前言:中文期刊网精心挑选了虚拟制造技术的定义范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
虚拟制造技术的定义范文1
关键词 虚拟制造 虚拟现实技术 典型虚拟制造技术
一、虚拟制造的定义及特点
虚拟制造是20世纪80年代后期美国首先提出来的一种新思想,它是利用信息技术、仿真技术、计算机技术等对现实制造活动中的人、物、信息及产品设计、工艺规划、加工制造等生产过程进行全面的仿真,以发现制造中可能出现的问题,预测、检测、评价产品性能和产品的可制造性等,在产品实际生产前就采取预防措施,确保产品一次性开发成功,以达到降低成本、缩短产品开发周期、增强企业竞争力的目的。
虚拟现实 ( VR, Virtual Reality) 技术是使用感官组织仿真设备和真实或虚幻环境的动态模型生成或创造出人能够感知的环境或现实, 使人能够凭借直觉作用于计算机从而产生三维仿真模型的虚拟环境。基于虚拟现实技术的虚拟制造 (VM,Virtual Manufacturing) 技术是在一个统一模型之下对设计和制造等过程进行集成, 它将与产品制造相关的各种过程与技术集成在三维的、动态的仿真真实过程的实体数字模型之上。虚拟制造强调虚拟现实在设计和制造过程仿真中的应用,强调以一种可视化的直观的方式增进技术人员对所设计的产品或过程的理解,从而发现其中的问题。虚拟制造并不是真实的制造过程。它不产生真实产品,基本不消耗材料和能量,而是利用制造对象、制造资源和制造过程的模型来展现“制造”的本质过程。
二、虚拟制造技术的应用
1.虚拟制造技术在国内外的应用情况
虚拟制造在工业发达国家, 如美国、德国、日本等已得到了不同程度的研究和应用。在这一领域, 美国处于国际研究的前沿。福特汽车公司和克莱斯勒汽车公司在新型汽车的开发中已经应用了虚拟制造技术, 大大缩短了产品的时间。波音 777,其整机设计、部件测试、整机装配以及各种环境下的试飞均是在计算机上完成的,其开发周期从过去的 8 年缩短到 5 年;Chrycler 公司与 IBM 合作开发在虚拟制造环境用于其新型车的研制,在样车生产之前,即发现其定位系统及其他许多设计有缺陷,从而缩短了研制周期。
在我国, 清华大学、北京航空航天大学、哈尔滨工业大学等科研教学单位也已经开展了这一领域的研究工作。当前我国虚拟制造应用的重点研究方向是基于我国国情, 进行产品的三维虚拟设计、加工过程仿真和产品装配仿真, 主要是研究如何生成可信度高的产品虚拟样机,在产品设计阶段能够以较高的置信度预测所设计产品的最终性能和可制造性。
2.虚拟制造技术在机械制造中的应用
(1)虚拟企业。虚拟企业是指分布在不同地区的多个企业利用电子手段,为快速响应市场需求而组成的动态联盟,是组织、人力、技术、信息等资源在完善的网络组织结构基础上的有效集成。这种企业组织和生产模式可克服窨和时间的局限性,保持集中和分散之间稳定、合理的平衡,具备系统优化组合和有效协调的优越性。
(2)虚拟产品设计。例如飞机、汽车的外形设计,其形状是否符合空气动力学原理、运动过程的阻力、其内部结构布局的合理性等。在复杂管道系统设计中,彩虚拟技术,设计者可“进入其中”进行管道布置,并可检查是否发生干涉。这样可提高设计效率,尽早发现设计中的问题,从而优化产品设计。例如波音777飞机有300万个零件,这些零件的设计以及整体设计在一个由数百台工作站组成的虚拟环境中得以成功运行。这个VMS是在原有的Boing-CAD的基础上建立。设计师戴上头盔显示器后,能进入虚拟“飞机”中,审视其各项设计。过去为造实体模型需60万美元,应用VMT 后,节省了经费,缩短了研制周期,使最终的实际飞机与原方案相比,偏差小于1%,且实现机翼和机身结合的一次成功,缩短数千小时的设计工作量。
(3)虚拟产品制造。应用计算机仿真技术,对零件的加工方法、工序顺序、工装的选用、工艺参数的选用,加工工艺性、装配工艺性、配合件之间的配合性、运行物件的运动性等均可建模仿真, 提前发现加工缺陷和装配时出现的问题,从而优化制造过程、提高加工效率。
(4)虚拟生产过程。产品生产过程的合理制定,人力资源、制造资源、物料库存、生产调度、生产系统的规划设计等,均可通过计算机仿真进行优化,同时还可对生产系统进行可靠性分析,对生产过程的资金进行分析预测,对产品市场进行分析预测等,从而对人力、制造资源的合理配置,对缩短生产周期、降低生产成本意义重大。John Deere公司运用VMT进行弧焊生产系统的安装,EDS 公司应用DENEB 软件为通用汽车公司的中、高档毫华汽车分厂进行装配生产优化设计,GM 公司也为此节省数百万美元,并提前了上市时间。
3.典型的虚拟制造技术
