开关电源的设计原理范例6篇

前言:中文期刊网精心挑选了开关电源的设计原理范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

开关电源的设计原理

开关电源的设计原理范文1

Design and development of MIDAS⁃based electronic component management system

for university electronic design contest

ZHANG Xiang⁃ming

(College of computer science, South⁃Central University for Nationalities, Wuhan 430074, China )

Abstract: In order to improve the management efficiency of components for the undergraduate electronic design contest, and raise the utilization rate of electronic components, a set of electronic component management system based on MIDAS (multi⁃tier distributed application services suite) and ADO technology was designed and developed. In combination with the management features of electronic components in daily training of electronic design contest in colleges and universities, a distributed multi⁃tier architecture was used in the electronic components management system design and implementation. The bar code technology was adopted in the system. The results show that the developed system has the advantages of simple operation, high efficiency, and can improve the management efficiency of distribution, collection, laboratory procurement and inventory early warning of electronic components.

Keywords: multi⁃tier distributed application services suite; electronic device competition; electronic component management system; and chips; ADO technology

0引言

随着中国教育体制改革的不断推进,各高校越来越重视学生创新能力的培养与训练,以期达到提升学生创新素质、增强学生适应市场和社会的目的。全国大学生电子设计竞赛是一项面向理科学生的重要赛事,其全国竞赛组委会由国家教育部、信息产业部及部分参赛省市教委代表及电子类专家组成,负责全国竞赛的组织领导、协调工作,其重要性不言而喻[1⁃2]。

竞赛要使用到大量的电子元器件,涉及的元器件品种多达几百种,且使用数量繁多。学生在竞赛前期的实训中,需要频繁地领用元器件,高校实验室管理人员需要对元器件的消耗情况进行汇总,对贵重器件进行登记与跟踪,同时还要对元器件库存有充分的了解,以便对元器件库进行有效合理的补充。目前很多高校的元器件管理工作仍处在于手工管理状态:仍然以手工方式登记学生领用情况,以人工方式对器件进行跟踪,目测元器件库存是否充足,学生领用元器件查找费时,这些问题极大地影响了电子竞赛的高效管理[3]。

为提高竞赛管理效率及元器件使用率,将构建一套智能化的电子元器件管理系统。因竞赛实训工作均在学校内完成,故将系统的架构设计为三层C/S(客户/服务器)结构,采用MIDAS和ADO技术来开发系统,按软件工程理论和方法对系统的各项模块进行设计,实现元器件采购计划管理、元器件入库、学生领用元器件、元器件查询、元器件统计分析等主要功能。

1系统架构和开发环境

基于高校电子设计竞赛的实际情况,系统采用C/S架构的多层分布式环境来开发,使用DELPHI7.0为开发平台,充分地运用其MIDAS,ADO等技术来构建一个基于数据服务层、业务逻辑应用服务层及客户层的分布式智能化管理系统,开发过程中使用的一些相关技术分析如下:

1.1多层分布式系统

分布式结构实际上是一种分布式应用系统,被分成数个不同的部分并且被执行在不同的机器之中,引入了应用程序服务器概念,应用程序服务器是一个包含系统业务逻辑的应用程序,以一种特定的组件形态,如MicroSoft的COM/DCOM,CORBA等对象,封装应用系统的逻辑程序代码,执行特定企业功能,然后把这些企业对象分发到应用服务器。

1.2体系结构

三层或多层体系结构中比二层C/S结构增加了一个中间层到客户端和数据库端间。中间层的实现有多种方法,目前最常用的是应用服务器,把使用的事务和消息服务器看作应用系统的基础“中间件”平台[4],客户端程序不直接与数据库服务器通信,而是通过中间层⁃应用服务器来访问,当有客户端程序发出数据请求时,通过指令传送到应用服务器,应用服务器接到指令后,调用相应函数(Function)、过程(Procedure)等业务逻辑来向数据库服务器发出指令,数据库服务器经过运算后,将处理结果反馈至应用服务器,再由应用服务器将中间结果反馈至客户端程序,从而大大减少数据库端访问量过大的开销,提高数据处理能力和系统运行效率[5],如图1所示。

图1 三层C/S体系结构

1.3MIDAS技术

多层分布式应用服务包(Multi⁃tier Distributed Application Services Suite,MIDAS),在Delphi企业版里被用来创建多层应用程序。MIDAS提供了一套高级组件、服务和核心技术,可以简化跨平台(Windows,UNIX,Linux)、跨产品的多级分布式应用系统的开发,通过它可以用相同的组件访问不同的后端应用程序服务器,在带宽具有挑战性的网络中,与其他解决方案所产生的分布式应用相比,具有更快、更容易和更高的特性[6]。

MIDAS三层体系结构指逻辑上的三层,即应用表示层、应用逻辑层和数据层。应用表示层主要负责用户端界面,提供给用户一个操作方便且简单快捷的应用服务接口;应用逻辑层(或为应用服务器)是整个结构中最重要的部分,实现应用程序的应用逻辑处理;数据层(又为数据库服务器)则负责数据的存取和管理。应用逻辑层将业务规则、数据访问及合法性检验等工作放到了中间层进行处理。通常情况下,客户端不直接与数据库进行交互,而是通过通信协议与中间层建立连接,再经由中间层与数据库进行交互。Delphi对多层分布式应用程序的支持主要得益于其MIDAS技术,该技术允许分割数据库应用程序,并实现对商业规则和进程的集中管理[7]。

2系统分析与设计

2.1系统需求分析

在软件工程理论中,需求分析是软件工程设计最重要的一环,是连通用户与软件开发人员的桥梁,是整个开发过程的重要基础。电子元器件因种类多、设计期间用量大、参赛参训人数多、实验人员管理杂等特点,元器件管理系统需要有准确、全面的一手用户需求资料,从而设计出符合要求的功能需求,为电子设计竞赛实验室管理人员提供高效、准确的统计与分析数据,更好地做好服务[8]。归纳出以下需求:

(1) 元器件基本要素:元器件是元件和器件的概称,包括元器件类别、名称、规格、型号等要素。

(2) 元器件存放要素:为方便电子设计实训时学生快捷领用元器件,在元器件存放时,严格按规定存放到指定编号的小器件单元,单元按元器件类别分类存放,按序编号。

(3) 元器件采购要素:包括元器件类别、名称、规格、型号、日期、数量、单价、供应商等。

(4) 元器件的出库要素:学生领用和元器件调拨,包括元器件类别、名称、规格、型号、数量、出库类别、领用人学号、姓名(或被调拨单位名称)、领用日期等要素。

(5) 用户信息:包括实验室管理人员、学生,权限分为查询、统计、入库、出库、可领用等。

(6) 系统的功能需求。根据电子设计竞赛实训元器件管理的特性及元器件发放的流程分析,电子元器件管理系统需要完成的功能有:元器件基本设置、采购及入库、元器件发放(或领用)、元器件调拨、元器件库存统计及预警、元器件相关查询等功能。

2.2系统的功能设计

通过上述的系统需要分析,设计出本系统应完成的具体功能结构(如图2所示)。

图2 元器件管理系统功能结构图

(1) 用户权限管理功能模块。电子设计竞赛日常培训由实验室工作人员管理,负责元器件的采购计划、元器件的发放与回收、库存分析等工作。按用户的实际操作范围,生成不同的角色,每一角色具有不同的使用权限,然后为不同的操作用户分配不同的角色。权限分为:普通管理员、超级管理员。

(2) 元器件仓库管理功能模块。对元器件仓库按元器件的类别进行分类管理,并按元器件的规格、型号来分别设置元器件仓库存放地点,设置统一编号管理元器件仓库。可实现按仓库编号查元器件名称、数量等操作;可根据元器件查找仓库,方便学生领用时快速寻找元器件。

(3) 元器件进库管理功能模块。根据年度采购计划;采购后元器件入库。入库信息包含供应商、价格、日期、仓存单元编号等信息;该模块能实现数据的录入与修改操作及元器件的入库和查询汇总操作等功能。

(4) 元器件出库功能模块。元器件出库方式主要有:学生领用元器件、元器件调拨。学生领用元器件,需先经远程预约领用,由实验室人员按预约进行发放;实验室人员能根据预先设定的元器件存放地址准确找到元器件;元器件调拨必须要有调入单位信息,需经超级管理员审核方可执行。

(5) 元器件库存预警功能模块。根据实际库存及系统预设预警数量,系统自动并作出相应库存预警。

(6) 元器件仓存统计查询功能模块。按各种统计要求设计各类统计查询功能,可统计某段时间内元器件的使用量,并可生成各类报表。

(7) 条码管理。学生学号、元器件均采用条码管理,方便录入。

2.3系统的体系结构设计

电子元器件管理系统建立在局域网和关系数据库的基础之上,将存在于实际操作和数据库中的数据抽象为业务逻辑对象,通过对象管理框架进行管理。在此基础上,构建若干适应电子竞赛用元器件实际情况的功能模块,通过友好的用户界面与用户交互,完成电子设计竞赛和实验室人员元器件管理服务的系统。其中:

(1) 对象管理框架层:提供实现电子元器件管理的各种功能的核心构架;

(2) 系统功能模块层:在用户界面层,用户命令的处理均由各项功能模块完成;

(3) 图形用户界面层:提供友好的交互式的图形界面,使学生和实验室人员可以直观方便地完成电子元器件管理系统的各项功能;

(4) 系统支持层:电子元器件管理系统是一个多层分布式的管理系统,分布式技术及网络技术有效支持分散数据的集中管理,而关系数据库的数据操作功能有效支持了系统对象在底层数据库的管理[9⁃10]。

3系统的具体实现与特点

根据多层分布式系统的结构和电子元器件管理的特点,分别实现该系统数据库层、业务逻辑层、用户表示层的详细设计。

3.1系统数据库层服务器的实现

根据电子元器件管理系统的功能要求,选取MicroSoft SQL Server 2000作为后台数据库。SQL Server2000具有强大的数据管理功能,支持数据的完整性、安全性管理和并发控制。在数据库服务器中构建关系数据库(ElecComponentsDb),建立若干个数据表,分别存放用户权限管理、元器件类别、元器件入库资料、元器件领导用管理、元器件调拨等信息,并设置若干个由多个表JOIN连接的视图,以设计各类管理功能需要的交叉查询功能。大量在客户端不能完成的系统功能,全部设计为数据库服务器端的存储过程,用存储过程来实现系统功能,达到了既快速,又安全的目的。主要存储过程有:

(1) 元器件领库存余量计算算法功能:PROCEDURE ElecChipsCalc;

(2) 元器件分类汇总:PROCEDURE ElecChipsStas;

(3) 元器件进仓处理:PROCEDURE ElecCmpsIn;

(4) 元器件领用处理: PROCEDURE ElecCmpsOut等。

3.2应用服务器的建立

(1) 使用数据集组件连接远程数据库

使用Delphi7.0分布式VCL组件建立一个OLE Automation服务器,客户端程序通过应用服务器的IAppServer接口连接客户端应用程序供其调用。通过加入读取INI文件中存储的服务器、用户名、口令等信息的代码以及授权等信息码后。从外置INI文件读取信息的程序代码如下:

sf:Tinifile;//INI文件实例

begin

sf:=Tinifile.Create(ExtractFilePath(Paramstr(0))+'ScunSys.ini');

with sf do

begin

edtserv.text:=readstring('system','Server','(Local)');

edtdb.text:=readstring('system','DbName','scunpersondb'); //

edtuser.text:=readstring('system','UserName','sa');

edtpwd.text:= readstring('system','password','**');

// 读取服务器信息、数据库、User用户信息、Password口令信息等

end;

(2) 通过RDM的IAppServer接口来存取远程数据库的数据集

在RDM中通过数据集组件的方式显然不能完全解决数据的高速存取及数据连接池的问题,且安全性不能得到保障,故在本系统中采用了通过设置IAppServer接口函数来实现数据集的存取操作.

