量子力学的基本概念范例6篇

前言:中文期刊网精心挑选了量子力学的基本概念范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

量子力学的基本概念范文1

关键词:量子力学;量子测量;偏振

中图分类号:O413.1 文献标识码:A 文章编号:1000-0712(2016)03-0005-03

量子力学是近代物理学的基础,并且其应用领域已延伸至化学、生物等许多交叉学科当中,这一课程已成为当今大学生物理教学中一个极为重要的组成部分.由于量子力学主要是描述微观世界结构、运动与变化规律的学科,微小尺度下的许多自然现象与人们日常生活经验相距甚远,量子力学的概念有悖于人们的直觉,难以被初学者接受.如果在教学中能够结合具体的物理实验,从现象到本质引导学生思考,就可以使抽象的量子概念落实到对具体实验现象的归纳总结上来.偏振光实验是一个现象直观而且学生容易操作的普通物理实验,在学生掌握的已有知识基础上,进行新内容的教学,符合初学者的认知规律.利用光的偏振现象来阐述量子力学基本概念已被一些国内外经典教材采纳,如物理学大师狄拉克所著的《量子力学原理》[1],费因曼所著的《费因曼物理学讲义》[2],曾谨言教授所著的《量子力学卷1》[3],赵凯华、罗蔚茵教授合著的《量子物理》[4]等教材.在本文中,笔者结合自己的教学体验,着重从可观测量和测量的角度来考虑问题,在以上经典教材的基础上,进一步整理和挖掘光子偏振所能体现的量子力学基本概念.从量子力学的角度对偏振实验现象进行分析,使同学们对态空间、量子力学表象、波函数统计解释、态叠加原理等量子力学概念有一个直观形象的认识,领会量子力学若干基本假定的内涵思想.最后,从量子角度分析了一个有趣的偏振光实验,加深学生对量子力学基本概念的理解,并展示了量子力学的奇妙特性.

1偏振光实验的经典解释

如图1(a)所示,沿着光线传播的方向,顺次摆放两个偏振片P1、P2.光束经过P1后变为与其透振方向一致且光强为I0的偏振光.两偏振片P1和P2的透振方向之间夹角为θ,由马吕斯定律可知,透过偏振片P2的光的强度为I0cos2θ.按照经典的光学理论,此现象可理解如下:在一个与光传播方向垂直的平面内选定一个xy平面直角坐标系,这里为了描述问题的方便,选定x轴沿P2的透振方向.如图1(b)所示,透过偏振片P1的光电场矢量E可分解为两个分量:沿x方向振动的电场矢量Ex和沿y方向振动的电场矢量Ey.偏振光照射到P2偏振片时,投影到y方向的电场矢量被吸收,投影到x方向的电场矢量透过,振幅增加了一个常数因子cosθ,因而强度变为原来的cos2θ倍,这正是马吕斯定律所给出的结果.

2偏振光实验体现的量子力学概念

下面我们由偏振光的实验现象出发,引出量子态、态空间等量子概念,并用量子力学的语言来描述单个光子与偏振片发生相互作用的过程,讨论在多个光子情况下的量子行为与马吕斯定律的一致性.

2.1量子态

从实验得知,当线偏振光用于激发光电子时,激发出的光电子分布有一个优越的方向(与光偏振方向有关),根据光电效应,每个电子的发射对应吸收一个光子,可见,光的偏振性质是与它的粒子性质紧密联系的,人们必须把线偏振光看成是在同一方向上偏振的许多光子组成,这样我们可以说单个光子处在某个偏振态上.沿x方向偏振的光束里,每个光子处在|x〉偏振态,沿y方向偏振的光束中,每个光子处在|y〉偏振态.假设我们在实验中把光的强度降到足够低,以至于光子是一个一个到达偏振片的.在图1所示的例子中,通过P1偏振片的光子处在沿P1透振方向的偏振态上,如果P2与P1透振方向一致(θ=0),则此光子完全透过P2,如果P2与P1透振方向正交(θ=π/2),则被完全吸收.如果P1与P2透振方向之间角度介于两者之间,会是一种什么样的情形,会不会有部分光子被吸收,部分光子透过的情况发生,但是实验上从来没有观察到部分光子的情形,只存在两种可能的情况:光子变到量子态|y〉,被整个吸收;或变到量子态|x〉,完全透过.下面我们用量子力学的语言来描述单个光子与偏振片发生相互作用的过程,引入量子测量、态空间、表象、态叠加原理、波函数统计解释等量子概念.