(1)虚拟装配。装配是产品设计开发过程中的重要环节,虚拟装配则是装配过程在计算机上的本质实现,因而是虚拟装配的重要组成部分。它能够基于产品的数字化实体模型,在计算机上分析与验证产品的装配性能及工艺过程,从而提高产品的可装配性。
虚拟装配模型是分析装配问题的基础,因此,面向装配过程的、支持虚拟装配中各种需要的产品装配模型在虚拟装配中十分重要,模型的特点和优劣在很大程度上决定了系统所能实现的功能。
(2)多学科协同仿真。多学科协同仿真就是要在系统工程理论的指导下,基于复杂产品中各个学科之间的内在交互关系,将位于不同地点、基于不同计算机平台、采用不同建模方法建立的混合异构仿真模型,在分布式环境中联合起来进行多学科协同仿真。
(3)虚拟车间布局设计。制造系统的布局设计就是在企业经营策略的指导下, 针对生产过程, 将人员物料及所需的相关设备设施等,做最有效的组合和规划,并与其他相关设施协调, 以期获得安全、效率与经济的操作, 满足企业经营需求。运用面向对象的模拟仿真,可以帮助使用者建立用于规划、设计和流程优化的虚拟模型,依据不同决策变量之组合, 分析设备使用率、系统产能、有效产出率, 以及交货期、成本等策略, 达到产能最大化、排程最优化、半成品及库存最小化等目标。
参考文献:
[1]李京平.模具现代制造技术概论[M].北京市:机械工业出版社,2008
[2]韩宝菊,王卫东.虚拟制造技术及应用[J].液压气动与密封.2010
虚拟制造技术的定义范文2
关键词:集成;系统;技术构成
中图分类号:TP29文献标识码:A文章编号:1671-1297(2008)08-129-01
一、现代集成制造系统的含义与定位
现代集成制造系统(Contemporary Integrated Manufacutring System)是计算机集成制造系统新的发展阶段,在继承计算机集成制造系统优秀成果的基础上,它不断吸收先进制造技术中相关思想的精华,从信息集成、过程集成向企业集成方向迅速发展,在先进制造技术中处于核心地位。具体地说,它将传统的制造技术与现代信息技术、管理技术、自动化技术、系统工程技术进行有机地结合,通过计算机技术使企业产品在全生命周期中有关的组织、经营、管理和技术有机集成和优化运行。在企业产品全生命周期中实现信息化、智能化、集成优化,达到产品上市快、服务好、质量优、成本低的目的,进而提高企业的柔性、健壮性和敏捷性,使企业在激烈的市场竞争中立于不败之地。
二、现代集成制造系统的技术构成
先进制造技术(AMT Advanced Manufacturing Technology)作为一个专有名词目前还没有准确的定义。通过对其内涵和特征的研究,目前共同的认识是:先进制造技术是传统制造技术不断吸收机械、电子、信息、材料、能源和现代管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活的生产,并取得理想技术经济效果的制造技术的总称。其具有如下一些特点:
1、从以技术为中心向以人为中心转变,使技术的发展更加符合人类社会的需要;
2、从强调专业化分工向模糊分工、一专多能转变,使劳动者的聪明才智能够得到充分发挥;
3、从金字塔的多层管理结构向扁平的网络化结构转变,减少层次和中间环节;
4、从传统的顺序工作方式向并行工作方式转变,缩短工作周期,提高工作质量;
5、从按照功能划分部门的固定组织形式向动态的自主管理的小组工作方式转变。
通过对先进制造技术的定义和特点的分析发现,现代集成制造系统拥有先进制造技术的绝大部分特点,只不过先进制造技术所涉及的范围要比现代集成制造系统大,现代集成制造系统在吸收计算机集成制造系统的优秀成果的基础上,继续推动并行工程、虚拟制造、敏捷制造和动态联盟的研究工作,并不断吸收先进制造技术中的成功经验和先进思想,将它们进行推广应用,由此使现代集成制造系统成为先进制造技术的核心。
(1)并行工程(CE Concurrent Engineering)并行工程是集成地、并行地设计产品及其相关过程(包括制造过程和支持过程)的系统方法。它要求产品开发人员在一开始就考虑产品整个生命周期中从概念形成到产品报废的所有因素,包括质量、成本、进度计划和用户要求。为了达到并行的目的,必须建立高度集成的主模型,通过它来实现不同部门人员的协同工作;为了达到产品的一次设计成功,减少反复,它在许多部分应用了仿真技术;主模型的建立、局部仿真的应用等都包含在虚拟制造技术中,可以说并行工程的发展为虚拟制造技术的诞生创造了条件,虚拟制造技术将是以并行工程为基础的,并行工程的进一步发展就是虚拟制造技术。同时,并行工程是在CAD、CAM、CAPP等技术支持下,将原来分别进行的工作在时间和空间上交叉、重迭,充分利用了原有技术,并吸收了当前迅速发展的计算机技术、网络技术的优秀成果,使其成为先进制造技术的基础。