在系统中,根据获取数据集、存储数据集及其他功能实现的方式设立以下几种主要的业务函数:

① 通过数据库端存储过程获取数据。(有数据集返回)

function AccqDataFromStoreproc (): OleVariant; 该函数返回值为一数据集,直接赋值给DataSet.Data,从客户端接收SQL语句获取数据。程序代码如下:

function TScunAppS.AccqDataFromStoreproc(const spName: WideString;Params: OleVariant; const spdname: WideString): OleVariant;

var

i:integer;

sconn:Tadoconnection; //设置TAdoConnection实例

fromsp:TadoStoredproc; //设置TAdo Storedproc;实例接收客户端传递的存储过程名称及其参数列表

begin

sconn:=Tadoconnection.create(self);

if ScunAppInfo.ConnectDB(sconn) then

begin

fromsp:=TadoStoredproc.Create(self);

spdsp:=Tdatasetprovider.Create(self);

with spdsp do

begin

DataSet:=fromsp;

exported:=true;

resolvetodataset:=true;

name:=spdname;

end;

with fromsp do

begin

close;

connection:=sconn;

Procedurename:=spname;

if (varisarray(params)) then

begin

parameters.Clear;

for i:=vararraylowbound(params,1) to vararrayhighbound(params,1) do

begin

Parameters.Add;

Parameters[i].Value:=params[i];

//从params分离出存储过程参数

end;

end

else

exit;

prepared:=true;

try

active:=true;

result:=spdsp.Data; //获取数据集,Variant参数回传客户端

except

on e: Exceptiondoraise;

end;

end;

end;

scunappinfo.stpspname:=spdname;

end;

② 更新数据集函数有两个:UpdateByScript,UpdateByStoreProc,从客户端接收SQL语句更新数据集。

③ 其他类函数:ECmpLogin, ECmpUnLogin,ReleaseDSProvider,用于对应用服务器的操作和管理。

3.3客户端应用程序的建立

在Delphi中建立一个项目组,连接应用程序服务器,然后建立一个新的Application应用程序。新建一数据模块,加入一个MIDAS组件板中的TDCOM Connection组件,设定其Computer Name属性值为应用程序服务器位于的主机名称。设定TDCOM Connection要使用的应用程序服务器,设置应用程序服务器的GUID和填在TDCOM Connection的ServerGUID属性值。再添加TClientDataSet组件,设置其Provider Name 属性值,激活TClient DataSet的实例,使其通过中间层从数据库服务器中取得数据集。

在多层体系中,应用程序将待更新的数据暂存在客户端应用程序中,系统真正要求将数据集更新回数据库时,必须调用应用程序服务器提供的Apply Updates方法,才会把更新的数据集真正的更新回后端数据库中,其更新方法如下:

If(DataModule1.Clientdataset1.changecount>0) then

//判断数据集是否有更新发生

begin

DataModule1.Clientdataset1.Post;

DataModule1.Clientdataset1.ApplyUpdates(0);

//更新数据集至数据库

end;

3.4主要功能模块的实现

(1) 根据系统的功能设计详细设计书,制作程序用户界面图,并编写程序代码,实现电子元器件管理系统的各项主要功能。如图3所示为电子元器件管理系统的主界面窗口。

图3 电子元器件管理系统主界面图

(2) 用户登录密码加/解密算法实现。因使用的数据库SQL Server2000存放用户信息的表字符均为明文,而管理人员复杂,登录用户密码易被泄密,故采用异或算法来对用户密码明文进行加密,读取密码时进行解密。具体算法如下:

ss:='';

ts:=trim(passWord.text); //用户输入的密码加密

for i:=1 to length(ts) do

ss:=ss+char(ord(ts[i]) xor 127);

解密算法同样采用xor算法来实现。

(3) 元器件入库管理模块。系统设定元器件入库前必须要有预算计划,每次入库自动生成一个入库单号,然后在该入库单下进行元器件各类参数信息的录入。见图4为元器件入库管理模块。

图4 元器件入库管理模块图

(4) 元器件领用管理模块。在电子设计日常实训中,学生经常要进入实验室进行领用元器件,在领用元器件前学生必须经过系统的预约,预约领哪些元器件,并经指导老师审核后,方可到实验室领取所预约的元器件。元器件领用管理模块实现功能如图5所示。

图5 元器件领用管理模块图

其他功能模块均已按设计要求进行实现,并经测试使用正常。在系统的使用过程中,学号、元器件编号无使用条码录入,增添了程序的可操作性和快捷性。

3.5多层稳固性及容错与负载平衡能力的处理

系统采用了多个应用服务器来同时处理客户端进程,系统的稳固性必然受到影响,程序在开发过程中使用DELPHI提供的TSimple Object Broker 组件的内置功能来实现系统的稳固性。通过修改TSimple Object Broker的属性servers值来添加及维护一个能够执行应用程序服务器的机器列表,并设置TDCOM Connection 或TSocket Connection以连接远程服务器。当连结的主机故障时, TDCOM Connection 或TSocket Connection 可以从TSimple Object Broker 取得一个新的能够执行应用程序服务器的远程机器名称,然后再连结到这台新机器以取得应用程序服务器的服务[11]。

本系统采用动态平衡算法来保证负载平衡能力,主要依靠TSimple Object Broker组件强大的功能,设定TSimple Object Broker 的LoadBalanced 属性来提供简单的负载平衡能力。这样当某台应用服务器出现故障时,客户端系统能通过TSimple Object Broker组件的负载平衡能力自动寻找正常运行的应用服务器,并接管该进程的管理功能,从而达到负载平衡的功能。

开关电源的设计原理范文2

【关键词】开关;电源;原理;趋势

电子设备的运作需要电源供电,因而一个安全高效的电源,是组成技术指标合格的电子设备的必要部件之一。当下最常见的直流稳压电源主要有两类,一类是线性电源,另一类是开关电源。线性电源稳定性较好,输出纹波电压小,但要浪费较多的调整管功率,所以电源体积较为臃肿。相比之下,开关电源高效节能,外形小却能稳定输出较高电压,并且扩充方便,包含技术含量高,常被应用于数码设备、计算机等。开关电源是稳压电源未来发展的主流趋势,在当下已经较为普遍的应用于各个领域。