2.2量子测量、态空间、表象

单个光子与偏振片发生相互作用的过程,可以看成是一个量子测量的过程,偏振片作为一个测量装置,迫使光子的偏振态在透振方向和与其相垂直的方向上作出选择,测量的结果只有两个,透过或被吸收,透过光子的偏振方向与透振方向一致,被吸收光子的偏振方向与透振方向垂直,可见光子经过测量后只可能处在两种偏振状态,这正是量子特性的反应.在量子力学中,针对一个具体的量子体系,对某一力学量进行测量,测量后得到的值是这一力学量的本征值,我们称它为本征结果,相应的量子态坍缩到此本征结果所对应的本征态上,所有可能的本征态则构成一组正交、规一、完备的本征函数系,此本征函数系足以展开这个量子体系的任何一个量子态.很自然,我们在这里把经过偏振片测量后,所得到的两种可能测量结果(透过或吸收)作为本征结果,它们分别对应的两种偏振状态,此两种偏振状态可以作为正交、规一、完备的函数系,组成一个完备的态空间,任何偏振态都可以按照这两种偏振态来展开,展开系数给出一个具体的表示,这就涉及到量子力学表象问题.在量子力学中,如果要具体描述一个量子态通常要选择一个表象,表象的选取依据某一个力学量(或力学量完备集)的本征值(或各力学量本征值组合)所对应的本征函数系,本征函数系作为正交、规一、完备的基矢组可以用来展开任何一个量子态,展开系数的排列组合给出某一个量子态在具体表象中的表示.结合我们的例子,组成基矢组的两种偏振状态取决于和光子发生相互作用的偏振片,具体说来是由偏振片的透振方向决定.在具体分析问题时,为了处理问题的方便,光子与哪一个偏振片发生相互作用,在数学形式上,就把光子的偏振状态按照此偏振片所决定的基矢组展开,这涉及到怎么合理选择表象的问题.

2.3态叠加原理、波函数统计解释

以上简单的试验也可以作为一个形象的例子来说明量子力学中的态叠加原理.态叠加原理的一种表述为[5]:设系统有一组完备集态函数{φi},i=1,2,...,t,则系统中的任意态|ψ〉,可以由这组态函数线性组合(叠加)而成(1)另一种描述为:如果{φi},i=1,2,...,t是体系可以实现的状态(波函数),则它们的任何线性叠加式总是表示体系可以实现的状态.在我们的例子中,任何一个偏振片所对应的透振态和吸收态构成完备集态函数,任何一个偏振态都能够在以此偏振片透振方向所决定的基矢组中展开,参照图1所示,通过偏振片P1的偏振态可以在以偏振片P2透振方向所决定的基矢组{|x〉,[y)}中表示为(2)相反,|x〉、|y〉基矢的任意叠加态也都是光子可能实现的偏振态.量子力学还假定,当物理体系处于叠加态式(1)时,可以认为体系处于φi量子态的概率为|ci|2.从前面的分析我们知道,当用偏振片P2对偏振态|P1〉进行测量时,此状态随机地坍缩到|x〉偏振态或|y〉偏振态,坍缩到|x〉偏振态的概率为cos2θ,也就是单个光子透过偏振片的概率,多次统计的结果恰好与马吕斯定律相对应,这充分体现了波函数的概率统计解释.