(2)虚拟制造(VM Virtual Manufacturing)虚拟制造利用信息技术、仿真技术、计算机技术对现实制造活动中的人、物、信息及制造过程进行全面的仿真,以发现制造中可能出现的问题,在产品实际生产前就采取预防措施,从而使产品一次性制造成功,达到降低成本、缩短产品开发周期,增强产品竞争力的目的。
(3)敏捷制造(AM Agile Manufacturing)敏捷制造是以竞争力和信誉度为基础的,选择合作者组成虚拟公司,分工合作,为同一目标共同努力来增强整体竞争能力,对用户需求作出快速反应,以满足用户的需要。为了达到快速应变能力,虚拟企业的建立是关键技术,其核心是虚拟制造技术,即敏捷制造是以虚拟制造技术为基础的。敏捷制造是现代集成制造系统从信息集成发展到企业集成的必由之路,它的发展水平代表了现代集成制造系统的发展水平,是现代集成制造系统的发展方向。
(4)绿色制造(GM Green Manufacturing)绿色制造是一个综合考虑环境影响和资源效率的现代制造模式,其目标是使产品从设计、制造、包装、运输、使用到报废的整个产品生命周期中,对环境的影响(负作用)最小,资源的使用效率最高。绿色制造的提出是人们日益重视环境保护的必然选择,发展不能以环境污染为代价。国际制造业的实践表明,通过改进整个制造工艺来减少废弃物,要比处理工厂处理已经排放的废弃物大大节省开支。绿色制造的实现可以通过计算机仿真来达到目的,即它是虚拟制造的一部分。从可持续发展战略的观点看,绿色制造是必然选择,它将成为现代集成制造系统的一个重要的组成部分。
从以上的分析中我们可以看到:各种先进制造技术是相互关联、彼此交叉的,在先进制造技术的含义下,现代集成制造系统成为它的核心,并随着先进制造技术的不断发展而发展。
参考文献
[1]李伯虎等.现代集成制造系统的发展与863/CIMS主题的实施策略.CIMS,1998,(10).
虚拟制造技术的定义范文3
以飞机装配工艺为例,过去采用样板、模线、样件等模拟量传递方式,效率,准确度,产品质量都比较低。而现在基于计算机的先进装配协调方法采用了数字量传递的方式,效率,准确度都有很大提高。然而无论是哪种装配,协调工艺都决定于其设计。因此要提高装配,协调工艺必须从设计入手。数字化设计技术以CAD/CAM技术、计算机技术、网络数据库技术和信息集成技术发展等为基础,主要内容有产品数字化定义、虚拟装配和并行技术等。产品数字化定义是应用计算机来描述和定义产品的研制,它的目的是对在产品全生命周期的数字化过程中所包含的信息进行定义和描述,以及这些信息之间的相互关联。产品数字化装配是指对已进行数字化定义的产品零部件通过计算机实体进行虚拟装配,确定航空部件的配合是否符合尺寸,配合要求是否存在超差等等。使在设计过程中的可能不合理因素减到最少,从而减少在制造过程中的更改与返工。由于采用了数字化设计技术,使波音777研制周期缩短了一半,降低了25%的成本,减少了75%的出错与返工率,产品质量得到了大幅度提高。并在波音777飞机开发与制造过程中的成功应用,使数字化设计技术的重要性得到充分认识。
2集成技术
由于航空产品有研制周期长,结构复杂,制造精度要求高,产品使用期长,售后情况复杂,研发生产合作国际化等特点,因此集成技术显得尤为重要。作为集成制造技术的重要组成部分,计算机集成制造技术通过计算机技术将CAD、数控编程、数控加工等原本各自独立的环节整合为一个有机整体,以达到提高产品质量,缩短制造过程,减少生产成本的目的。现代集成技术包含有信息集成、过程集成和企业间集成。通过现代集成技术可实现数字化、网络化、全球化制造。完成波音777研发生产后波音公司,开始实施DCAC/MRM(飞机结构设计与控制/制造资源管理),以达到从用户订单、设计制造、最终到交付使用的统一信息和过程管理的目的。现代集成技术可以解决以前单一数据源方面存在的问题,统一管理产品数据、生产管理过程数据。确定信息的完整性、唯一性、协调性、有效性、无冗余和安全性。将资源管理、设计、制造、销售、服务等5个过程的信息整合为一体。
3数控加工技术
先进的数控加工技术是当代航空制造业中一个重要的组成部分,也是柔性制造技术的基础。随着我国近年来大量新机研制项目的开发,大量的业务都需要国际间合作,各航空企业所保有的数控机床总量已大幅度增加,通过数控机床加工的零件数量明显增多。在航空制造所涉及的零部件主要特点是结构复杂、零件数量多,表面形状复杂。因此加工技术难度很大,在此需求背景下,对航空行业的数控加工技术水平有很高要求。为实现这一要求,以特征技术为基础的针对飞机零部件和发动机机构件的CAD/CAPP/CAM集成系统技术,分布式的DNC技术,CAP智能化技术,网络数据库以及相应的数据管理技术,车间生产组织、管理调度技术有了很大的提高。
4虚拟制造技术
虚拟制造的实质是通过相关软件在计算机中的制造,可在计算机中演示完整的制造过程。通过虚拟制造可以验证制造过程的安全性,并且可以进一步优化生产方案。从而保证设备与操作人员的安全,降低产品的生产成本,缩短生产工期,提高生产效率。
5计算机技术
在常规成形领域中的应用作为最早于计算机技术相结合的行业,计算机技术明显地推动着航空制造工业各方面的改变。计算机技术在航空部件制造的三大传统工艺(钣金、机械加工、铆装)中的广泛应用,航空制造技术水平有很大进步。飞机钣金件往往具有结构体积大,质量轻的特点,而且大部分飞机结构中的钣金部分是保证飞机气动外形的重要组成,其加工水平直接决定了飞机的气动性能。然而以蒙皮加工为例,传统的蒙皮拉形机往往以人工操作为主,加工质量取决于操作员的熟练度与技术水平,导致产品质量不稳定。不过随着大量采用数控技术的蒙皮拉形机的投入使用,产品质量得到稳定保障。在传统的机械加工方面,大量地对先进数控设备进行采用,使飞机零部件中的复杂表面加工,如发动机叶片的生产效率大大提高。在传统的飞机连接技术中主要采用铆接等方法,同时也导致了疲劳寿命低,密封性差等。而随着对真空电子束焊,激光焊等先进连接技术的研究,可以有效地改善机体结构的各项力学性能。
6结束语
虚拟制造技术的定义范文4
关键词:虚拟现实技术;机械设计制造;作用
一、虚拟现实技术概述
虚拟现实技术是21世纪的先进技术,开始于上个世纪80年代,将计算机仿真技术与各领域新技术相结合。目前学术界还没有关于虚拟现实技术的明确定义,从一定意义上来说就是一种新的人机界面,追求利用计算机制造逼真环境,通过触觉、视觉和听觉等传给用户,让用户能够在此环境中实现交互活动。虚拟现实创建了人与世界的计算机系统,利用这一技术能够让人产生身临其境的感觉,这也是虚拟现实技术的本质。
虚拟现实技术能够提供逼真的虚拟环境,让用户进入后成为其中的一员,并进行实时交互活动,感知虚拟世界的各种对象,获取身临其境的感觉。详细来说,虚拟现实技术的主要特征包括:第一,沉浸性。用户在虚拟现实中可以通过自己的触觉、视觉和听觉来感知虚拟世界,而在虚拟环境中一切感觉都是逼真的,能够给用户带来身临其境的机会。第二,交互性。虚拟现实能够创建一个动态的世界,实现人机交互,使用者不仅可以利用计算机进行交互,同时还可以通过数据手套、声音命令等交互手段进行各种设计。第三,多感知性。虚拟现实系统装有听觉、视觉和触觉等传感装置,方面用户获取信息,从而发挥人的多项潜能,提升设计可用性。
二、虚拟现实在机械设计制造中的作用分析
详细来说,虚拟现实技术在机械设计制造中的应用主要包括:
(一)虚拟产品概念设计
概念产品是一种理想化的物质形式,是创造性思维的体现,就是对产品初始的设计构想,目的在于通过构建其基本形态来展现产品,这是产品设计的重要阶段,占到产品成本的60%左右。虚拟现实技术应用于虚拟概念设计中能够为设计者提供基于语言、手势的输入方式,设计者就可以在三维虚拟环境中操纵零件、产品等来修改产品形态,能够实现在三维空间观察和操作设计对象,从而获取更多关于产品的信息,达到最佳效果。比如目前比较流行的故事版平面设计就是其中的代表,使设计师思路更为清晰、逼真,让人获得直观的交互感受,减少了投放市场的风险性,提升了产品开发的成功率。另外一方面,设计者可以根据用户的不同需求来创造,让用户亲自体验感受,比如可以通过触摸屏选择产品色彩、造型和装饰灯,从而构成逼真的三维模型,让用户感受虚拟环境中的产品情况。
(二)虚拟设计
虚拟社交是设计人员设计的虚拟产品,主要是通过分析、研究和检查设计的产品来判断是否符合设计要求,并及时修改问题,完善产品设计。一般来说,虚拟设计系统包括虚拟环境生成器和设备两个部分,前者是整个系统的主题,能够根据用户需求在数据库支持下产生多维的、人性化的实例,这一部分由计算机软硬件组成,可以说是包括各种数据库的高性能工作站;后者包括人机交互工具、信号控制装置等部分。目前虚拟设计系统交互技术集中于触觉、视觉和听觉,输入和输出设备是交互的主要方式,比如语音输入、数据手套等,虚拟设计涉及到多个领域,属于多学科交互技术,目前比较流行的交互技术是利用CAD系统产生模型,然后再转换为虚拟现实软件支持的格式,输入到虚拟现实软件中,从而完成虚拟产品的设计。另外还有一种VR-CAD系统,将虚拟现实技术引入到CAD环境中,不仅仅包括外形,同时还有重量、表面硬度、材质等信息,相互作用时能够实时改变对象内部结构形态,设计者也可以在环境中参与设计,对产品进行外形设计、布局设计、动力仿真设计等。比如在减速器设计方面就可以通过对壳体进行修改和评测,将确定的建模数据用于成型模具设计和加工中。比如可以通过虚拟现实技术全面展示布局设计,避免出现各种不合理问题,随时对运动构件的运动协调关系进行检查,确保运动在可能出现的范围内,并需要及时检查轴、齿轮等零件的强度,确保工作协调、可靠开展。
