛在的基础网络设施建设,智能制造的实现设备、生产线、制造系统、产品、供应商、人之间的智能互联;强化创新驱动,持续推进智能制造企业融合创新,引导机器人产业链及生产要素的集中集聚,形成合力,推动智能制造产业健康发展,实现创新能力和智能制造技术革命的赶超,促进智能制造业与互联网深度融合协同发展。
(三)示范应用带动制造业智能化升级
激发智能制造产业发展的积极性,提升智能制造业的集成创新、产业应用、产业化创新、试点示范成效,支持产学研用合作和组建产业创新联盟,联合推动离散型数字化制造、流程型智能制造、网络协同制造、大规模个性化定制、远程运维服务等智能制造产业应用。支持智能制造系统集成和应用服务,推动形成包括多元化主体和多元化路线的产业创新和技术扩散体系,多方参与、多线并进的开放性创新机制,建立面向智能制造重点行业的工业云,采集产品数据、运营数据、价值链上大数据以及外部数据,实现经营、管理和决策的智能优化,加快构建以智能制造“母工厂”为核心的系统层面智能制造技术的应用载体。制定智能制造产业发展规划,促进各项资源向优势企业集中,鼓励机器人产业向高端化发展,聚集重点领域,紧扣关键工序智能化、生产过程智能优化控制、供应链及能源管理优化,建设智能工厂、数字化车间,分类实施流程制造试点示范与离散制造试点示范,以应用为抓手,带动制造业智能化升级。
(四)建立智能制造产业发展风险补偿机制
加强智能制造产业领域的资金扶持,以产业政策推动形成多元化的、竞争与合作并存的智能产业创新格局,鼓励以解决智能制造产业现实问题为宗旨,引导组织智能制造产业联盟合作和关键技术攻关,强化面向产业联盟的独立评估与信息公开机制,加快我国智能制造企业的整体技术进步和自主创新模式形成,主动对接国际智能制造技术产业标准,设立智能制造产业融合发展专项资金,加大对智能制造业与互联网融合发展关键环节和重点领域的投入力度,加大财税支持力度,为智能制造产业转型升级等专项资金支持机器人及其关键零部件产业化创造条件,积极探索建立智能制造产业发展风险补偿机制。
智能制造系统的特征范文6
关键词:智能化;机械工程;发展趋势;探讨
智能化机械工程是继传统机械工程技术发展起来的一种自动化控制技术,智能化机械工程主要由现代机械设备组成,机械装置具有复杂性与精巧性的特征,也能够制造出更为精确的产品,因此可以在理论创新与实际问题的解决方面发挥重要作用[1]。本文简单探讨了机械工程智能化的发展趋势问题,旨在为智能化机械工程实现进一步推广提供参考依据。
一、智能化机械工程的特征
机械工程的智能化发展指的是采用智能化管理方法、设备及技术,有效转变传统机械工程,使传统机械工程实现智能化运作与发展。智能化机械工程具有以下特征:(1)高品质、高效率。在机械工程中应用智能化技术能够减少生产能耗,并可以延长生产链,如从机械生产延伸至生产管理、产品销售及再回收等过程,同时保证高效率生产产品及提高产品的品质。(2)四流交汇、四维集成。人、机、硬件、软件相互交流与集成是智能化机械工程的基本特征,四流交汇与四维集成保证了智能化机械工程的高效性与智能性,这对于机械工程的发展有着非常重要的作用[2]。(3)节能与环保。节能环保是机械工程发展的重要趋势之一,利用传统机械工程技术的过程中难免会产生污染,且污染产生后治理难度较大。智能化机械工程中所使用的技术与设备均具有节能环保的特点,能够减少污染物的排放,避免以牺牲环境作为发展机械工程的代价。
二、机械工程智能化的发展趋势分析
(一)网络化与信息化发展趋势。网络化与信息化是机械工程朝智能化方向发展的主要趋势。就信息化发展趋势而言,与机械工程相关的企业正在不断改革自身管理体系,并注重通过智能化技术改善内部管理环境及利用外部环境,确保机械工程能够在信息化管理环境中实现进一步发展。目前EPR(企业资源计划系统)及MRPII(制造资源计划)等在企业中的广泛应用为智能化机械工程的信息化发展提供了有利条件,同时也能够使机械工程在虚拟企业、动态联盟、电子商务、网络物流等领域中发挥非常重要的作用。机械工程在信息化管理领域中的应用也能够加快智能化机械工程的信息化发展。