3典型例子

在教学中我们可以引入一个有趣形象的例子,进一步加深对量子力学基本概念的理解.如图2(a)所示,一束光入射到两个顺序排列的偏振片上,偏振片P3的透振方向相对于偏振片P1的透振方向顺时针转过90°角,我们不妨在一个与光传播方向垂直的平面内选定一个xy平面直角坐标系,P1的透振方向沿x轴,P3的透振方向沿y轴.光通过偏振片P1后变成光强为I0的偏振光,偏振方向与偏振片P1透振方向平行,但与P3的透振方向垂直,则光完全被偏振片P3吸收,不能透过.下面我们将看到一个有趣的现象,在偏振片P1和偏振片P3间插入一个偏振片P2,其透振方向在P1和P3之间,这时光竟可以透过P3偏振片.对此试验,我们可由马吕斯定律给出经典的解释.我们不妨设P2的透振方向相对于P1顺时针转过45°角,通过偏振片P1后,变为光强是I0的偏振光,且偏振方向与P1透振方向一致;再通过偏振片P2后,光强变为I0/2,偏振方向沿顺时针转过45°角,与偏振片P2透振方向一致;最后通过偏振片P3后,光强进一步减弱为I0/4,偏振方向又沿顺时针改变45°角,与偏振片P3透振方向一致.可以看到一个有趣的现象,虽然介于偏振片P1和P2间的光束其偏振方向与偏振片P3的透振方向正交,但最后透过偏振片P3的光束其偏振方向却恰恰沿偏振片P3的透振方向,这正是中间偏振片P2所起的作用.下面用我们前面分析偏振光与偏振片相互作用过程中,所建立起来的量子概念给出具体解释.取直角坐标系xy,x轴沿偏振片P1的透振方向,基矢组为{|x〉,[y)};由偏振片P2的透振方向所决定的基矢组为{|x'〉,[y')},其透振方向沿x'方向,如图3所示,两组基矢之间的关系可表示为(3)由偏振片P3所决定的基矢组仍为{|x〉,|y〉},不过透过的光子处在|y〉基矢态.光子透过偏振片P1后,其偏振状态处在|x〉态,由式(3),此状态可以按P2的基矢组展开为(4)根据式(4),经过P2偏振片的测量,光子有1/2的概率坍缩到|x'〉态,光子透过P2,有1/2的概率坍缩到|y'〉态,光子被吸收.由式(3),|x'〉态在由偏振片P3所决定的基矢组同样展开为3的测量下,偏振状态发生改变,有1/2的概率坍缩到|y〉态,透过偏振片,有1/2的概率坍缩到|x〉态,被偏振片吸收,总体来说透过偏振片P1的光子有1/4的概率透过偏振片P3,与经典的马吕斯定律相一致.特别注意到光子透过偏振片P1后,状态为|x〉态,与|y〉态正交,没有|y〉态的组分,但光子透过偏振片P3后却正处在|y〉态,这充分体现了测量可以使量子态改变的量子假定,展示了量子测量的奇妙特性.

4总结

结合对偏振光实验的量子解释,我们分析了若干重要的量子力学概念.但严格说来,光子的问题不属于量子力学问题,只有在量子场论中才能处理.采用光子的偏振情形来讨论某些量子概念,理论上虽稍欠严谨,但如上文所述,确实能够直观形象地反映量子力学中的若干基本假定,使抽象的量子力学概念落实到对具体实验的分析中来,易于被初学者接受,我们不妨在学生开始学习量子力学时引入此例,有助于学生理解抽象的量子概念,领会量子力学的思维方式.

参考文献:

[1]狄拉克.量子力学原理[M].北京:科学出版社,1966.

[2]费因曼.费因曼物理学讲义[M].上海:上海科学出版社,2005.

[3]曾谨言.量子力学卷1.[M].北京:科学出版社,2006.

[4]赵凯华,罗蔚茵.量子物理[M].北京:高等教育出版社,2001.

量子力学的基本概念范文2

关键词: 量子力学 教学方法改革 创新思维

量子力学是研究微观粒子运动规律的科学,自诞生以来它就成功地说明了原子及分子的结构、固体的性质、辐射的吸收与发射、超导等物理现象。作为物理学专业的专业理论课,量子力学在物理学专业中具有极其重要的地位。现代物理学的各个分支,如高能物理、固体物理、核物理、天体物理和激光物理等都是以量子力学为基础,并且已经渗透到化学和生物学等其他学科。同时量子理论还具有巨大的实用价值,半导体器件和材料、激光技术、原子能技术和超导材料等都是以量子力学原理为基础的。

通过对量子力学的学习,学生可以掌握现代科学技术最重要的基础理论,还可以提高科学素质和思想素质,但是量子力学中的概念和解决问题的方法与经典物理有着本质的不同。学生普遍反映量子力学抽象、枯燥、难理解、抓不住重点,学习起来非常困难。针对以上问题,我对教学进行了思考和探讨,采用了一些切实可行的措施,提高了学生的学习兴趣,使学生更好地掌握了量子力学知识,同时培养了学生的创新思维。

一、教学过程中存在的问题

在量子力学的教学过程中,我发现以下几个问题。

1.量子力学是一门十分抽象的课程,其中许多概念、原理都不好理解,并且量子力学从概念到解决问题的方法跟经典物理有着根本性的区别,但是很多学生习惯性地用经典的思想去理解量子力学,这样就不自觉地增加了难度。比如“波粒二象性”,经典物理认为波动性和粒子性是互不相关的、相互独立的,而量子力学认为波动性和粒子性是微观粒子同时具备的两种属性。

2.学习量子力学,数学知识是必不可少的。量子力学中有着繁杂的数学知识,例如,数学分析中的微积分,代数学中的矩阵论,数学物理方程的微分方程,复变函数,等等。在教学过程中发现,不少学生对已学过的数学知识掌握得不是很牢固,在推导公式的过程中忘记了公式所描述的物理内涵,影响了对量子力学知识的理解。

3.由于量子力学的课时紧张,教学过程中采用了传统的教学模式,由教师到学生的“单向传授”的教学形式。学生失去了主体地位,只能被动地接受知识,学习的兴趣和积极性不高,导致教学效率降低。

二、量子力学的教学方法改革

1.采用多种教学手段相结合的教学模式。由于量子力学的内容抽象难懂,又是建立在一系列基本假定的基础之上,不少学生很难接受,甚至认为这门课程没有用处。在量子力学的教学过程中,由单一的教师讲授过渡到板书、录像、课件、演示实验等各种手段相结合的教学模式,将图、文、声、像等信息有机地组合在一起,形象、直观、生动,容易激发学生的学习兴趣。同时,通过网络技术,学生可以享受到本校的教学资源,还可以突破空间的限制,享受到全国高水平的教学资源,从而丰富学生的资料库,也为各学校的师生讨论交流提供一个很好的平台。

随着科学技术的迅速发展,知识更新非常快。在教学中,教师应及时将与量子力学相关的科技前沿和高新技术引入教学中,介绍与量子力学密切相关的课题,阐明科学技术中所蕴含的量子力学原理。如我们在讲解一维无限深势阱时,将其与半导体量子阱和超晶格这一科学前沿相联系;在讲解隧道效应时,将其与扫描隧道显微镜相联系,进而介绍扫描探针操纵单个原子的实验。同时在教学中,我们理论联系实际,多介绍量子力学知识与材料科学、生命科学、环境科学等其他学科之间的密切联系,重点介绍在材料科学中的广泛应用,包括新材料设计、开发新材料、材料成分和结构分析技术等。通过这种方式,学生对这一部分的知识有了直观的认识,从而不再感到量子力学的学习枯燥无味,同时也提高了接受新知识、学习新知识的意识和能力。

2.结合数学知识,把物理情境的建立作为教学的重点。量子力学可以说无处不数学,这门学科对高级数学语言的成功运用,正是它高深与完美的体现。数学虽然加深了物理问题的难度,却维护了理论的严谨性和科学性。当然这不是要求老师从头到尾、长篇冗重地推演计算,合理地修剪枝杈既能让学生抓住重点,又免使学生感到量子力学只是数学公式的推导。对于学习量子力学的同学,可以着重于对物理概念的剖析和物理图像的描绘,绕过数学分析难点,通过简化模型、对称性考虑、极限情形和特例、量纲分析、数量级估计、概念延拓对比等得出结论。定量分析尽量只用简单的高数和微积分、常见的常微分方程,对复杂的数学推导可以不做讲解,只对少数优秀生或感兴趣的同学个别辅导。例如,在求解本征方程时,只介绍动量、定轴转子能量本征值的求解;对无限深势阱情况,薛定谔方程可类比普通物理中的简谐振动方程;对氢原子和谐振子的能量本征值问题,只重点介绍思路、方法和结论,不作详细推导。

3.充分应用类比法,讲述量子力学。经典力学是量子力学的极限情况,在教授过程中,应尽可能找到“经典”对应,应用类比方法讲述量子力学中抽象的概念和物理图像,有助于正确理解量子力学的物理图像。用光的单缝、双缝衍射、干涉说明光的波动性,用光电效应、康普顿散射说明光的粒子性,运用这种方法有利于学生掌握光的波粒二象性。在将量子力学与经典力学类比的同时,还要清楚量子力学与经典力学在观念、概念和方法上的区别。例如,经典力学用位矢、速度描述物体的状态,而量子力学用波函数描述系统状态;经典力学用牛顿第二定律描述状态变化,量子力学用薛定谔方程描述状态的变化。另外对于量子力学中的波粒二象性、态迭加原理、统计原理等都要与经典力学中的相关概念区分开来,类比说明,阐明清楚其真正内涵。

4.改变传统教学模式,采用以学生为主体的教学模式。量子力学的现代教学多以“教师讲授”为主,同时配合多媒体课件辅助教学,教学模式较传统教学有所变化,多媒体课件教学虽然能够在一定程度上激发学生的学习兴趣,但仍然是“填鸭式”的教学法,没能真正地改变传统教学的弊端。因此在教学过程中,要避免课堂成为教师的一言堂,鼓励学生提问,激发学生的逆向思维和非规范性思维等,通过创设问题情境使师生互动起来,提高学生学习量子力学的积极性,加深学生对这门课程的理解。还要组织学生开展相关课题讨论,引导学生自主能动地思考,激发学生的学习兴趣。

三、结语

“量子力学”是物理类专业基础课程中教学的难点和重点,建立新的教学模式,有利于学生学习、理解和掌握这门课程。

参考文献:

[1]曾谨言.量子力学[M].科学出版社,1997.

[2]周世勋.量子力学教程[M].高等教育出版社,1979.

[3]胡响明.浅谈量子概念的理解[J].高等函授学报(自然科学版),2004,(2):29.

量子力学的基本概念范文3

关键词:物理本体;物理实体;量子现象;主观;客观

基金项目:国家社会科学基金项目“量子概率的哲学研究”(16BZX022)

中图分类号:N03 文献标识码:A 文章编号:1003-854X(2017)06-0054-06

一、引言

时间和空间是人类所有经验的背景。除去存在的事物,时间、空间什么也不是,不存在只有一件事物的时间、空间,时空是事物之间相互关系的一个方面。

人类通过感性经验认知的时空,称作经验时空;以科学原理和科学方法指导认知的时空是科学时空;牛顿时空、狭义相对论时空、广义相对论时空、量子力学时空,是经验时空的科学提升和科学发展,称作物理时空①。物理时空是科学时空。描述现象实体的时空是现象时空,经验时空、物理时空、科学时空均是现象时空。而未经观察的“自在实体(物理本体)”所在时空,称为“本体时空”。“本体时空”是复数的②,因此,人类实质生活在复数时空中 。作为自然人,观察者存在于“本体时空”,实时空是人类对时空认识的简化③。

主体、客体、观察信号是人类认知自然的三大基本要素④。一般“现象对观察者的主观依赖性”有其客观原因,体现观察信号的自然属性对观察者在认知中的影响。当把现象对观察者的主观依赖性转化为时空的属性后,就可以达到客观描述物质世界⑤。所谓客观描述就是理论计算与经验及科学实验结果相符。

考虑观察信号的客观作用并纳入时空理论的科学建构之中,客观描述物理现象,是物理学家的重要工作。一般,哲学认知中没有明晰“观察信号中介作用”的客观地位,不管“机械反映论”,还是“能动反映论”,都自动将其融入“反映论”理论体系,尤其是前者,往往容易导致主观唯心主义的滋生。

狭义相对论用光对时,考虑了光对建立时空的贡献;牛顿时空是对时信号速度c趋于无穷大的极限情态;考虑引力场对建立时空的影响,引力时空是弯曲的,狭义相对论的平直时空是它的局域特例。从牛顿力学到狭义相对论再到广义相对论,时空发生了变化,但主体与描述对象的关系没有变,主体对客体的描述是客观的。那么是否主体对认知对象完全没有主观影响?如果有,它如何产生,又如何消解,实现客观描述物质世界?经典力学中,人类的处理方法是通过揭示“现象对观察者的主观依赖性”及其产生机理,在不同认知领域区分描述中可以忽略的和不可忽略的,能忽略的舍弃,不能忽略的转化成时空的属性,实现客观描述;而从牛顿力学(或相对论力学)到量子力学,时空没有变化,描述对象具有波粒二象性,“量子现象的主观依赖性”更为突出。如何消解“量子现象对观察者的主观依赖性”,实现量子现象的客观描述,一直是量子力学基础讨论的热点。量子力学必须有自己的客观描述量子现象的时空⑥。

量子力学时空是闵氏时空的复数拓展和推广⑦,由此可以实现客观描述量子世界。它与相对论时空有交集,也有异域。有因必有果,反之亦然,时间与因果关系等价⑧。量子力学中的非定域性,与能量、动量量子化及量子态的突变性相关联。突变无须时间,导致因果链断裂,与因果关联的相互作用也被删除,由此引进了类空间隔。平行并存量子态的出现,是不遵从因果律的量子力学新表现;当能量、动量和相互作用变得连续,宏观时序得到恢复时,回到相对论时空,量子测量中“量子态和时空的坍缩”⑨ 是不同物理时空的转换,希尔伯特空间只是它们的共同数学应用空间⑩。

时空不是绝对的,相对时空有更广阔的含义,人类需要扩大对时空概念的认知,不同的认知层次有不同的时空对应,复数时空更为本质。人们不应该将所有领域的物理实体归于某一时空描述,或者用一种时空的性质去否定另一种时空的存在。还是爱因斯坦说得好:是理论告诉我们能够观察到什么。当然,新的实验事实又将告诉人们,理论及其对应的时空应该如何修改和发展。理论不同时空不同,时空具有建构特征。

二、时空的哲学认知与物理学描述

时空是哲学的基本概念,也是物理学的基本概念。哲学认为,时间和空间是物质的存在形式,既不存在没有时空的物质,也不存在没有物质的时空。笛卡尔指出,空间是事物的广延性,时间是事物的持续性;康德认为,时空是感性材料的先天直观形式;牛顿提出时间和空间是彼此分离,绝对不变的,强调数学的时间自我均匀流逝;莱布尼茨说,空间是现象的共存序列,时间与运动相联系;黑格尔认为,事物运动的本质是空间和时间的直接统一。休谟认为,时、空上的接近和先后关系与因果性直接相关。中国的“宇”和“宙”就是空间和时间概念,它是把三维空间和一维时间概念同宇宙密切联系在一起的最早应用{11}。

哲学具有启示作用,但时空概念如果不与人的社会实践、科学实验、科学理论及其数学物理方法相联系,就只能停留在形而上,无法上升为科学理论概念。

物理学中,空间从测量和描述物体及其运动的位置、形状、方向中抽象出来;时间则从描述物体运动的持续性、周期性,以及事件发生的顺序、因果性中抽象出来;空间和时间的性质,主要从物体运动及其相互作用的各种关系和度量中表现出来。描述物体的运动,先选定参照物,并在参照物上建立一个坐标系,一般参照物被抽象成点,它就是坐标系的原点;假定被描述物体的形体结构对讨论的问题(或对参照物的时空)没有影响,将物体抽象成质点,讨论质点在坐标系中的运动及其相关规律,这就是物理学。由此,“时空是物质的存在形式”的哲学认知也就转化为人类可操作的具体物理理论描述。

可见,时空的认知与人类的社会实践、科学实验、科学进步直接相关,离不开物理和数学方法的应用。笛卡尔平直空间、闵可夫斯基空间、黎曼空间都已作为物理学所依托的几何学,在牛顿力学、狭义相对论、广义相对论中得到了充分应用。由此,几何学被赋予了物理意义。从牛顿力学到狭义相对论再到广义相对论,时空发生了变化,但描述对象与观察者之间的关系没有变,描述是客观的,并且描述对象都可抽象成经典的粒子,采用质点模型。量子力学不同,从牛顿力学(相对论力学)到量子力学,描述量子现象的时空没有变化{12},物理模型没有变,但量子现象对观察者有明显的主观依赖性,难以客观描述微观量子现象。深入分析,解决的办法有两种,一是更换物理模型的同时也改变物理时空,消除“量子现象对观察者的主观依赖性”,实现客观描述微观量子客体;二是改变时空的同时,保留“量子现象对观察者的主观依赖性”,将本体、认识、时空融为一体,主观纳入客观,模糊主客关系。双4维时空量子力学基础采用了第一种方法。通过场物质球模型,把点模型隐藏的空间自由度释放出来;在改变物理模型的同时,也改变了描述时空;将不是点的微观客体自身的空间分布特性,转化为描述空间的属性,客观描述量子客体。我们认为,第二种方法将主观认识不加区分地“融入时空”,有损客观性、科W性,量子力学时空必须是描述客观世界的时空。物理时空需要建构。

三、牛顿绝对时空中“现象对观察者的主观依赖性”及其“消解”

众所周知,物理学对物体运动状态的描述,理应包含参照物和被描述物体自身的时空特征,而参照物和物体自身的时空特征,必须通过观察发现。观察需要观测信号,物体运动状态及其时空特征必然带有观测信号的烙印{13}。

“物理本体”不可直接观察,我们观察到的是“物理实体”{14}。参照物与研究对象都有自己对应的物理时空,牛顿力学时空应该是两者的综合,而不应该只是参照物的时空。但是,牛顿力学中光速无穷大,在讨论物体运动时,又假设研究对象的时空结构对讨论的问题没有影响,忽略不计,于是,研究对象抽象成了质点,整个理论体系就只有与参照物联系的时空了。

任何具体物体都不会是质点。当用信号去观察它时,物体自身的时空特征与物体的运动状态与观察信号的性质、强弱和传播速度相关。质点模型忽略物体自身的几何形象及其变化,忽略运动及观察信号对物体自身时空特征的影响,参照物也不例外。在从参照物到坐标系的抽象中,抽掉运动及观察信号对参照物时空特性的影响,就是抽掉物体运动及观察信号对坐标系时空特性的影响,就是抽掉人的参与对时空认知的影响{15}。牛顿力学时空与物体运动及观察者无关,绝对不变,基于绝对不动的以太之上。所以,牛顿可以把时间和空间从物质运动中分离出来,时间和空间也彼此分割,空间绝对不变,数学的、永远流逝的时间绝对不变{16}。哲学的时空演变成了可操作的物理时空。这是宏观低速运动对时空的简化与抽象,理论与宏观经验及计算相符。