(三)虚拟制造
虚拟制造是实际制造在计算机上的映射,也就是计算机仿真与虚拟技术在高性能计算机网络支持下,实现产品设计、性能分析、加工制造等各个过程的管理和控制,从而增强制造过程中决策和控制能力。目前虚拟制造出现了三个流派,包括以设计为中心、以生产为中心和以控制为中心的虚拟制造。比如减速器壳体成型设计中就利用了物理模拟方法对金属材料进行动态仿真,从而能够预测成形材料的性能和质量,实现对形成材料性能和质量的优化设计。比如在齿轮、轴等零件加工仿真过程中也可有利用虚拟加工来选择最佳的加工参数和机床刀具路径,这样就便于分析产品设计的合理性,对加工过程中出现的缺陷进行修改。比如在设计阶段还可以通过虚拟制造技术对轴系部件进行装配,避免出现各种差错,提高生产效率。虚拟样机代替具体减速器能够全面展示、分析产品的全寿命周期,对存在的问题进行及时修改,减少设计制造费用,提高产品试验成功率,缩短制造工期,保障产品质量。
三、关于虚拟现实在机械设计制造中应用的展望
通过以上分析我们能够认识到,虚拟现实技术在机械设计制造中发挥着重要作用,结合我国特殊情况,本文认为虚拟现实下一步的应用规划主要包括:第一,重点机械投资项目,由于这些项目投资金额比较大,一旦出现失误就会带来巨大的经济损失,但是利用虚拟现实技术可以有效避免这些损失,从而设计最优方案,并且与投资费用相比,虚拟现实系统费用较少。
虚拟制造技术的定义范文5
我国机械行业门类齐全,规模大,2011年整体销售收入接近15万亿元,仅次于日本居世界第二位,占到全球机械销售额的15%左右;出口额达到3,425亿美元,跃居世界第四;工业增加值超过4万亿元,约占我国GDP的8%;机械行业是对全国工业发展贡献最大的行业,经济总量占整个装备制造业2/3以上。因此机械行业是装备制造业的最重要组成部分,堪称中国工业的“脊梁”。
机械制造业作为一个传统的领域已经发展了很多年,积累了不少理论和实践经验,但随着社会的发展,人们的生活水平日益提高,各个方面的个性化需求越加强烈。作为已经深入到各行各业并已成为基础工业的机械制造业面临着严峻的挑战。
先进制造技术这个概念的提出为机械制造业的发展指明了方向。虽然这个名词没有确定的定义,但目前公认的认识是:先进制造技术是传统制造技术不断吸收机械、电子、信息、材料、能源和现代管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活的生产,并取得理想技术经济效果的制造技术的总称。它具有如下一些特点:
1.从以技术为中心向以人为中心转变,使技术的发展更加符合人类社会的需要。2.从强调专业化分工向模糊分工、一专多能转变,使劳动者的聪明才智能够得到充分发挥。3.从金字塔的多层管理结构向扁平的网络化结构转变,减少层次和中间环节。4.从传统的顺序工作方式向并行工作方式转变,缩短工作周期,提高工作质量。5.从按照功能划分部门的固定组织形式向动态的自主管理的小组工作方式转变。6.机械制造技术的发展趋势可以概括为:(1)机械制造自动化。(2)精密工程。(3)传统加工方法的改进与非传统加工方法的发展。
机械制造自动化技术始终是机械制造中最活跃的一个研究领域。也是制造企业提高生产率和赢得市场竞争的主要手段。机械制造自动化技术自本世纪20年代出现以来,经历了三个阶段,即刚性自动化、柔性自动化和综合自动化。综合自动化常常与计算机辅助制造、计算
集成制造等概念相联系,它是制造技术、控制技术、现代管理技术和信息技术的综合,旨在全面提高制造企业的劳动生产率和对市场的响应速度。
“虚拟制造”的概念于20世纪90年代初期提出。虚拟制造以系统建模和计算机仿真技术为基础,集现代制造工艺、计算机图形学、信息技术、并行工程、人工智能、多媒体技术等高新技术为一体,是一项由多学科知识形成的综合系统技术。虚拟制造利用信息技术、仿真计算机技术对现实制造活动中的人、物、信息及制造过程进行全面的仿真,以发现制造中可能出现的问题,在产品实际生产前就采取预防的措施,从而达到产品一次性制造成功,来达到降低成本、缩短产品开发周期,增强产品竞争力的目的。
清洁生产的两个基本目标是资源的综合利用和环境保护。对生产过程而言,清洁生产要求渗透到从原材料投入到产出成品的全过程,包括节约原材料和能源,替代有毒的原材料和短缺资源,二次能源和再生资源的利用,改进工艺及设备,并将一切排放物的数量与毒性削减在离开生产过程之前。对于产品而言,清洁生产覆盖构成产品整个生命周期的各个阶段,即从原材料的提取到产品的最终处理,包括产品的设计、生产、包装、运输、流通、销售及报废等,合理利用资源,并最大限度地减少对人类和环境的不利影响。