例如,在对机械工程中的机电产品进行研发时,通常会应用到信息技术,在选择机械加工设备时,通常会优先考虑数控式加工机床等含有智能化信息技术的机械设备。商业化智能机械研发机构的出现也为机械工程的信息化与网络化发展提供了必要条件,目前已有研发机构成功利用智能CAD(计算机辅助设计)技术、智能数据处理技术等设计及开发新型机械产品,并逐渐朝CAM(计算机辅助制造)、CAPP(计算机辅助工艺过程设计)等方向发展[3]。此外,机械工程生产体系的网络化发展趋势尤为明显。智能化机械制造系统以人机结合为主要特征,目前制造模式已经得到了优化,生产体系注重以人为本,并确保机器智能与人类的智能能够实现有效结合,因此可保证调度计划与生产计划能够组成智能化控制网络,确保机械工程的智能化控制系统具有可重构性。例如,可以重构路线调度数量品种,适应机械加工设备及组成方案等。
(二)集成化与自动控制化发展趋势。随着机械工程智能化研究的不断深入,智能化机械应用集成化与自动化控制技术的趋势也表现得越来越明显。在机械工程领域中,基于单机集成与智能控制的自动化换挡系统已经得到了推广与应用,自动化换挡系统主要分为液压式换挡系统与电液式换挡系统,应用以上两种系统后不但可以改善机械设备的使用性能,提高机械工作效率及作业质量,同时还能够使机械操作人员的劳动强度得以减轻。另一方面,机械工程中所使用的监控技术、检测技术、远程诊断技术及维护技术等也已经逐步实现了智能化,并具有明显的集成化与自动化控制的发展趋势。例如,智能化电子诊断技术与监控技术能够实现在线智能检测、预报及检测机械设备的运行工况,同时还可以自动将故障诊断及维修数据发送给机械操作人员,方便操作人员集成化控制工程机械。近些年国外部分厂家已经可以在电子监控装置当中安装数据输出接口与数据存储接口,这就能够为机械工程中故障数据的记录提供有效的物质基础,当得出故障数据后,机械维护或操作人员便可以根据故障代码输出结果分析故障情况,因此有利于精确确定机械故障类型及故障点。此外,集成化与自动化控制的发展趋势还体现在了网络机群方面。网络机群是机械工程智能化的具体体现,实施网络机群管理能够优化配置多机种及高性能机械,确保各类机械充分发挥协同作用。
(三)产品智能化与人工智能化发展趋势。在机械工程本身不断实现智能化的同时,机械工程中的产品也逐渐朝智能化的方向发展,同时在机械工程领域中应用人工智能化及计算机科技技术的发展趋势也变得越来越明显。智能化、多样化及个性化的机械产品能够更好地满足消费者的需求,其中智能化机械产品具有广阔的市场前景。例如,索尼公司开发的智能化娱乐机器狗(爱宝)投入到市场后受到了广大消费者的欢迎,同时也带来了巨大经济效益。机械工程领域中的智能化产品多能够模拟人类大脑所具有的控制功能、分析功能,因此可以实现共同控制与定时控制。在机械产品中安装位置、压力及温度传感装置等,不但可以高效感知与分析外界信号,同时还能够及时处理信号。例如,机械产品中的分级控制可以通过电子电路、SCM( 供应链管理)及显示管等的灵活配置实现。人工智能化与计算机科技技术的应用也加快了机械工程智能化的发展进程。现代科技技术从研发到应用之间的周期正在不断缩短,机械工程中应用的人工智能化技术也变得越来越多,人工智能与计算机智能的结合已经成为机械工程技术研究中的热点,研究的关键点在于解决知识节点划分与模块共享之间存在的技术难题,以便可以协调人工智能、产品智能与计算机智能之间的关系。此外,机械工程智能化知识资源为智能软件的设计提供了必要依据,如MAS技术(移动服务器)、DPS技术(数据保护)等的应用不但提高了机械工程的人工智能化水平,同时还能够提升机械产品的制造质量,降低产品生产成本。因此能够加快机械工程的智能化发展。
结束语:综上所述,机械工程在人类文明发展的过程中起到了非常重要的作用,智能化机械工程的出现将机械工程带入了一个崭新的发展纪元。机械工程智能化的发展趋势是多样化的,包括网络化、信息化、人工智能化与产品智能化等,只有把握好机械工程智能化的发展趋势,才能够丰富机械工程领域的内涵,并由此加快机械工程的发展。
参考文献: