前言:中文期刊网精心挑选了纳米材料行业分析范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
纳米材料行业分析范文1
1纳米技术的相关概念和理论介绍
从单纯的纳米材料结构来看,纳米材料主要在微观分子、原子和宏观物质中间的领域,我们只有详细的认识什么是纳米材料以及现阶段纳米技术发展的成果,才能更好的去分析和探究纳米技术在机械工程领域的实际应用。我们可以简单的认为纳米材料科学是材料学的分支之一,我们也不能否认纳米技术在人们日常生活中的广泛应用和重要地位。这一科技突破成果的广泛应用,改变了我国传统机械工程的生产模式,为我国的机械工程发展和进步带来了翻天覆地的变化。
1.1纳米技术的定义
首先,我们必须明确的一点是,纳米是一个长度单位,它的原称是“毫微米”。我们通常所指的纳米科技就是指研究结构尺寸在一至一百纳米范围内材料的性质和应用。这门学科不是独立的、单一的存在,纳米科学与技术和众多的科学学科有着十分密切的关系,可以说,纳米技术一直走在学科交叉领域的前沿。我们通常将纳米科技分为三个研究方向,即纳米材料、纳米器件和纳米尺度,这三个研究领域都是进行科技研究的重要领域。纳米科技的根本目的就是利用纳米的特殊性能去制造具有特殊功能的产品。纳米技术在机械工程方面的应用意义重大,微型机械技术已经成为二十一世纪纳米技术运用的核心,很多国家开始对纳米技术进行了更深入的研究,旨在为机械工程的发展做出更大的贡献。
1.2纳米技术的主要内容
首先,纳米材料主要包括制备和表征。我们通常希望通过利用纳米尺度的结构,在不改变物质化学成分的前提下,去实现对材料基本性质的控制。其次,纳米动力学主要是微型电动机械系统,它的英文简称是MEMS,即主要包括微机械和微电机。这种技术实际上是一种类似于集成电器设计和制造的新型工艺。它的最主要特点就是部件很小,虽然刻蚀的深度要求范围在数十至数百微米,但是它的宽度误差很小。这种技术有着很强的科研潜力,一旦研究的更加成熟,就会在实际的应用中带来更好的经济价值和利用价值。第三,纳米生物学和纳米药物学,这种纳米技术的应用也很广泛,可以用自组装的方法在细胞内放入零件以构成新的材料。最后,还有纳米电子学,它主要包括基于量子效应的纳米电子器件、纳米结构的光或者电性质、纳米电子材料的表征,以及原子操纵和原子组装等。这项技术可以满足当前电子技术发展的主要趋势。
1.3纳米技术在机械行业中的发展前景
我们认为,纳米技术作为科学研究中一项很重要的突破性成果,如果合理加以利用,能够在机械行业中展示出很强的利用潜力,为企业的生产带来更高的经济价值。纳米技术在机械行业中的应用范围和应用程度有待扩大和加深,它的发展前景是十分广阔的,我们必须看到纳米技术的科研潜力和经济价值,结合当前我国机械行业发展的现状和在实际利用中出现的问题,不断的进行研究和创新,深入的促进纳米技术和机械行业的紧密结合。我们可以在机械行业的各个领域去应用纳米技术,如:机械及汽车工业的滑配原件、射出成型时发生的粘模以及塑胶流道的低粘应用等。
2纳米技术在机械工程中的应用
随着科学技术的发展和社会经济的不断进步,纳米技术在机械方面的应用最重要的一方面就是微型机械技术,许多国家对此进行了深入的研究,我们可以看到,纳米技术在机械工程中的应用主要存在于微型纳米轴承方面。这种技术深深的改变了传统机械工程的发展模式。由于传统轴承的体积较大,它的摩擦力只能够靠来进行减少,但是这种方式并不能够从根本上避免摩擦力带来的问题。美国科学家通过研究,利用纳米技术很好的解决了这一问题,他们研制出了一种微型纳米轴承,这种轴承最大的优势就是几乎没有摩擦并且其直径仅仅是一个头发直径的万分之一。安徽的合肥大学通过研制,成功发明了纳米材料刀具,这标志着运用纳米材料制作的新型金属陶瓷刀具问世,这种刀具不仅仅品质十分优化,并且使用寿命也得到了极大的提高。另外,纳米耐磨符合图层的运用也是十分广泛的,实际上,这种微型化的大力运用已经从根本上改变了传统机械生产的模式,颠覆了传统机械的概念和范畴,这种微型机械的基础是现代科学技术,这种创新性的思维方式也是时展的重要产物。除此之外,纳米技术马达、纳米磁性液体以及纳米技术在食品机械领域的应用,都展示了纳米技术给机械工程带来的重大改变。
3结论
纳米材料行业分析范文2
[论文摘要]科技的发展,使我们对物质的结构研究的越来越透彻。纳米技术便由此产生了,主要对纳米材料和纳米涂料的应用加以阐述。
一、纳米的发展历史
纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。
1959年,着名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。
二、纳米技术在防腐中的应用
纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米SiO2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米TiO2、SiO2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。
纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。
纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。
我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。
三、纳米材料在涂料中应用展前景预测
据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。
由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。
在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。
纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。
纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻性功能涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。
四、结语
由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。
参考文献:
[1]桥本和仁等[J]. 现代化工. 1996(8):25~28.
纳米材料行业分析范文3
想要考研的你,提及纳米科学与技术专业,是否会列出“神秘”“高薪”“高就业率”“高科技”这一系列关键词呢?
真正的“高富帅”专业
如果一定要用一个词来形容纳米专业,那就是“高富帅”。
说它“高”,是因为它的的确确是高科技的产物。1纳米是1米的十亿分之一,20纳米也仅相当于1根头发丝的三千分之一。也正是这么小的尺寸,才能够用来做材料。不仅如此,纳米材料还都带着“特异功能”,具有奇异的化学物理特性。纳米虽小,用途却大,小尺寸成就大空间,真是高不可测。而研究生阶段需要学的课程也很“高”:纳米材料的结构、尺寸和形貌的表征技术、纳米粉体材料的制备与表面修饰、一维纳米材料的制备、纳米复合材料的制备、纳米结构材料的制备、纳米材料的物理特性与应用、纳米电子器件的基本原理和微加工技术、纳米材料与纳米技术的最新进展和发展趋势等都是该专业的主干课。是研究生的必修课,而新专业的科研空间更加广阔,所以发SCI的概率大大增加。想要写好论文,你就要了解纳米材料与技术的最新学科发展动向、理论前沿、应用前景等。而如果你打算游学海外,就更要在研究生阶段狂抓英语了。这一专业的专业英语词汇非常庞杂,有医学、化学、物理、材料学等诸多领域,需要系统地学习。笔者硕士一年级的时候大家每周都会用英报告,这样能有效提高英文水平,即使不打算出国,阅读国外文献也会非常流畅,开阔视野。纳米专业确实很“高”,但当你真正钻研进去,就会发现它的乐趣。
说它“富”,一点也不夸张。纳米技术、信息技术及生物技术被誉为本世纪社会经济发展的三大支柱。纳米从20世纪80年代末,90年代初开始起步,经历二十多年的发展,现在已经成为突飞猛进的前沿、交叉性新型学科。纳米技术作为朝阳产业,将在生物医学、航空航天、能源和环境等领域“大显身手”。美国国家科学基金会的纳米技术高级顾问米哈伊尔·罗科甚至预言:“由于纳米技术的出现,在今后30年中,人类文明所经历的变化将会比过去的整个20世纪都要多得多。”如此看来,纳米技术必将创造巨大的经济价值,同时也能为该专业的同学提供良好的职业发展平台。
说它“帅”,是因为它有独到魅力,吸引青年学子投其怀抱。其实,大部分工科生的研院生活都是相同的,读文献、做实验、组会、听报告,这些几乎就是我们读研生活的全部。想学好纳米专业,你首先要做个杂家。在研究生阶段,你要掌握数学、物理、化学等方面的基本理论和基本知识,学习环境纳米材料的绿色制备及其规模化,面向环境检测的纳米结构与器件的构筑原理、方法,并且了解纳米材料与纳米结构性能与机理。而做到这些还远远不够,因为理工科专业的直接目标在于应用,因此还需要学习纳米材料在污染治理中的应用原理、技术与装置研发、纳米材料的环境效应与安全性评估、纳米材料在节能和清洁能源中的应用等,掌握材料学的工艺装备、测试手段与评价技术,具备相应的科研能力,具有从事科学研究和解决工程中局部问题的能力。运用纳米技术解决这些问题和一般的常规思路有着很大的不同,有着前路未知的期盼和发现时的狂喜,为此我们都成为典型的“技术宅”,大部分时间会宅在实验室里,在外人看来,可能是只顾科研无心生活的“苦行僧”,而只有我们才能体会到纳米的“帅”及给我们生活所带来的乐趣。
想要学好纳米专业,团结协作的能力必不可缺。其学习都是以课题组和实验室为单位,很多作业和项目都是大家集体完成,比如开发一种新型的纳米材料,大家都有不同的分工,这就需要我们能紧密地合作与沟通,分担辛苦分享成功。
同时,我们还需要有极强的表达能力和动手实践的能力。我们学校经常举办学术沙龙,需要大家上台演讲,不仅本专业的导师在场,其他专业的学生和老师也会来听,并从不同角度提出意见,所以我们要足够有气场才能HOLD住场面。而实践方面,我们都有做老师科研助理的机会,同时开展自己的课题研究,不仅要写得好论文,还要做好实验。想读纳米专业,要做的功课非常多,你只有都尝试了,才能体会到这个专业的巨大魅力,才会在科技的海洋里尽情遨游。
就业面窄是误区
对于纳米科学与技术专业,很多人对它的认识存在误区。很多人认为,纳米作为高精尖技术与日常生活相距太远,所以想当然地认为其就业难。
其实,纳米真实地存在于我们的日常生活中,而随着科技的发展,未来有一天我们的衣食住行都将离不开纳米技术。所以如果你能有幸就读该专业研究生,并在学术上有所造诣,愿意将所学学以致用,那么你的就业前景无限光明!
那么纳米技术到底是怎样和实际生活联系起来的呢,而我们工科生,又将以何种方式参与这种科技改变人们生活的进程呢?
衣:在纺织和化纤制品中添纳米微粒,可以除味杀菌。化纤布结实耐磨,但会产生静电现象,加入少量金属纳米微粒就可消除静电,穿起来非常舒适。
食:利用纳米材料,冰箱的抗菌能力大大增强。纳米材料做的无菌餐具、无菌食品包装用品已经进入市场。利用纳米粉末,可以使废水有效净化,完全达到饮用标准,纳米食品色香味俱全,还对健康大有裨益。
住:对于我们这代人而言,居家做家务、清理房间是一大愁事,纳米技术的应用可以省下我们很多力气。通过纳米技术,墙面涂料的耐洗刷性可提高10倍。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,完全不需要擦洗。含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。既省时省力又对身体好。
行:在出行方面,纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,可以大大提高发动机效率、工作寿命和可靠性。纳米球添加剂可以在机车发动机加入,起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。纳米卫星可以随时向驾驶人员提供交通信息,帮助其安全驾驶。
而这些,只是纳米科技应用在生活中的很小一部分,纳米技术兴起晚,发展态势迅猛,更多的核心技术需要我们这一代去发掘,以期使之更好地为民生服务。可见纳米技术在日常生活中无处不在,各行各业都需要拥有高技术高学历的纳米技术专业人才,所以就业前景广阔。
具体的就业方向,男生、女生之间相差很大。纳米专业的大部分女硕士,特别是女博士一般选择到大学或科研院所做研究。研究领域涵盖纳米材料、黏合剂、涂料、电镀、陶瓷等相关领域,从事相关产品开发、生产和检测等方面。大部分男生会去纳米材料行业企业或传统材料相关企业供职。可以从事纳米材料表征、石墨烯及碳纳米材料研发、纳米材料改性、纳米材料合成、无机纳米材料制备以及交叉学科纳米材料应用的相关工作。
跨专业报考受青睐
纳米科学与技术是一个技术性很强的专业,不过并不限制跨专业报考,纳米科学与技术专业不仅不是个排外的“高富帅”,反而非常欢迎跨专业的学生融入其中,共同搭建纳米专业的大舞台。纳米科学与技术专业在工科或理科门类招生,不同学校有所不同,但都非常欢迎与之类似的材料专业同学报考,因为都涉及材料学的基础知识,所以学起来会得心应手。同时,理工科专业背景如物理、化学甚至数学这类基础学科出身的学生,也很受该专业欢迎。
在报考纳米科学与技术专业的学生中,也有一部分医学生。未来纳米技术应用于医学领域是大势所趋。利用纳米技术制成的微型药物输送器,可将适当剂量的药物,通过体外电磁信号的引导准确送达病灶部位,有效地起到治疗作用,同时可以减轻药物的不良的反应。用纳米制造成的微型机器人,它的体积可是小于红细胞的,你能想象到吗?通过它向病人血管中注射,能疏通脑血管的血栓,清除心脏动脉的脂肪和沉淀物,还可“嚼碎”泌尿系统的结石等。而随着纳米技术的发展,它与医学还会有更多的交叉。
院校介绍
对纳米科学与技术这种新兴学科来说,每个学校都有自己的特色和侧重,所以这里重点介绍一下。而通过这些不同院校的专业方向设置,我们也可以多角度地了解这一专业。
国家纳米科学中心
国家纳米科学中心是中国科学院与教育部共同建设并具有独立事业法人资格的全额拨款直属事业单位,自2005年开始招收研究生。现有博士学科专业点3个:凝聚态物理、物理化学和材料学;硕士学科专业点3个:生物物理、生物工程和材料工程。鉴于纳米科学与技术学科的前沿交叉特性,在招生阶段,现将该学科挂靠在物理学、化学、材料科学与工程和生物学4个一级学科下,并相应产生4个专业代码。涉及纳米科技系列进展、纳米检测系列讲、文献信息利用、人文系列讲座、纳米功能材料等课程。
国家纳米科学中心2013年在7个专业招收硕士研究生35人,专业包括纳米科学与技术、凝聚态物理、物理化学、材料学、生物物理学、材料工程和生物工程,研究方向涵盖高分子纳米功能材料、生物纳米结构、纳米医学、纳米复合材料、纳米电子学等几十个方向,方向非常细化,具有材料、半导体、物理、化学、微电子、生物、医药等专业背景的学生都可以报考。相信有志于纳米专业的学生,一定会在这里找到适合自己的研究方向。
国家纳米中心是比较典型的科研所,其吸引考生的除了实力,很重要的一点就是待遇优厚。该中心不需学生缴纳学费,如遇国家政策调整还会有高额的奖学金返还制度,硕士研究生根据不同年级,每个月可以拿到1300~2500元的奖学金,博士会拿到3100~4500元的奖学金。此外,还会有其他生活补助等。研究生公寓已经完全宾馆化管理,非常舒适。在国家纳米中心深造,没有经济上的后顾之忧,这样你才可以将全部精力投入到学习中去。
大连理工大学
大连理工大学的工程力学系开设生物与纳米力学专业,已然在行业内一枝独秀。该学科依托于工程力学系和工业装备结构分析国家重点实验室,软硬件条件优越,拥有先进的实验设备和仪器。学生有充足的动手实践机会,能在宏观、微观等不同层次上,进行跨学科的数值模拟和力学实验。同时,也有国家自然科学基金、重点基金、“863”“973”等众多项目和基金支持。
该专业现在有生物器官生物力学模型及新材料应用研究、分子模拟和计算机辅助药物分子设计、微纳米与多尺度力学研究、生物材料的力学行为及其多功能化4个研究方向,涉及到力学、医药、生物、机械、材料、电子、控制、测量、微纳科技等领域。
大连理工大学这个专业的直博生学制是4年,而一般的直博生需要学习5年时间,而分开读硕士和博士一般需要6至7年,这吸引了不少学生报考,因为可以节约1~3年时间。当然,在4年的时间里完成硕士和博士学业,是一件很具挑战的事情,需要最大限度地提升效率。
苏州大学
苏州大学纳米科学技术学院是苏州大学、苏州工业园区政府、加拿大滑铁卢大学携手共建的一所高起点、国际化的新型学院。该学院建立于2010年,由全球著名纳米与光电子材料学家、中国科学院院士、第三世界科学院院士李述汤教授担任院长,教学科研实力雄厚,是国内高校中为数不多的专门的纳米科学学院。招生方向涵盖纳米生物化学、纳米技术工程、纳米材料、有机无机复合纳米材料等。有关纳米的专业在物理、化学、生物学、材料科学与工程4个学科下招收学术型研究生,相关专业学生都可以报考。
需要提醒大家的是,苏州大学纳米科学技术学院初试提供详细的辅导书和真题,有意报考的同学要多关注学院的网站,以获得第一手信息。
武汉大学
武汉大学的纳米科学与技术专业在物理科学与技术学院和化学与分子科学学院均有招生,各有侧重。前者分为纳米复合材料、纳米光催化材料与技术、纳米光电子学、纳米管线阵列及其智能传感器、纳米材料制备与表征和纳米尺度结构与性能关系6个方向。后者在纳米催化、纳米生物医学、纳米材料分离分析、微纳传感技术和高分子纳米药物载体。很多方向在国内上处于领先地位,每年也有大量学生报考,竞争力较强。
武汉大学与国外多所大学有合作关系,大家如果在武大读研,出国交流、学习的机会比较多。
华中科技大学
华中科技大学是典型的工科学校,其纳米专业当然也首屈一指。华科的纳米专业同样是热门,除去每年招收本校内推的学生,考研的竞争非常激烈。
在培养模式方面,华科非常重视学、研、产相结合,科研成果转化率非常高。在就业方面,很多硕士研究生在各科研机构及高校任职。如果你求学在华科,就不用愁生活保障的问题,学校的奖励机制非常完善。学院对每位研究生在校期间将发放生活津贴,并设立各类奖学金以奖励优秀的研究生,其奖励比例达80%。
纳米材料行业分析范文4
[关键词]纳米技术、包装、食品包装、药品包装
中图分类号:TB383.1;TB484 文献标识码:A 文章编号:1009-914X(2015)06-0047-02
20世纪90年代初兴起的纳米技术,被认为是21世纪科技发展的前沿领域。它主要研究0.1~100nm尺寸之间的物质组成体系以及其运动规律和相互作用,其中在实际应用中纳米技术的实用性。它是一种结合科学前沿和高技术于一体的完整体系。纳米技术的出现标志着人类改造自然的能力已延伸到原子、分子水平,标志着人类科学技术已进入一个新的时代――纳米科技时代。其科学价值和应用前景已逐渐被人们所认识,纳米科学与技术被认为是21世纪3大科技之一。纳米技术主要包括:纳米物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学和纳米力学。在包装行业迅速发展的当今社会,纳米技术必然会引领包装行业走向更好的未来。
1 纳米材料
纳米材料是纳米科学技术最基本的组成部分。纳米材料可定义为:把组成相或晶粒结构控制在100nm以下长度尺寸的材料。从广义上说,纳米材料是指在三维空间中至少有一维处于纳米尺寸长度范围或由它们作为基本单元构成的材料。
1.1 纳米材料的结构特征和性质
纳米材料又称为纳米结构材料,主要由晶粒和晶界组成。纳米晶体结构与常规物质不同,关于纳米晶体结构特征主要有两类看法:a.以Gleiter为代表的1类气体0结构。它既不同于长程有序的晶体也不同于近程有序的非晶体,而是处于一种无序度更高的状态;b.近程有序结构说。根据大量的实验结果分析,纳米材料的晶界处存在着短程有序的结构单元,原子保持一定的有序度,趋于低能态排列。按不同的分类原则,纳米材料有不同的分类。按纳米晶体结构形态划分成4类:零维纳米材料,如原子团、量子点等;一维纳米材料,即在一维方向上晶粒尺寸为纳米量级,如纳米丝、量子线等;二维纳米材料,即在二维方向上晶粒尺寸为纳米量级,如纳米厚度薄膜,碳纳米管等;三维纳米材料,即在三维方向上晶粒尺寸为纳米量级,如通常所指的纳米固体。把所有纳米材料从结构上区分为两类:第一类纳米材料结构全部为晶粒和晶界组成,结构基元尺寸为纳米量级;第二类是低密度具有大量纳米尺寸空洞的无规网格结构,由纳米晶粒和纳米空洞(有时还有纳米骨架结构和更小的亚稳原子团簇)组成。
1.2 纳米材料优异的特性[1~2]
a.表面效应 表面效应是指纳米晶粒表面原子数与总原子数之比,随粒径变小而表面急剧增大后所引起的性质上的变化 这种表面效应使其在催化、吸附、化学反应等方面具有普通材料无法比拟的优越性。
b.体积效应 当纳米晶粒的尺寸与传导电子的德布罗意波波长相当或更小时,其周期性的边界条件将被破坏,使其物理性质、化学活性、电磁活性、光吸收和催化特性等与普通材料相比都将发生很大变化,这就是纳米粒子的体积效应。
c.量子尺寸效应 指纳米粒子尺寸下降到一定值时,纳米能级附近的电子能级由连续能级变为分离能级的现象,这一效应可使纳米粒子具有高的光学非线性、特异催化性和光学催化性等。
d.宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量如微粒的磁化强度、量子相干器件中的磁通量以及电荷等亦具有隧道效应,它们可以穿越宏观系统的势垒而发生变化,故称为宏观量子隧道效应MQT。早期曾被用来定性的解释纳米Ni晶粒在低温下保持顺磁性现象。这一效应与量子尺寸效应一起确定了微器件进一步微型化的极限,同时也限定了采用磁带磁盘进行信息存储的最短时间。
e.独特的光学性质 又分为:线性光学性质。纳米材料的红外吸收研究是近年来比较活跃的领域,在纳米SnO2、Fe2O3、Al2O3中均观察到异常红外振动吸收。目前,纳米材料拉曼光谱的研究也日益引起关注。当Si晶粒尺寸减小到5nm或更小时,观察到很强的可见光发射。进一步的研究发现,CdS、CuCl、TiO2、SnO2、Fe2O3等的晶粒尺寸减小到纳米量级时,也观察到发光现象。非线性光学效应。纳米材料的非线性光学效应分为共振和非共振光学非线性效应,前者由波长低于共振吸收区的光照射样品而导致,其来源于电子在不同电子能级的分布而引起电子结构的非线性,从而使纳米材料的非线性响应显著增大;后者由高于纳米材料的光吸收边的光照射样品导致,目前主要采用ZSCAN和DFWM技术来探测纳米材料的光学非线性。
f.巨磁电阻效应(GMR) 磁场导致物体电阻率改变的现象,称为磁电阻效应(MR),对于一般的金属其效应(2%~3%)常可忽略。巨磁电阻效应(GMR)是指在一定的磁场下电阻急剧减小,一般减小的幅度比通常磁性金属与合金材料的磁电阻数值约高10余倍。最近,在一些磁性纳米材料中观测到比巨磁电阻效应大得多的效应称为庞磁电阻效应(CMR)。
g.超塑性 指材料在特定条件下变形时不存在加工硬化现象,且可以承受很大程度的塑性变形而不断裂,这种特性被称为超塑性或超延展性。材料超塑变形的基本原理是高温下的晶界滑移。除以上特性外,纳米材料还具有高导电率和扩散率、高比热和热膨胀、高磁化率和矫顽力,在催化、光电化学、熔点、超导等方面也显示出与宏观晶体材料不同的特性。
2 纳米技术在食品包装应用研究的最新技术
2.1 纳米抗菌性包装材料
传统的抗菌材料一般采用以银、铜、锌等金属离子为抗菌活性成分的抗菌剂生产工艺,新的MOD系列纳米高性能无机抗菌剂是将纳米技术导入无菌复合包装,是以MOD活性基因及无机纳米银化合物为主要抗菌成份,以各种无机材料为载体而制成的无机抗菌粉体。该抗菌材料采用高科技纳米技术制备而成,抗菌机理为金属离子作用和光催化作用,具有强力的长效抗菌功能,抗菌率可达99.9%,彻底解决了无机抗菌包装材料在应用中变色的难题,是一种无毒的广谱抗菌剂,可广泛应用于生产液体奶、饮料无菌复合包装产品。抗菌制品被世界各国认为是跨世纪的环保和健康产品,纳米无机抗菌剂具有巨大的潜在市场[3]。新型抗菌材料尼龙66中掺加了一种特殊的纳米粘土复合材料,经改性后,不但提高了强度、韧性等物理力学性能,还对大肠杆菌、金黄色葡萄球菌具有明显的杀伤效果,同时生产成本也可大幅度降低,应用于食品等高档包装薄膜的生产。日本开发了以银沸石为母料的全新型无机抗菌剂,既起催化作用,同时有具有显著的抗菌特性,其特点为抗菌效果持续时间长,不会气化和迁移而对包装物产生影响,加工稳定性高,不会污染环境。添加银沸石母料(含量1%~ 3%)制得的薄膜或表面覆一层这种薄膜的容器,经2年试用表明:在无营养源的情况下,含1%银沸石的薄膜在1~2天内完全杀死会引起食品中毒菌类,广泛应用于熟食肉类、水产品和液体食品包装[4]。
2.2 纳米保鲜包装材料
在保鲜包装中,果蔬释放出乙烯,当乙烯释放到一定浓度后,果蔬会加速腐烂。因此,果蔬等新鲜食品的保鲜技术的思路,是加入乙烯吸收剂,减少加快果蔬后熟过程的乙烯气体含量,控制包装内部气氛浓度。纳米Ag粉具有乙烯氧化的催化作用,在保鲜包装材料中加入纳米银粉,便可加速氧化果蔬食品释放出的乙烯,减少包装中乙烯含量,从而达到良好的保鲜效果,并延长货架寿命。紫外线不仅能使肉类食品自动氧化而变色,而且还会破坏食品中的维生素和芳香化合物,从而降低食品的营养价值。利用纳米材料的光学特性,纳米TiO2粉体可以有效地屏蔽紫外线,用添加0.1%~0.5%的纳米TiO2制成的透明塑料包装材料包装食品,既可防止紫外线对食品的破坏作用,还可以使食品保持新鲜。纳米技术在食品包装领域已得到较广泛地应用,陈丽、李喜宏[5]等人成功研制出富士苹果PVC/TiO2纳米保鲜膜;李喜宏等[6]还进行了PE/Ag纳米防霉保鲜膜研制;黄媛媛等通过实验研制了一种新型绿茶纳米包装材料,与普通包装材料相比,透氧量降低2.1%,透湿量降低28.0%,纵向拉伸强度提高24.0%;绿茶包装240d后,新型纳米材料包装的绿茶中,维生素C、叶绿素、茶多酚、氨基酸保留量比采用普通包装绿茶分别高7.7%、6.9%、10.0%、2.0%。
2.3 纳米高阻隔性材料及其在高阻隔性PET塑料啤酒瓶中的应用
食品包装阻隔性主要是指氧气、二氧化碳等的气体阻隔性,水蒸气阻隔性等。目前市场上较普遍的玻璃啤酒瓶存在质重、运输破损与易爆裂,制造污染等不利因素,国外上世纪90年代就已经着手研制用于啤酒灌装的PET瓶。啤酒对包装材料要求的一个重要指标是对气体的阻隔性,首先要保证在6个月的货架期内CO2的损失率小于10%,同时氧气的透过量不超过110-6。氧气尤为敏感,极微量的氧气就可以使啤酒产生异味从而影响口感,甚至是塑料瓶体材料自身溶解的氧的渗出都会影响啤酒的品质,塑料作为啤酒包装材料首先必须解决的就是气体的阻隔性问题。PET瓶因透明,化学性质稳定,阻隔性相对好,质轻价廉,回收方便等优点广泛用于软饮料和含气饮料的包装,但作为啤酒瓶,PET的气体阻隔性仍不够高,普通PET装啤酒一般只有1个月左右的保质期,不能满足市场需求。如何改进PET材料组分使之适用于啤酒包装是该领域的一个重要课题,提高聚酯瓶气体阻隔性是实现啤酒包装塑料化首要解决的技术问题。法国Sidel公司开发的无定形纳米碳涂覆技术(ACTIS)是使等离子乙炔在PET瓶内壁凝聚淀积,形成一层高度氢化的非晶态碳均匀的纳米固体膜,厚度为20~150nm。采用ACTIS工艺处理的PET瓶,较普通PET瓶的隔氧化性能效果提高30倍,对CO2的阻透性提高7倍多,防乙醛的渗入性提高了6倍[7]。此外,中科院化学所工程塑料国家重点实验室的研究人员使用PET(聚对苯二甲酸乙二醇酯)聚合插层复合技术,将有机蒙脱石与PET单体一起加和到聚合釜中,成功地制备了PET纳米塑料(NPET),这种纳米塑料的阻隔性较普通的PET有了很大改善,实验表明:把啤酒装在NPET瓶里保存了4~5个月后,结果发现啤酒的口味与新鲜啤酒没有明显区别[8]。
3 纳米技术在药品包装应用研究的最新技术
3.1 高阻隔性包装
高阻隔性包装是指对氧气、水蒸气、二氧化碳等有高阻隔性的包装,高阻隔包装常采用多层复合膜。药用泡罩包装材料包括药用铝箔、塑料硬片(最常用的材料是药用聚氯乙烯PVC硬片)、热封涂料等。但因为药品对湿气、氧气等敏感和人们对药用包装要求的提高及药品储存期的延长,现在正在采用新技术将塑料硬片复合一层高阻隔性材料,如PVDC等,以提高对湿气等气体的阻隔性能,最具有代表的结构为PVC/PVDC,PVDC作为高阻隔层材料,其最大的特点就是对气体水蒸汽优异的阻隔性,很好的保持药品原味。
添加纳米级材料的无机粒子可以极大地改进基础树脂的物性,在高阻隔包装材料中发挥神奇的作用[9]。如德国Bayer公司推出的尼龙纳米复合材料,把化学改性的硅酸盐粘土分散在PA6薄膜中,这些细小颗粒不影响薄膜透明度,但建立了迷宫式的气体通路,减慢气体通过薄膜的进程。日本纳米材料公司将纳米复合材料涂在各种薄膜基体上,据称阻隔性与镀铝膜相同。既具有无机材料的高阻隔性又有塑料透明性的涂氧化硅膜是塑料阻隔技术发展的代表,这种薄膜光泽、透明性好,阻隔性优于一般共挤出薄膜和PVDC涂布膜。氧化硅的深层厚度仅为0.05~0.06 m,不会影响透明度,氧气、水蒸气的透过率极低,而且与塑料膜粘合极牢,抗弯折性极佳,耐消毒,因而在美国、日本等发达国家已生产和使用。
3.2 纳米抗菌性包装材料
纳米抗菌性包装材料在药品包装领域的应用前景有具有抗菌功能的纳米纸、纳米复合抗菌素薄膜等。主要是将一些纳米级的无机抗菌剂加入到造纸浆料或者薄膜中,制成抗菌性能极强的纳米纸[10]、纳米薄膜。
由于许多有机抗菌剂存在着耐热性差、易挥发、易分解产生有害物质、安全性能不好等问题,所以无机抗菌剂的开发成为人们的研究重点。人们利用超微细技术可以产生纳米级的无机抗菌剂,无机抗菌剂主要包括银、铜、锌、硫、砷及其离子元素。光催化抗菌剂有纳米级氧化钛、氧化硅、氧化锌等,它们能将细菌和残骸一起杀灭和消除,所以比传统的抗菌剂仅能杀死细菌本身的性能更加优越。MOD系列的纳米高性能无机抗菌剂还解决了无机抗菌剂在应用中 变色的世界性难题。
4 展望
纳米技术是未来包装技术的希望。它可以使用更少的材料,同时具有更好的性能,并且使包装成为智能化系统的一部分。纳米技术制造的包装材料有更好的强度、刚性、生物降解性、化学稳定性、热力稳定性、隔热防火特性和防紫外线特性等。这必将使得食品和药品包装领域的新材料新技术大量出现。从而使这些与我们生活密切相关的商品质量得到更好的保障。
参考文献
[1] 张荣.包装机中薄膜热封过程的仿真研究[D].哈尔滨:哈尔滨商业大学,2002.
[2] 程卫国.等.MATLAB5.3应用指南[M].北京:邮电出版社,2000.
[3] 陈希荣.纳米无机抗菌剂的添加法及在液态奶包装上应用[N].中国包装报,2005-07-16
[4] 黄媛媛.王林,胡秋辉. 纳米包装在食品保鲜中的应用及其安全评价[J].食品科学,2005:16(8):442-444
[5] 陈丽,李喜宏,胡云峰,等.富士苹果PVC/TiO2纳米保鲜膜的研究[J].食品科学,2001,22(7):74-76
[6] 李喜宏,陈丽,关文强.PE/Ag纳米防霉保鲜膜研制[J].食品科学,2002,23(2):129-132
[7] 徐锦龙.聚酯啤酒瓶技术现状及发展趋势[J].合成技术及应用,2001,15(2):22-24.
[8] 欣溪.食品工业中的纳米科技[J].中外食品,2002,(7):44
纳米材料行业分析范文5
关键字:纳米技术;建材;性能;功能
纳米技术不仅具有相当的理论研究价值,而且在当下和未来都具有广泛的应用前景,是最近十多年来最具发展和研究前景的技术之一。早在上个世纪的八十年代末,纳米科技的研发就受到了世界各国的重视,甚至有部分走在前沿的国家已经实现了对该项技术的应用。现阶段来看,纳米科技已经在不少的传统行业中得到了应用,例如:医疗、食品科技以及建筑材料等。其作为一项新兴科学,对建材的影响较大,不仅提高建筑工程的质量水平,更使得建筑的功能性和适用性得到了强化。同时,纳米技术的应用对我国建筑行业而言也具有相当重要的意义,尤其是通过高新技术的优势来拓展国外市场。
一、纳米技术的发展及其现状
距离最初概念的提出,纳米技术已经有40多年的发展,但是其仍旧还有许多的发展空间,可以发展出更多的功能和应用方向。从纳米材料的内涵和特点来看,其发展大致可以划分为三个阶段。第一阶段(1990年以前)。这一阶段主要是进行理论探索和研究,并且尝试利用各种手来制造出具有纳米颗粒的粉体,甚至是块体(包括薄膜)。并将制造的方法进行评估和总结,对其特性进行归纳和分析。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。第二阶段(1990~1994年)。这一阶段是人们对该技术应用的理论提升阶段,通过其他学科的融合,纳米材料在物理和化学之中的性能特点已经得到了一定的发掘,并且应用到复合型的材料设计之中。同时,这种粒子复合、块体复合以及复合材料的合成物都该项技术在这一阶段的研究重点方向。第三阶段(从1994年到现在)。这一阶段的技术研究和应用已经有了不断的拓展,也受到了来自于民众的关注,国际上更是掀起了一股发展。若是对第一阶段和第二阶段进行总结,前两个阶段的研究还存在一定的盲目性,在这一阶段已经具有明确的方向,技术上也可以满足人们的操作意愿,来进行设计、组装、创造新的体系,并且使之具有人们所希望的特性。
二、纳米技术在建筑材料中的应用
(一)纳米水泥的应用
普通的水泥混凝土往往会具有较大的刚性,而缺乏柔性,这也使得水泥存在固有缺陷难以解决,往往会在今后的施工过程中出现开裂及其他破坏问题。而纳米技术的应用者有效的对该类问题进行了解决。因为在应用了纳米技术之后,混凝土的强度、硬度、抗老化性以及耐腐蚀等性能得到了有效的强化,同时还可以对电磁波和声音进行有效的吸收,满足了建筑物对隔音效果的要求。同时,这类材料也应用到一些特殊建筑使用当中。
(二)纳米玻璃的应用
普通的玻璃往往自动的吸附空气之中的各类有机物,从而是玻璃表明形成一种难以清洗干净的有机污垢。同时还存在其他的不足之处,影响玻璃的透视度。例如:玻璃容易产生水雾,从而使得可见度受到极大的限制。然而,通过利用Ti02来对平板玻璃正反两面进行薄膜的镀制处理,则可以有效的决解这类缺陷所造的影响。除此之外,Ti02作为光催化剂在阳光的作用下,还能够对甲醛和氨气等有害物质进行分解和消除。同时,这类措施的应用也可以更好的提高的玻璃在透光性和机构强度等方面的效果。这种玻璃的应用极大的减小了屏幕玻璃、大度玻璃、住宅玻璃等领域的人工清洗困难,节约了清洗的人工或机械成本。
(三)纳米技术在陶瓷材料中的应用
由于陶瓷具有很强的耐高温性和抗腐蚀性,而且还具备相当的观赏性,因此得到建筑产业的广泛青睐,尤其是在进行墙体和地面的装饰时。然而,陶瓷却及其容易发生脆性损坏,这也造成了该类材料的应用范围受到了极大的限制。将纳米技术融入到陶瓷材料的开发和研制之后,却使得该类材料具有比过去更高的可塑性,甚至可以吸收一定的外来能量。甚至有部分研究生独创性的将金属碳纤维加入到陶瓷材料之中,极大的提升陶瓷的强度,同时具有极其优秀的抗烧烛性,故而这类材料也被应用火箭喷气口的制作。用纳米级SiC、Si3N、ZnO、Si02、Ti02以及A1203等粒子所制成的陶瓷材料,具有比以往更加高的硬度和韧性,即使是在较大的温差之下也能够保持原有的形态,不会参数破损,具有相当广泛的应用范围和前景。
(四)纳米技术在防护材料中的应用
目前的比较常用的防水材料是通过在胶料中加入炭黑等物质来形成,这种材料虽然制作简单,价格便宜,但是却没有较长的使用寿命,极易在使用过程中发生的腐蚀和老化,给居民生活带来了极大的不便。因此,建筑材料的研究者们也髙希望可以研制出具有强、耐腐烛、抗老化性能的防水材料。在通过不断的研究和技术融合之后,纳米级的防水材料得以被研发出来,这种材料最早被北京建筑科学研究院所发现,具有较强的耐腐蚀和耐老化性能。这种纳米材料所制造的防水卷材,拥有一定的强度和韧性,更比传统材料表现出了更高抗老化性和光热稳定性等,从而得到建筑工程的广泛运用。
(五)纳米保温材料
近几年来,我国逐步强化了对节能减排的要求。在建筑施工的过程中,也越发注重对建筑保温性和环保性的标准,尤其是针对目前我国大范围采用的传统保温隔热材料。因为诸如:聚氨酯、石棉等传统隔热保温材料会在使用过程中产生不少对人体有害的物质,甚至是人体癌症的主要诱因,同时也是大气污染的主要来源,这是我国建筑产业要尽快改善的部分。然而,纳米建筑材料的应用却有效避免了这部分的危害,例如:无机硅酸盐为主要原材料的纳米材料。该材料是经髙过高温和压才形成的一种纳米级功能性材料,具有良好的保温隔热性,但是同时有具有稳定的化学性质,不会产生对人体损害的物质,是我国目前比较倡导的一种绿色环保保温材料。
三、结束语
目前,纳米技术的研究已经是世界各国的重要项目。纳米技术在自身不断发展的同时也对许多传统行业产生了不少的改进。从建筑行业来看,纳米建筑材料的应用必然会产生不小的推进作用,尤其是能耗优化、质量提升以及环保等多个方面。这样一来,建筑材料中纳米技术的应用水平便觉得该企业的竞争力水平,对于我国的建筑企业而言,正是走入世界舞台的重要助力,具有十分重要的现实意义。
作者:赵宇晗 单位:辽宁建筑职业学院
参考文献:
[1]赵文轩,张越.建筑材料中纳米材料和纳米技术的应用[J].河南建材,2012,02:24-26.
纳米材料行业分析范文6
本文介绍了纳米技术在化学纤维中的应用方式,并阐述了纳米技术在功能性纤维和其他特种纤维中的应用情况,以及纳米材料在应用中存在的问题及解决方法,最后展望了纳米技术的应用前景。
关键词:纳米技术;纳米材料;功能性纤维;特种纤维
近年来,纳米技术与纳米材料正引起人们的极大关注。纳米材料凭借其内部所特有的表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等四大效应,从而拥有完全不同于常规材料的奇特的力学性能、光学性能、热力性能、磁学性能、催化性能和生物活性等性能。这些都为纳米材料在纺织工业的应用奠定了基础。
可以说,纳米材料是21 世纪最有前途的材料,在功能性纺织品和高分子科学领域有着广阔的应用前景。[1]
1 纳米技术在化学纤维中的应用方式
纳米粒子的奇特性质为纳米技术的广泛应用奠定了基础,应用纳米技术开发功能性化学纤维主要有两个途径[2]。
1.1 纤维超细化
使纤维达到纳米级,以满足特殊用途领域的需要。
1.2 共混纺丝法
共混纺丝法是指在化纤聚合、熔融阶段或纺丝阶段加入功能性纳米材料粉体,以使生产出的化学纤维具有某些特殊的性能。此法是生产功能性化纤的主要方法。由于纳米粉体的表面效应,其化学活性高,经过分散处理后,容易与高分子材料相结合,较普通微粉体更容易共熔混纺;而且纳米粉体粒径小,能较好地满足纺丝设备对添加物粒径的要求,在化纤生产过程中能较好地避免对设备的磨损、堵塞及纤维可纺性差、易断丝等问题;对化纤的染色、后整理加工及服用性能等也不会造成很大的影响。该法的优点在于纳米粉体均匀地分散在纤维内部,因而耐久性好,其赋予织物的功能具有稳定性。目前化纤产品中复合型纤维的比例不断扩大,如果在不同的原液中添加不同的纳米粉体,可开发出具有多种功能的纺织品。例如在芯鞘型复合纤维的皮、芯层原液中各自加入不同的粉体材料,生产出的纤维可具有两种或两种以上功能。
2 纳米技术在功能性纤维方面的应用
2.1 抗紫外线纤维
太阳光中能穿过大气层辐射到地面的紫外线占总能量的6%。紫外线具有灭菌消毒和促进体内维生素D 合成的作用,但同时也有加速人体皮肤老化及产生癌变的危险[3-5]。
2.1.1 抗紫外线纤维的紫外防护机理
紫外线属于电磁波,其波长范围在100nm~400nm 之间。研究表明,TiO2、ZnO、SiO2、Al2O3、Fe2O3、云母、高岭土等在300nm~400nm 波段都具有吸收紫外线的特征。若将这些材料制成纳米级超细粉体,由于微粒尺寸与光波波长相当或更小,这种小尺寸效应会导致对光的吸收显著增强。
另外,这类超细粉体的比表面积大,表面能高,在与高分子材料共混时,很容易与后者结合,加之化纤纺丝设备对共混材料粒度的要求,决定了纳米粒子是制造功能性化纤的优选添加材料。
2.1.2 抗紫外线纤维的应用
此类化纤包括的品种面很广,从国内外研制和生产的品种来看,涉及涤纶、维纶、腈纶、尼龙和丙纶等;加工方法有尼龙、聚氨酯混纺、尼龙、醋酸纤维混纺等。主要用来制作运动衫、罩衫、制服、套裤、职业服、游泳衣和童装等。在我国大多数地区,人们夏季穿着服装单薄,这就需要利用纳米粒子的抗紫外线功能来开发各种化纤产品,以满足妇女、老人、儿童、野外工作者和高温岗位工人的需要。
2.2 抗菌除臭纤维
通常所说的抗菌包括抑制、杀灭、消除细菌分泌的毒素以及预防等功能。抗菌化纤的除臭功能表现在:保健方面:防止皮肤感染,消除病菌分泌的毒素和将汗液等转化为臭味物质的细菌;美学方面:除去令人不愉快的臭味[6-8]。
2.2.1 抗菌除臭纤维的抗菌除臭机理
纳米级TiO2、ZnO等光催化型杀菌剂,表现出超过传统抗菌剂仅能杀灭细菌本身的性能。其杀菌机理为:纳米级TiO2、ZnO等抗菌剂能在水分和空气存在的情况下,自行分解出自由移动的电子(e-),同时留下带正电的空穴(h+),逐步产生反应,生成的羟基自由基和超氧化物阴离子自由基非常活泼,有极强的化学活性,能与多种有机物发生反应(包括细菌内的有机物及其分泌的毒素),从而将细菌、残骸和毒素杀灭、消除。
纳米级TiO2、ZnO的除臭机理主要有以下两种:①吸附臭味。超细ZnO的比表面积大、孔容大,可以吸附多种含硫臭体。②氧化分解。TiO2、ZnO等物质在H2O、O2体系中可发生光催化反应,产生的超氧化物阴离子自由基能与多种臭体反应,从而更彻底地消除臭味。
2.2.2 抗菌除臭纤维的应用
日本在抗菌防臭功能纤维上开发较多。最近,日本石玻璃公司开发了一种含活性玻璃粒子的抗菌防臭功能纤维。这是一种含有银粒子的溶解性玻璃微粉,粒径在50nm 以下。这种纤维在毒性、稳定性、持久性和抑制细菌抗药性等方面的表现较为优良。在使用过程中,一旦接触到水分,纤维内部的溶解性玻璃粒子就会缓慢释放出银离子,它能在几小时到几年的时间内以特定的速度释放,阻碍细菌繁殖,显示出优良的抗菌性。日本帝人公司生产的由纳米TiO2、ZnO 作为消臭剂的除臭纤维能吸收臭气净化空气,可用于制造消臭敷料、绷带、尿布、睡衣、窗帘、厕所用纺织品以及环保用过滤织物等。
我国抗菌剂的研究相对滞后,但近年来发展较快。北京赛特瑞公司生产的银系抗菌剂,采用纳米层状银系无机抗菌材料制备的抗菌防霉织物,仅需添加0.5%~1%的无机抗菌剂,具有广谱抗菌功能,且抗菌效果显著、持久,对皮肤无刺激性。上海合成纤维研究所研制的一种新型抗菌纤维,是将纳米级TiO2、ZnO 等添加到天然或聚合物长丝中,纺制出各种永久性抗菌、防臭纤维,经试验证明,这种纤维对绿脓杆菌、大肠杆菌、金黄色葡萄球菌和沙门氏菌等具有很强的杀菌能力,目前该技术仅仅完成了实验室研究工作,还不能达到工业化生产规模。许德生等人采用纳米级TiO2、ZnO 和粘胶纤维共混制成的纤维,既具有普通粘胶纤维特性,又能防菌、抗菌、防紫外线和抗电磁辐射。北京服装学院科研人员的研究表明,用纳米级ZnO 对棉织物进行处理后,对金黄色葡萄球菌、大肠杆菌、白色念珠菌和黑曲霉菌等均有显著抑制作用。另外,国家超细粉末工程中心利用纳米ZnO等粉体做核,在外包覆银以抗细菌,在外包覆CuO、ZnSiO3 以抗真菌,将这种抗菌粉体加1%到合成纤维中,就能制得抗菌性良好的功能性纤维。
2.3 远红外纤维
2.3.1 机理
人体释放的红外线大致在4μm~16μm的中红外波段,在战场上如果不对这一波段的红外线进行屏蔽,很容易被非常灵敏的中红外探测器所发现,尤其在夜间,人体安全将会受到威胁,因此很有必要研制对人体红外线具有屏蔽功能的衣服[9-10]。
远红外线反射功能纤维是一种具有远红外吸收及反射功能的化纤,通过吸收人体发射出的热量,并再向人体辐射一定波长范围的远红外线,可使人体皮下组织血流量增加,起到促进血液循环的作用;由于能反射人体辐射的红外线,也起到了屏蔽红外线,减少热量损失的作用,使此类纤维及织物的保温性能较常规织物有所提高。远红外超细添加剂是一种白色或浅白色粉体。这类抗红外线功能助剂是在远红外加热所使用的陶瓷粉体的基础上开发出来的,所以称之为“远红外陶瓷粉”。根据应用的化纤品种和性能要求的不同,通常包括纳米级ZnO、SiO、Al2O3 等,除了要求将它们的粒度用直接制备或二次粉碎的方法控制在100nm以下外,同时还要对其进行表面改性处理,以确保这类粉体的分散性、相容性和功能化纤的可纺性。
2.3.2 远红外纤维应用
日本对远红外聚酯的研究最多。1996年已确立了远红外纤维制品的保温性试验方法和对人体的温热特性系列评价方法,对远红外线与生物关系已有了系统的研究。日本三菱人造丝公司将PTA、EG和纳米陶瓷粉混合先制成母粒,再与普通聚酯在283℃下共混纺丝,制成中空度21.3%、蓬松度153mL/g 的远红外短纤维;日本可乐丽公司将聚酯和含氧化陶瓷的增塑剂共混纺丝制得远红外纤维;日本尤尼吉卡公司推出一种太阳远红外涤纶,其物理机械性能与普通涤纶相似,具有明显的升温效应,据报道,该织物水洗后在相同条件下比普通涤纶快干30min。
2.4 阻燃纤维
2.4.1 阻燃纤维的阻燃机理
阻燃的目的在于降低热分解过程中可燃气体的生成,抑制气相燃烧过程的反应。阻燃纤维多数通过用添加型阻燃剂和反应型阻燃剂对原材料进行处理制得。纳米SbO3阻燃剂在燃烧初期首先熔融,熔点为655℃,在材料表面形成保护膜隔绝空气,通过内部吸热反应,降低燃烧温度。在高温状态下SbO3 被汽化,稀释空气中的氧浓度,从而起到阻燃作用。
2.4.2 阻燃纤维应用
国外用共混法制得的阻燃改性纤维有阻燃粘胶纤维,如美国的Durvil、奥地利的Lenzing、日本的Tuflan;也有阻燃丙纶纤维,如瑞士的Sandoflam 5071[11]。
3 纳米材料在其他特种纤维中的应用
3.1 智能隐身纤维
将纳米金属粒子、纳米氧化物(如纳米级Fe2O3、Ni2O3等)、纳米复合材料以共混法加入成纤聚合物熔体或纺丝溶液中,经熔融纺丝或湿法纺丝制成隐身材料。制成的高性能毫米波形隐身材料、可见光-红外线型材料和结构式隐身材料,可避开雷达、红外线探测器的侦测。另外,可采用对电、热比较敏感的纳米金属粒子与纤维原料共混,制成具备防止热成像设备侦测的功能纤维。目前美国正在研究采用热敏、光敏或电化学染料做迷彩服,以使迷彩服的颜色和图案随环境变化而改变,具备动态防侦视功能。美国研制的 “超黑粉”纳米隐身材料,对雷达波的吸收率大于99%。法国研制出一种宽频微波吸收涂层,这种吸波涂层由粘合剂和纳米微粉填充材料组成。这种由多层薄膜叠合而成的结构具有很好的磁导率,在50MHz~50GHz 内具有很好的吸波性能。目前世界军事发达国家正在研究覆盖厘米波、毫米波、红外和可见光等波段的纳米复合材料。
3.2 变色纤维
变色纤维是一种具有特殊组成结构的纤维,当受到光、热、水分或辐射等外界激化条件作用后,具有可逆自动改变颜色的性能。纤维在一定波长的光的照射下会发生颜色变化,而在另一种波长的光的作用下又会发生可逆变化回到原来的颜色,这种纤维称为光敏变色纤维。具有光敏变色的物质通常是一种具有异构体的有机物,这些化学物质因光的作用产生异构,并生成两种化合物。这些化合物的分子式没有发生变化,但对应的键合方式或电子状态产生了变化,可逆地出现吸收光谱不同的两种状态,即可逆地显色、褪色或变色。美国Clemson 大学和Georgia 理工学院等研究机构近年来正在探索光纤中掺入纳米变色染料或改变光纤表面的涂层材料,使纤维的颜色能够实现自动控制。日本松井色素化学工业公司制成的光致变色纤维在无阳光下不变色,在阳光或UV 照射下显深绿色[11]。
4 纳米材料应用中存在的问题及解决方法
纳米材料在化学纤维应用过程中存在的问题,主要是它的分散性差、易凝聚。为解决这一问题,需对纳米粒子的表面进行处理以降低其表面能。表面处理的方法有很多,根据表面处理剂与颗粒之间有无化学反应,可分为表面化学改性和表面吸附包覆改性。化学改性是指在纳米微粒的表面进行化学吸附或反应;而包覆改性主要利用一些表面活性剂、聚合物以及聚合物单体等吸附在颗粒表面,增强纳米微粒与基材的亲和性[12-13]。
参考文献:
[1]严东生,冯端.材料新星——纳米材料学[M].湖南:湖南科技出版社,1997:103-105.
[2]黄俊,李春.纳米材料在化纤生产中的应用[J].成都纺织高等专科学校学报,2002,19(3):27-28.
[3]周璐瑛.ZnO纳米材料抗紫外与抗菌织物的研究[J].棉纺织技术,2003,29(10):588-590.
[4]罗纪华,马艺华,黄海珍.纳米苎麻抗紫外线织物功能性与湿热舒适性能的分析[J].广西纺织科技,2003,32(1):6-8,21.
[5]李峥嵘,许海育.纳米材料及其在织物防紫外线中的应用[J].广西纺织科技,2003,32(1):48-49,37.
[6]酒金婷,李春霞,王彩凤,等.纳米氧化锌在水中的分散行为及其应用[J].印染,2002,(1):1-3.
[7]许德生.功能性粘胶纤维及其织物的研究[J].安微机电学院学报,2002,12(4):24-26.
[8]王开利.纳米抗菌纤维的发展及产业化[J].新材料产业,2002,109(12):65-66.
[9] 酒金婷,王锐,李立平,等.纳米材料及其在织物中的应用[J].纺织导报,2000,(1):27-30.
[10]俞行,王靖.纳米材料及其在功能化纤和针织新产品中的应用[J].针织工业,2000,5:23-26.
[11]陶国平.纳米材料在功能性纺织品上的应用与展望[J].棉纺织技术,2001,29(10):5-8.
[12]刘吉平,田军.纺织科学中的纳米技术[M].北京:中国纺织出版社,2002:105-108.