一、开关电源的基本原理及组成

(一)开关电源的基本原理

根据控制原理的差异,开关电源分为三种:脉宽调制、脉频调制和混合调制。

(1)脉冲宽度调制式,简称脉宽调制式(Pulse Width Modulation,缩写为PWM),当前集成开关电源多采用此种方式。这种方式稳定电压的方式是,在开关频率不变化的前提下,依靠脉冲宽度的增大或缩小改变占空比例,进而调节电压达到稳定。它核心部件是脉宽调制器。滤波电路的运行十分便捷,因为开关是按照稳定的周期工作的。然而,这种控制方式也有缺陷,它不能宽范围地调整输出的电压,因为受功率开关最小导通时间不够的话,就不能完成宽范围的调整。还有一个缺陷就是,输出端要求较高,为了避免空载时电压输出上升,需要安排接假负载。

(2)脉冲频率调制方式,简称脉频调制式(PulseFre-quency Modulation,缩写为PFM)。在这种调制方式运作的时候,脉冲宽度是固定的,开关频率的增加或减少控制了占空比,使得电压保持稳定。脉频调制器是它的核心部件。设计电路的时候,它不使用脉宽调制器中的锯齿波发生器,取而代之的是,用固定脉宽发生器,同时,使用电压/频率转换器来调节频率的变化。

这种调节方式的基本原理是,调节控制器输出信号的脉冲宽度的运转周期,改变其占空比,从而控制输出电压Uo保持稳定。它输出电压范围宽,输出端可不接假负载。

(3)混合调制方式,在这种调整方式下,可以灵活调整脉冲宽度或开关频率,它属于PWM和PFM的混合方式。混合调制方式兼有脉宽调制器和脉频调制器两种组件。由于tp和T均可单独调节, 因此占空比调节范围最宽,适合制作供实验室使用的输出电压可以宽范围调节的开关电源。

此三种方式都可以叫做时间比率控制(TimeRatio Control, 简称TRC)方式。其中,脉宽调制器在诸如UC3842型脉宽调制器中是一个独立的集成电路,而在LM2576型开关稳压器、TOP250型单片开关电源集成电路中与其他设备一同集成使用。

(二)开关电源的组成

(1)输入电路:线性滤波电路、浪涌电流抑制电路、整流电路。

(2)变换电路:含开关电路、输出隔离(变压器)电路等,是开关电源电源变换的主通道, 完成对带有功率的电源波形进行斩波调制和输出。

(3)控制电路:向驱动电路提供调制后的矩形脉冲,达到调节输出电压的目的。基准电路、采电路、比较放大、V/F变换、振荡器。基极驱动电路:把调制后的振荡信号转换成合适的控制信号, 驱动开关管的基极。

(4)输出电路:整流、滤波。把输出电压整流成脉动直流,并平滑成低纹波直流电压。

二、电源开关的发展趋势

开关电源是稳压电源未来发展的主流趋势,在当下已经较为普遍的应用于各个领域。接下来,笔者立足当前的开关电源的发展实际和理论发展,浅析开关电源的未来其发展趋势。

(一)小型高频化

磁性元件和电容的大小和质量决定了电源大小。当前的技术开发的一个方向在于,减小这些元件的大小,并尽可能低提升开关频率。这样既能减小电源尺寸受到磁性元件和电容尺寸和重量的影响,还能避免受到不必要因素的干扰,提升系统性能,所以小型高频化是开关电源的发展趋势之一。

(二)使用稳定化

比起线性使用的电源,开关电源的使用次数要多好多倍,由于经常使用其稳定性便不如前者。电解电容、光耦合器及排风扇这些部件是决定使用的稳定性和时间长短的要素。因此,当下的设计正是从集成度的提升着眼,尽力地改善器件的使用,增强开关电源的稳定性。进化,开关电源的集成度还有待提高。比较可取的是,利用模块化技术,它可以提升开关的稳定性,适合用于分布式电源系统。

(三)低噪化

在传统的开关电源中,频率越高噪声越大。采用部分谐振转换回路技术,在原理上既可以提高频率又可以降低噪声,所以低噪声化也是开关电源的未来发展趋势之一。

(四)计算机智能控制化

当前计算机操作系统不断革新,未来的电路将会加以结合,利用微机检测和控制,能有效、多反面监控系统,实时检查、登记和预警等。

(五)低压输出化

随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作越来越低,这就要求未来的DC-DC变换器能够提供低输出电压以适应微处理器和便携式电子设备的供电要求。

三、总结

本文的上半部分,分析了开关电源根据控制原理的差异可以分为三种:脉宽调制、脉频调制和混合调制,同时还介绍了开关电源的结构及构成原理。

后半部分,立足当前的开关电源的发展实际和理论发展,分析未来其发展趋势为:小型高频化、使用稳定化、低噪化、计算机智能控制化和低压输出化等。

参考文献

[1]沙占友.新型单片开关电源的设计与应用[M].北京:电子工业出版社,2001.

[2]沙占友,王晓君,庞志锋.集成稳压电源实用设计软件[M].北京:中国电力出版社,2008.

开关电源的设计原理范文3

【关键词】PWM;双闭环;检测仪器;开关电源

0 引言

随着我国科技不断稳步发展,越来越多的设备需要用到电源,如:稳压电源、直流电源、交流电源等等。但随着设备先进性的不断提高,设备的功能越来越强大,对电源的要求也越来越高,特别是检测仪器仪表,精度要求非常高,需要有非常稳定可靠的电源来确保测量精度。因此,开关电源取代普通的电源设备,广泛应用于检测仪器仪表中。本文设计一种基于PWM脉冲宽制调试的双闭环开关电源,采用国外先进的全波整流控制器,该控制器工作模式不仅可以是电流式也可以是电压式,还能够为谐振零电压开关提供高效、高频的解决方案,因此具有非常广阔的应用前景。本文采用全桥整流装置,利用双闭环负反馈的直流-直流变换控制系统,能太太提高开关电源的电压、电流等精度,符合检验检测仪表行业的要求。

1 检测仪器电源系统概况

随着信息时代的发展,便携式电子产品被越来越多的消费者亲睐。与此同时,解决能量消耗即电源管理问题成为重中之重。因此,具有高效节能特型的开关电源在近年来发展迅速,并在计算机通讯等领域的应用越来越广泛。而PWM型开关电源芯片就具备了此类特性,其核心技术集中在控制环节。此设计采用PWM控制电路,适用于开关电源芯片控制。对PWM调制电路为保证开关电源正常工作应具有的功能展开分析,得到设计要求。对PWM控制电路的组成模块、分类、基本原理及各项性能指标,进行细致深入的研究,最后得到调制电路的基本电路结构及满足性能指标的组成模块,对各个模块的功能和逻辑是电路设计的重点,最终该电路实现能产生一定脉冲驱动信号的功能。

2 系统控制原理图

双闭环负反馈PWM秒冲宽制调制系统中,有两级的反馈系统。串级系统即是电流双闭环反馈系统,而转速反馈构成外环系统,内环是电流反馈。本方案设计三处进行系统的电流取样反馈,取拥缌髦岛拖低成杓频牡缌髦迪啾冉希当取样电流值过大时,系统会自动调节降低工作电流;但取样的电流过小时,系统会自动调节提高工作电压,这是内环电流反馈的工作情况。外环的转速反馈系统,系统通过电压检测装置检测系统的电压情况,再与设计的电压值相对比进行电压高低的调节,达到稳定电压的效果。基于双闭环的设计思想,图1中的各个部分相互独立工作、互不影响,如果某一部分出现故障,不影响另一部分系统的工作,系统内部由电流形成负反馈,外部由电压形成负反馈系统。电流电压负反馈一起运作,能太太的提高系统的稳定性和进度,满足检测仪器仪表的使用要求,达到良好的效果。双闭环反馈系统原理如图1所示。

图1所示虚线框中的1#.2#.…….N#是各个高频开关电源,其稳压或稳流精度很高,原因在于该内部自动控制原理图最终可以简化为一阶系统比例积分环节,图中它们工作在稳流状态下。

3 硬件电路设计

图2为开关电源的硬件电路组成部分,设计采用国外先进的放大器作为本设计的核心器件。芯片的1脚与3脚相连接,构成差分放大,能有效的减小误差,提高设计的精度。

图2所示输出法人取样电压通过R5和R6设置,电压输出端与电阻5和6形成零点电位,电阻1/2/3与电容1/2/3形成效应,与PI构成补偿系统,电阻1和7在电路中形成增益作用。在电流内环中加入斜坡补偿以保证系统的稳定性。硬件电路通常容易出现不对称信号的问题,本设计利用电压负反馈补偿信号的作用,将电阻8作为上拉电阻提供直流电压,与RC构成的多谢震荡器作用,提供反馈电压,从而解决波形的不对称性。图中电流检测信号Is经过I-V变换电路转换成电压信号。芯片741是一个PWM脉冲宽制比较器,根据比较器原理,依据三极管放大电路原理,在芯片3脚接地,芯片的2脚相当于一个反相输入端,对信号进行比较。其内部的过流及限流比较器实现逐周期过流及限流保护。当2 V2.5 V时,执行过流保护模式。

4 结语

本设计依据3895芯片,利用双闭环负反馈的原理,引入电流负反馈和电压负反馈,提高了开关电源的精度,利用PWM脉冲宽制调制技术,提高了电源变换的效率和稳定了。开关电源系统设计之后,对该系统多次进行调试测,反馈结果稳定良好,系统稳定性好,动态响应快,证明本方案是可行的。

【参考文献】

开关电源的设计原理范文4

关键词: 动态激光调节; 数字式LED; 开关电源; 失真补偿方程

中图分类号: TN86?34; TP391 文献标识码: A 文章编号: 1004?373X(2017)07?0143?04

Design of digital LED switching power supply under high?voltage dynamic measurement

LIU Lin

(College of Information and Electronic Engineering, Shangqiu Institute of Technology, Shangqiu 476000, China)

Abstract: The reliability of the traditional design method is poor due to the dynamic nature existing in the laser conditioning process in the design of LED switching power supply. Aiming at this problem, a design method of the digital LED switching power supply under high voltage dynamic measurement is proposed. The two?order lattice notch filter is used to establish the power supply signal analytical model driven by digital LED to obtain the optimal transmitting power of the switching power supply. According to the dynamic carrier value of the power supply, the distortion compensation equation is fitted. The characteristic parameters of the switching power supply are extracted to fuse to the main magnetic?core component of the digital LED switching power supply designed with LLC principle. The maximum gain required by the LED switching power supply circuit is given. The practical turns ratio of the LED switching power supply transformer is obtained. The wire diameter of each coil of the transformer inductance is calculated to design the digital LED switching power supply under high?voltage dynamic measurement. The experimental simulation results show that the method has high design accuracy, and can prolong the service life of LED switching power supply effectively.

Keywords: dynamic laser conditioning; digital LED; switching power supply; distortion compensation equation

0 引 言

LED照明产品以其耐震动、能耗小、光效高、响应快等优势成为替代白炽灯和荧光灯等老式电源的新一代绿色光源[1?3]。对于一个优质的LED照明产品来说,要在市场上取得领先的销售地位不但要拥有一个质量优等的LED芯片,而且还必须具有一个良好的LED驱动系统[4?6]。目前大多数的开关电源技术还不够成熟,存在可靠性低、效率较低等弊端,这些弊端大幅度地降低了LED照明灯具的寿命。在这种情况下,如何有效地提升LED开关电源的效率和可靠性成为电源领域的研究热点。高压动态测量下的数字式LED开关电源优化设计方法可以计算出变压器电感电量各绕组的线径,以此为依据完成对高压动态测量下的数字式LED开关电源的设计,成为很多专家和学者研究的重点课题,同时也出现了很多好的方法[7]。

文献[8]提出一种基于高功率因数的高压动态测量下的数字式LED开关电源设计方法。该方法先给出数字式LED驱动功率的因数,利用SN3350构成PWM恒流可调电路,给出开关电源的功率因数均值,以此为依据完成对数字式LED开关电源的设计。该设计方法稳定性较强,但是存在设计过程繁琐,耗时长的问题。文献[9]采用一种基于双同步斩波模式的高压动态测量下的数字式LED开关电源设计方法。该方法时间复杂度较低,但是采用当前方法进行LED开关电源设计时无法适应激光调节的动态性,存在LED开关电源设计可靠性差的问题。文献[10]重点提出一种基于反激式的高压动态测量下的数字式LED开关电源设计方法。该方法可扩展性较强,但是存在鲁棒性较差的问题。

针对上述问题,本文提出一种基于高压动态测量下的数字式LED开关电源设计方法。实验仿真结果证明,所提方法设计精度较高,可以有效地延长LED开关电源的使用勖。

1 数字式LED开关电源的设计原理

在对数字式LED开关电源设计的过程中,先给出变压器一次绕组上的电流表达式,得到初级绕组和次级绕组的匝数比,获取LED开关电源变压器各绕组的匝数比,给出辅助绕组匝数与次级绕组匝数的比值,计算出变压器初级电感感量,利用该电感感量完成对数字式LED开关电源的设计。具体的步骤如下:

假设,由[Lp]代表变压器初级绕组的电感量;[Vde]代表初级绕组两端的电压;在驱动信号为高电平时,[Np]代表开关电源一次绕组,当[Np]上的电流线性上升时,则利用式(1) 给出[Np]上的电流表达式:

[ip=VdctonLpNp] (1)

式中[ton]代表MOS管的导通时间。

假设,由[is]代表次级绕组[Ns]上的电流;[isk]代表次级绕组上的峰值电流;[uout]代表输出电压;[toff]代表MOS管[Q1]的有效关断时间;[Ls]代表次级绕组的电感量,则利用式(2)得到初级绕组和次级绕组的匝数比:

[NsNp=ufNf?Nsufmin×iskipkNs?isuoutLstoff×Q1] (2)

式中:[uf]代表两端的电压表述方程;[Nf]代表辅助线圈;[ufmin]代表电感的电学特性;[ipk]代表电流的峰值电流。

假设,[uoutmax]代表输出功率最大时的输出电压,[uinmax]代表初级绕组上的最小输入电压,则利用式(3)获取LED开关电源变压器各绕组的匝数比:

[Nfisk=uinmax?Aeuinmax?uoutmax?ipk?dI?J?Lp] (3)

式中:[Ae]代表磁芯的横截面积;[d]代表线径;[I]代表电流值;[J]代表电流密度;[Lp]代表初级绕组的电感电量。

假设,[iskipk]代表次级电流峰值[isk]和初级电流峰值[ipk]的关系,则利用式(4)得到辅助绕组匝数与次级绕组匝数的比值:

[NfNs=iskipk?ton×tofff?D?ι??P] (4)

式中:[f]代表电源IC 的工作频率;[D]代表MOS驱动信号的占空比;[ι]代表法拉第电磁感应定律;[?P]代表磁芯材质。

假设,[?]代表电源芯片的最大值;[μ]代表损耗分配因子,则利用式(5)计算出变压器初级电感感量:

[μ?c=μ???j?θr?α?] (5)

式中:[?j]代表损耗分配因子;[θr]代表电容的容差;[α?]代表副边绕组峰值电流。

假设,[Np]代表变压器[TI]原边绕组的匝数,则利用式(6) 完成对数字式LED开关电源的设计:

[εe=TI?k??P?μ?cNp] (6)

综上所述可以说明,利用数字式LED开关电源设计原理可以设计LED开关电源。

2 高压动态测量下的LED开关电源优化设计

2.1 开关电源特征参量的提取

在对数字式LED开关电源优化设计的过程中,利用二阶格型陷波器构建LED驱动的供电信号解析模型,给出驱动补偿系数,得到LED开关电源特征参量。具体的步骤如下:

假设,[zt]代表电源驱动信号;[xt]代表电源驱动信号模型的实部;[yt]代表电源驱动信号的固有模态函数;[at]代表系统融合参量;[eiθt]代表驱动电路可调电压。则利用式(7)计算[zt]:

[zt=eiθt×xtyt?at] (7)

假设,[PN]代表数字式宽频最大功率;[LN]代表传输数据的时间;[UN]代表LED的电容滤波;[mN]代表电阻隔离。则利用式(8)得到LED开关电源的最优发射功率:

[?F?PN=EN?PNLN?mN?UN] (8)

假设,[v]代表驱动的速度;[β]代表传播常数。则利用式(9)给出电源载波值动态失真补偿方程:

[C2=vβ] (9)

利用给定的[β]代表传播常数,提取LED开关电源的特征参量,利用式(10)表述:

[kp=krur+k?u?+kzuzfrur+βuz] (10)

式中:[krur]代表LED开关电源[ur]轴最小工作电源电压;[k?u?]代表初级的漏感能量;[fr]代表特征参量在[ur]轴的分量。

假设,[k0]代表沿[ur]轴分量的初始值;[n]代表信号滤波的数量。则利用式(11)获取LED开关电源正常控制模式下的状态:

[TL=n?ark0?urV0] (11)

式中[V0]代表外部电阻的比值。

综上所述可以说明,在对数字式LED开关电源优化设计过程中,利用二阶格型陷波器构建LED驱动的供电信号解析模型,给出驱动补偿系数,得到LED开关电源特征参量,计算出LED开关电源正常控制模式下的状态,为实现对数字式LED开关电源优化设计奠定了基础。

2.2 基于功率校正的数字式LED开关电源设计

在对数字式LED开关电源优化设计过程中,以2.1节获取的LED开关电源正常控制模式下的状态[TL]为依据,利用LLC谐振半桥的控制芯片设计出电感[L]与开关频率关系,给出输入电压最低,电路峰值最大时的电感方程,获取变压器实际匝比,计算出变压器电感电量各绕组的线径,完成对数字式LED开关电源的设计。具体的步骤如下:

假设,[Uin_ms]代表输入电压的有效值;[Uo]代表PFC输出电压;[fsw_min]代表最低开关频率。利用式(12)得到电感[L]与开关频率的关系:

[L=U2in_msUo-2Uin_ms2fsw_minUoPoηTL] (12)

式中:[Po]代表输出功率;[η]代表效率。

在选取LED开关电源的芯片时,要保障在最恶劣的情况下输入电压最低,电路峰值最大时也不会饱和,利用式(13)给出其电感方程:

[LIp=NAeΔB] (13)

式中:[ΔB]代表磁感的工作范;[Ae]代表磁性等效截面积;[N]代表电感线圈匝数。

假设,[U′in]和[U′o]分别代表输出与输入的等效基波分量;[Lr]代表变压器漏感;[Lp]代表变压器初级电感量,则利用式(14)获取等效的电路增益函数:

[??=Lp?k,QMPKU′in?U′o?Uo_ fr×Lr,Lp] (14)

式中:[MPK]代表电路所需的最大增益;[Uo_fr]代表最大输出电压和谐振点输出电压;[k]和[Q]代表变压器的电感匝数和峰值最大电流。

分析式(13)可以得出,峰值增益是[k]和[Q]的函数,在选取[k]和[Q]时,其峰值增益需要满足电路最大的增益范围,利用式(15)计算峰值增益:

[MPK=Mmax?Mfrk?Q×Uo_max] (15)

式中:[Mmax]代表电路所需最大增益;[Mfr]代表谐振点增益;[Uo_max]代表最大输出电压。

假设,[Np_min]代表变压器初级最少匝数;[Bm]代表磁芯最大不饱和磁感应强度。则利用式(16)得到变压器实际匝比:

[na=nk+1kNp_min?Bm] (16)

假设,[Κp]代表开关电源的电流有效值,则利用式(17)获取线圈的线径和电流值的密切关系:

[?γ=Κp?na???LIp] (17)

利用式(16)计算的结果为依据,可以完成对数字式LED开关电源优化设计。

3 实验仿真证明

为了证明提出的基于高压动态测量下的数字式LED开关电源设计的有效性,需要进行一次实验,在Matlab/Simulink软件环境下搭建高压动态测量下的数字式LED开关电源设计实验仿真平台。实验数据来源于3台420 W的LED开关电源样机,如图1所述。

3.1 不同方法的LED开关电源设计的有效性

分别采用本文所提动态激光调节方法和基于反激式方法进行数字式LED开关电源设计,比较两种不同方法获取电路峰值增益和输出电流有效值设定值,利用对比的结果衡量不同方法进行LED开关电源设计的有效性,对比结果见图2,图3。

分析图2和图3可以得出,利用本文所提动态激光调节方法进行数字式LED开关电源设计的综合有效性要优于反激式方法进行数字式LED开关电源设计的综合有效性,这主要是因为在利用本文方法进行数字式LED开关电源设计时,先融合二阶格型陷波器组建LED驱动的供电信号解析模型,得到LED开关电源最优发射功率,给出电源载波值动态失真补偿方程,提取开关电源特征参量,从而保障本文所提动态激光调节方法进行数字式LED开关电源设计的综合有效性。

3.2 不同方法的LED开关电源能耗和负载均衡性对比

分别采用本文所提动态激光调节方法和基于反激式方法进行数字式LED开关电源设计,比较两种不同方法进行LED开关电源设计的能耗和负载均衡性,对比结果见图4,图5。

从图4和图5中可以说明,利用本文所提动态激光调节方法设计数字式LED开关电源的整体优越性要高于反激式方法进行数字式LED开关电源设计的整体优越性,这是由于在利用本文所提动态激光调节方法设计数字式LED开关电源时,给出输入电压最低,电路峰值最大时的电感方程,获取变压器实际匝比,计算出变压器电感电量各绕组的线径,大幅度提升了本文所提动态激光调节方法设计数字式LED开关电源的整体优越性。

4 结 语

针对采用传统方法进行LED开关电源设计时,无法适应激光调节的动态性,存在LED开关电源设计可靠性差的问题。本文提出一种基于高压动态测量下的数字式LED开关电源设计方法。实验仿真结果证明,所提方法设计精度较高,可以有效地延长LED开关电源的使用寿命。

参考文献

[1] 徐珍宝,沈洋,苏玲爱,等.一种反激式LED驱动电源变压器设计方法[J].中国计量学院学报,2015,26(1):94?98.

[2] 黄波.LED驱动电源设计实现[J].内江科技,2014,35(12):43.

[3] 朱福超.低功耗LED驱动电源设计[J].价值工程,2016,35(10):144?147.

[4] 马昌松,吴朝晖.基于电流型并联谐振多通道LED驱动电源设计[J].电力电子技术,2015,49(5):52?55.

[5] 王秀敏,姜利亭,单良,等.一种线性保护输入的恒压LED驱动电源设计[J].中国计量学院学报,2014,25(1):70?74.

[6] 周锦荣,黄闻铭.高功率因数LED恒流可调驱动电源设计[J].电子技术应用,2015,41(8):120?123.

[7] 孙健,陈跃宁,徐征,等.基于单端反激式LED驱动电源的设计[J].电源技术,2016,40(2):413?415.

[8] 金永镐,张克贺.基于TOP开关的无变压器恒流LED驱动电源设计[J].电子科技,2014,27(4):101?104.

开关电源的设计原理范文5

关键词:开关电源;非隔离DC/DC;BUCK转换器

中图分类号: TM762.1+1 文献标识码:A

1非隔离DC/DC变换器的拓扑种类及优势

其中应用比较广泛,在自动化设备上实用性较高的主要有以下几种: BUCK变换器、BOOST变换器、反极性BOOST、BUCK-BOOST等。

非隔离DC/DC调整器最大的优势是效率,较高的转换效率意味着能源的最大利用。同时还具有元器件简单、功率密度大的优点。

我们可以预见到,非隔离DC/DC电源是大势所趋。

2 LT1767简介及引脚功能

本文介绍的3.3V电源系统是由LINEAR公司的LT1767集成控制芯片实现的BUCK调整器电路。

3一种变频器通讯转接板3.3V电源的设计

变频器应用在工业现场时,需要同其他的自动化设备一起接入现场的多种现场总线和工业以太网。ANYBUS通讯转接板的作用就是实现自动化设备与现场总线PROFIBUS的连接。