综上所述,机械制造业的发展方向是将传统的制造技术与现代信息技术、管理技术、自动化技术、系统工程技术进行有机的结合,通过计算机技术是企业产品在全生命周期中有关的组织、经营、管理和技术有机集成和优化运行,在企业产品全生命周期中实现信息化、智能化、集成优化达到产品上市快、服务好、质量优成本低的目的,进而提高企业的柔性、健壮性和敏捷性,是企业在激烈的市场竞争中立于不败之地。
由于国家继续加强对农业的投入和农产品收购的顺价政策实行,预计大型农机产品生产降幅将明显降低,农业运输机械将保持适度增长,一些小型、专用农机具市场需求将保持平稳。但受农民收入增长减慢和收入分流等因素的影响,预计农机生产低速增长的状态不可能扭转。
预计随着国家对铁道、公路、机场、码头和城市公用基础设施等项目投资力度的加强,国内市场对工程机械产品的市场需求会有所改善。虽然今年企业生产涨幅会比去年有所降低,但全年工程机械行业仍将保持适度增长。
从目前主要仪表产品的发展前景看,预计投资类仪表的市场需求会有所好转,受住房制度改革的推动,预计各种水表、电表需求将逐渐趋稳,光学仪器和消费类仪表将能够继续保持目前的增长态势,全年生产增长将在5%左右。
由于石油化工通用设备行业的产品多系量大面广的辅机制造,尽管今年以来这个行业生产增幅逐月回落,但与其它机械制造行业比仍是基本适度的。从主要产品情况看,受海上石油发展的影响,石油钻采、炼油化工设备保持一定增长;气体压缩机、高中压阀门生产与化肥行业生产不景气有关,降幅都较大。从目前相关行业发展前景看,今后石化通用行业情况会有转机,生产增长会有所恢复,尤其是国家加大对年产30万吨及以上合成氨、48万吨及以上尿素、30万吨及以上乙烯成套设备等的技术改造会促进需求的平稳增长。
虚拟制造技术的定义范文6
A
Visual simulation of engine assembly process based on DELMIA
CHEN Ning, XIE Yanqi, La Qinglun
(School of Naval Architecture & Ocean Eng., Jiangsu Univ. of Sci. & Tech., Zhenjiang Jiangsu 212003, China)
Abstract: To achieve the virtual assembly of engine, based on inverse assembly, the assembly process is simulated by creating disassembly path of a gasoline engine in DELMIA. The two important product development stepsproduct design and process design are concurrently designed on the same platform; under 3D design condition, the manufacturing planning can be arranged in advance by data exchange of Digital Process of Manufacturing(DPM) with DELMIA Process Engineer(DPE). The method can implement the virtual collaborative design of manufacture process and manufacturing resources, and the time and cost of design can be saved.Key words: engine; virtual assembly; visual simulation; concurrent design; manufacturing plan; DELMIA process engineer
な崭迦掌冢2010[KG*9〗03[KG*9〗15 修回日期:2010[KG*9〗06[KG*9〗02ぷ髡呒蚪椋 陈 宁(1963―),男,江苏镇江人,教授,硕士,研究方向为轮机设备和系统的设计仿真、控制与性能优化,(Email)0 前 言
在产品的开发设计过程中,产品设计和工艺设计是2大重要环节;装配设计则是工艺设计中提高产品整体性能的重要技术手段之一.
虚拟装配技术利用三维软件预先模拟产品在生产过程中可能产生的问题,分析产品的可制性、可达性、可拆卸性和可维护性,实现三维产品数据与三维工艺数据的同步,从而使产品设计与工艺设计实现真正的并行.
虚拟装配技术起始于20世纪90年代,程成等
[1]提出基于场景的虚拟环境用户界面模型,并创建出装配车间的工作场景:零件进入装配车间,零件匹配,装配特征匹配以及约束识别与装配.侯文君等
[2]利用UG对整个胶印机进行装配设计,并提出改善Top_down虚拟装配技术的算法.
本文重点介绍发动机的虚拟装配过程,利用反装的思路即“可拆定可装”的原理,通过DELMIA创建的发动机的拆卸路径仿真装配过程,并进一步提出用时间排序的方法模拟发动机的装配工时,使仿真过程更精确、真实.1 DELMIA简介
DELMIA能为企业提供电子商务解决方案,帮助客户建立数字化企业,仿真从概念设计到产品维护的整个生命周期过程.
[3]DELMIA的核心为PPR(Process,Product,Resource)HUB,主要由DELMIA工艺工程师(DELMIA Process Engineer,DPE)、数字化制造工艺(Digital Process of Manufacturing,DPM)和DELMIA队列事件仿真工具(Queuing Event Simulation Tool,QUEST)等组成.
DPE是规划和验证工艺细节的软件,它将产生的结构和图表与生产制造要求结合形成三维虚拟制造环境,以实际产品的三维模型或DMU(Digital Mockup)模型构建三维工艺过程,通过编排制造资源目录确定产品装配的顺序、资源分配和产能估计,并分析制造成本,缩短产品上市时间、降低成本.2 发动机虚拟装配过程设计2.1 虚拟装配简介ば槟庾芭涫窃诩扑慊上将实际对象的装配过程体现出来,即在计算机上完成产品零部件模型的装配过程.
[4]通过模拟装配和干涉分析等多次协调的设计过程,在并行工程中将产品的设计与装配工艺规划进行有机的统一,再通过产品数据管理(Product Data Management,PDM)实现零部件三维研发过程与零部件制造、装配过程的高度统一.虚拟装配技术主要有3种形式:
(1)以设计为中心的虚拟装配.该装配将产品的三维数字化定义应用于产品研制过程中,结合产品研制具体情况,突出以设计为核心的应用思想.
(2)以过程控制为中心的虚拟装配.该装配包括2方面的内容:一方面人为地将装配过程划分为总体设计、装配设计和详细设计等3个阶段,通过对3个设计阶段的控制实现对产品总体设计进程的控制;另一方面,通过对过程模型的有效管理实现对产品研制过程中设计结果和加工工艺等相关信息的管理,实现优化产品开发过程的目的.
(3)以仿真为中心的虚拟装配.该装配在产品装配设计模型中融入仿真技术,并以此评估和优化
装配过程,其主要目标是评价产品的可装配性.2.2 发动机虚拟装配的基本思路し⒍机分为汽油机和柴油机2大类,本文以汽油机为例.汽油机由2大机构和5大系统组成,即由曲柄连杆机构、配气机构以及燃料供给、、冷却、点火和起动系统等组成,包含数千个零部件.の简化起见,选择汽油机主机、空气过滤器和机ね 1 汽油机装配す程的仿真ち鞒谈堑炔考建立汽油机装配过程的仿真模型.以装配顺序为基础,对初始路径及其关键点位置进行实时交互修改和调整,并对工具的可达性、装配空间的可操作性进行仿真,同时检查各条装配路径上的零件在装配过程中是否存在干涉情况,展现动态可视化的装配过程.汽油机装配过程的仿真流程见图1.2.3 发动机虚拟装配的基本原理の恢帽浠患际跏嵌ㄒ宸⒍机路径的关键技
术.
[5]
(1)发动机零件坐标平移变换.设零部件的起始坐标为(x, y, z),经过(a, b, c)距离的平移后,终点坐标为(x1, y1, z1),则零部件的位置变换矩阵ИВx1,y1,z1]=100010001abc[x,y,z,1]ИВ2)发动机零件坐标旋转变换.设零部件的起始坐标为(x1, y1, z1),分别绕x,y和z轴旋转θ角度后,终点坐标为(x2, y2, z2),则零部件绕x,y和z轴的位置变换矩阵分别为ИRx(θ)=1[]0[]0[] 00cos θ-sin θ[] 00sin θ cos θ[] 0000-1Ry(θ)= cos θ0sin θ00100-sin θ0cos θ00001Rz(θ)=cos θ-sin θ00おsin θ cos θ0000100001И3 发动机虚拟装配过程实例3.1 建立发动机装配仿真的PPR结构树PPR HUB是DELMIA的核心,是沟通生产过程中产品、工艺和资源,进行设计、验证和规划的桥梁.DPM与DPE,QUEST以及CATIA之间的数据传输可通过PPR结构树完成,因此,建立PPR结构树是用户进行装配仿真的首要工作.
(1)产品机构的创建.由CATIA创建汽油机模型,模型以CATproduct格式保存,直接导入DPM中进行动态仿真装配,使设计和动态装配一体化.
(2)工艺结构的创建.利用“反装”思路模拟虚拟装配过程,依次定义汽油机的拆卸过程,并创建各零部件的工艺节点,通过反置拆卸的工艺顺序完成装配过程.
(3)资源结构的创建.DPM中的资源指不包括产品在内的实体元素,如工作台、工具、机器设备以及其他静态的环境设施.为简化,创建2个工作台(Workbench),1只扳手(Adjust_wrench)和地板(PlantFloor).て油机装配过程的PPR结构树见图2.图 2 汽油机装配过程的PPR结构树
为展现细致、完整的汽油机装配过程,本文创建改变视角、添加文本等工艺子过程,利用PERT图调整装配顺序,迅速设计出最优的发动机装配路线.
图 3 汽油机主要部件路径定义完毕后的情形3.2 发动机大部件装配过程的动态仿真ねü定义零部件的装配路径完成汽油机的装配过程,即在工艺库内创建每个零部件的Move Activities子工艺,以直线表示零部件的路径.按照汽油机加工车间内流水作业的顺序定义加工路径,当主要部件的路径定义完毕后再定义部件上的细小零件,使装配细致且有条理.图3为汽油机主要部件路径定义完毕后的情形.当汽油机所有可拆卸零部件的路径都定义完毕后,就可仿真完整的装配过程.3.3 发动机小部件装配过程的动态仿真ぐ凑樟魉线作业的要求对发动机各个小部件进行装配仿真.本文以Head Assembly部件为例.该部件包含9个螺丝和1个屏蔽盖.在对螺丝进行装配时考虑与工具之间的配合情况,定义好的螺丝等部件的路径情况见图4,其他所有零件的路径定义都采用同样的方法.ね 4 定义好的螺丝等部件的路径情况3.4 发动机装配过程仿真分析3.4.1 干涉分析
计算机辅助设计需避免干涉
[6],一般要求各装配部件之间贴合或保持间隙.干涉主要有3类:(1)软干涉,2个零件没有接触,但其最小距离小于预先规定的间隙范围;(2)硬干涉,2个零件重叠在一起发生相交现象;(3)包容干涉,1个零件完全包容在另1个零件的内部.
装配序列或者装配路径不合理易使装配过程产生干涉.本文采用“反装”的思路从内部最细小的零件开始装配,从而减少装配序列不合理的可能性.汽油机的零部件细小而繁多,装配过程中零部件之间以及零部件与工具之间易发生干涉.装配路径不合理成为汽油机装配过程中的主要问题之一.
对汽油机装配过程进行干涉检查时,首先在PPR结构树中定义表示干涉的clash事件.当干涉发生时,装配仿真过程自动停止,分析监测窗口提示干涉事件的名称,干涉结果见图5.ね 5 干涉结果
在汽油机所有部件的干涉检查中,干涉数目中包含部件与周围环境的接触干涉,此类干涉不可避免.通过结果栏显示值可迅速分析装配的干涉程度,以避免不必要的干涉.由图5可知,Area与Workbench之间发生干涉,干涉值为-4.76,Head与Wrench也发生长度为-14.71的干涉.通过调整Workbench的位置消除第1处干涉,Head中存在1个设计不合理的螺母且螺母周围的钢板分布过于紧密,难以用工具拆卸螺母.利用CATIA对Head重新进行设计并选择小号的工具可消除此干涉,从而修正出合理的工艺装配过程.3.4.2 甘特图分析
甘特图主要用以编制产品的生产计划,调整产品的生产周期,通过确定瓶颈工位调整车间的生产安排,提高工作效率.
[7]汽油机甘特图的排列类似于PPR结构树,包含各工艺节点的父子关系.各项工序按装配顺序安排装配的起始和停止时间.在装配车间的实际生产中,通过工业工程中的现场统计测试时法测得汽油机的装配工时,将其导入DPM中进行生产计划模拟.
通过设定汽油机的总装配周期,历时195 s.仿真运行结束后,测得Head的装配时间最长(45 s),主要是由于螺丝个数多以及1个设计不合理的螺丝等造成的.本文将Head部件装配工序视为瓶颈工序,通过对设计不合理的螺丝处进行设计修整,装配时间可减少5 s.4 结 论
(1)与普通装配分析方法相比,反装方法更适于仿真发动机等零件品种复杂的产品,可大大简化装配过程.(2)将干涉分析添加到动态仿真过程中可更精确地显示设计不合理的位置,便于迅速调整产品设计,避免发动机在实际制造中可能造成的损失.(3)按照工时定义部件的装配顺序可仿真发动机的装配工时,调整生产瓶颈、平衡生产