ANYBUS通讯转接板需要2路电源:+5V和+3.3V。其中+5V电压取自驱动板上的AC/DC电源的多路输出。+3.3V是由+5V电压通过非隔离DC/DC电路实现的。

表2 ANYBUS通讯转接板对电源的基本要求

3.1 LT1767调整器的工作原理

变频器ANYBUS通讯转接板的3.3V电源是以LT1767为核心,搭配必要元器件组成的Buck拓扑开关电源(如图3所示)。因为功率MOS管集成在LT1767芯片里,这款电源看起来电路简洁。分析图3的开关电源原理之前,首先看一下LT1767芯片的内部框图,如图2所示。

LT1767采用恒频控制方式,芯片内部时钟和双闭环反馈来控制功率开关的导通占空比。最初的开关周期起始于置位 Flip-Flop的振荡器脉冲。Flip-Flop置位后,输出高电平,开通开关管switch;当开关管中的电流达到电流比较器翻转的阈值时,Flip-Flop复位,输出低电平,关断开关管switch。

3.2 直流3.3V_BUCK调整器的工作过程分析

4.1 直流3.3V开关电源电路板PCB

根据上述的电路原理,我们采用PADS Layout软件设计出3.3V直流开关电源的电路板PCB,如图5所示。PCB布局要尤其注重输入和输出环路的走线。由于LT1767工作于1.25MHz频率,线路的寄生参数和引线电感需慎重考虑。

4.2实测工作电压波形

结论

本文设计的开关电源,经过样板试制和电源测试,证明电源的各项参数和表征能够满足变频器ANYBUS通讯转接板的要求,能够提供高精度的3.3V直流电压,工作稳定可靠。

参考文献

[1] Abraham I. Pressman. 王志强(译).开关电源设计[M].第三版.北京: 电子工业出版社,2005, 3-20.

开关电源的设计原理范文6

【关键词】AP8012H 电能表 开关电源

现阶段,由于线性电源具有可靠高、设计简单等优点被单相电能表广泛采用,然而功耗高、效率低是它显著的缺点,这给国家电网公司每年浪费了大量的能源。国家电网公司为了倡导节能减排,对电能表的功耗开始严格的限制。线性电源方案的电能表已经无法满足国家电网的功耗要求,然而开关电源方案的电能表具有功耗低、效率高等优点,恰好可以弥补线性电源的缺点。

1 电能表对电源的指标要求

电源的输入从电网取电,电网的额定电压为:220VAC,由于电网的环境比较复杂,所以要求电源能够在85VAC~265VAC的电压环境下工作,并且具有抗雷击信号、脉冲群信号的能力。

电源的输出主要给电能表的各个模块供电,电能表的模块包括:计量模块、MCU及模块、继电器控制模块、载波通信模块、RS-485通信模块等,模块的具体要求如表1所示。

2 AP8012H介绍

AP8012H是无锡芯朋微电子股份有限公司(Chipown)研发的一款反激式开关电源控制芯片,内部集成了PWM控制器和800V高压MOSFET,采用SOP8封装,适用于6W以下的离线式开关电源。该芯片具有过流保护、过压保护、欠压保护、过温保护,并且还集成了高压启动模块等功能。其特点是:低待机功耗、电路简单、固定工作频率、宽工作电压、完善的保护功能等。

3 基于AP8012H设计的开关电源原理

根据指标要求,原理框图如图1所示。

3.1 EMC处理设计

EMC处理电路主要有两个作用:

(1)滤除来自电网的雷击干扰、脉冲群干扰等,保护电源模块不被损坏;

(2)滤除开关电源自身产生的高频信号,避免污染电网和无线电。

主要通过压敏电阻、安规电容、共模电感组成滤波网络来实现,对于220Vac输入的电压,压敏电阻可以选用TDK品牌的20K420,安规电容可以选用0.1uF,共模电感可以选用33mH。

3.2 输入整流滤波电路设计

输入整流滤波主要的作用是:把电网50Hz的交流电压转换为直流电压。主要通过整流桥和高压电解电容来实现,电解电容的容量的设计可以根据以下公式取得:

式中,VDCmax一般取最小交流输入的0.15倍,Pin为输入功率,Dch为输入整流滤波电容的占空比,一般取0.2,Vlinemin为最小交流输入电压,fL为电网的频率,CDC为电容的容量。

3.3 高频变压器设计

根据电能表的指标要求,电源的最大功率为3.3W,初步评估高频变压器可以选用EE16磁芯,由于变压器的设计过程较为复杂,具体的参数设计不再介绍,最终设计的变压器初级圈数为:120圈,电感量为2mH,三个次级输出,圈数分别为:26圈、15圈、15圈,一个辅助绕组,圈数为28圈。

3.4 输出整流滤波电路设计

主要由整流二极管和电容组成。二极管选型的额定电流一般取输出电路的3倍,耐压根据输入电压的最大值,再根据变压器的匝比来计算,整流二极管的反向恢复时间也是很重要的一个参数,一般选用快恢复二极管;电容的容量大小主要决定了输出电压的纹波大小,主要根据输出电流和脉冲电压的频率取得。

3.5 LDO型号选择

LDO为低压差的三端稳压器,主要用于稳压输出,本原理框图的3个LDO输出电压为5V,电流在30mA到100mA之间,明达微品牌下的MD7550可以满足上述3个LDO的需求。MD7550的静态电流仅1.2uA,输入与输出的压差仅10mV,输出电流为100mA,非常适合低功耗的电源设计。

4 典型设计

如图2所示。

5 结束语

本文介绍了基于AP8012H设计的电能表开关电源,此电源已经在单相远程载波电能表上得到应用,并且已经通过了国家电网公司的检验测试,在测试的报告中,电能表的工作功耗仅0.4W,相比线性电源方案的电能表,功耗降低了50%,未来的使用,将为电力公司节约电能打下了基础。

⒖嘉南

[1]王志强等译.Switching Power Supplies A to Z精通开关电源设计[M].北京:人民邮电出版社

[2]卢佳慧.开关电源在电子式电能表中的应用[J].机电技术,2005.