相互作用实在论认为,现实世界是人参与的世界,对一个研究对象的观察,离不开主体、客体、观察信号三个基本要素。参照物和观察对象的运动和变化及其时空属性,与观察信号的性质相关。牛顿力学中,不是没有现象对观察主体的依赖性,而是在理论的建立中认为影响很小,可以忽略不计。牛顿力学是“物理本体=物理实体”的力学{17}。这与宏观经验和科学实验相符,在宏观低速运动层次实现了主客二分,理论被看作是对客观实在的描述。牛顿力学中,物质告诉时空如何搭建描述背景,时空告诉物质如何在背景中运动。二者构成背景相关。

牛顿时空是均匀平直时空,相对匀速运动坐标系间的变换是伽利略变换。物理定律在伽利略换下具有协变性,相对性原理成立。

四、狭义相对论中“现象对观察者的主观依赖性”及其“消解”

狭义相对论建立之前,洛伦兹就认为高速运动中物体长度在运动方向发生收缩{18}。这是他站在牛顿时空立场,承认以太及绝对坐标系的存在对洛伦兹变换所作的解释。描述时空没有变,“现象对观察者出现了主观依赖性”。自然现象失去了客观性,这是一次认识危机,属19世纪末20世纪初两朵乌云之一。

狭义相对论不同,它考虑宏观高速运动中观察信号对物体时空特征的影响。爱因斯坦在“火车对时”实验中,他用“光”作为观察、记录、认知物体时空特征的信号{19};通过参照物到坐标系的抽象,论证静、动坐标系K与K′“同时性”不同,静、动坐标系运动方向时空测量单位发生了变化;将洛伦兹所称“运动物体自身运动方向上的长度收缩”演变成坐标系时空框架的属性,还原质点模型,建立相对论力学。实现了观察者对观察对象的客观描述。

狭义相对论中质点的动量、能量、位置和时间都有确定值,质点的运动具有确定的轨迹,这一点与牛顿力学相同。

狭义相对论时空的另一重要物理意义是揭示了“物理本体”的客观实在性。

牛顿力学缺少相对论不可直接观察的静能(m0c2,m0c)对应物,物理本体=物理实体,哲学上的抽象时空直接过渡到牛顿物理时空。

狭义相对论不一样,每一个物体都有一个不可直接观察的静能(m0c2,m0c)对应物,它在任何静止参考系中都是不变量,是物理实体背后的物理本体,物理本体不变,变的是mc2、mc对应的物理实体。“物理本体”既不是形而上的(物自体),也不是形而下的(物体),是形而中的(静能对应物)。它可以认知、可以理论建构,但又不可直接观察。相对于牛顿,爱因斯坦相对论揭示了“物理本体”的真实存在性。“客观物质世界”不是思维的产物。

狭义相对论中,物质告诉时空在运动方向如何修正测量单位,时空告诉物质如何长度收缩、时间减缓。时空具有相对性。

狭义相对论时空虽然也是均匀平直时空,但由于有上述“相对时空”的出现,时空度规与欧氏时空度规有明显区别,所以称为赝欧氏时空。

但狭义相对论仍然是只考虑光及光速的有限性对建立时空的影响,没有考虑引力作用对建立时空的影响。如果考虑引力对时空的影响又如何呢?

五、广义相对论中“现象对观察者的主观依赖性”及其“消解”

广义相对论中有水星近日点进动问题和光走曲线的讨论。站在牛顿平直时空的立场,观察结果与理论计算不符。这不是仪器的精度不够,也不是操作失误,而是理论本身的问题。因为,牛顿力学也好,狭义相对论也好,讨论引力问题,引力场对参照物和研究对象时空属性的影响都没有计入其中,而留在观察者对“现象”的观察、判断之中,出现宇观大尺度“现象对观察者的主观依赖性”。如果考虑引力场使时空发生弯曲,利用弯曲时空计算水星近日点进动和光走曲线现象,“现象对观察者的主观依赖性”就变成时空的属性。“现象对观察者的主观依赖性”就得到了“消解”,观察现象与理论结果就取得了一致。这里,物质使时空弯曲,时空告诉物质如何在弯曲时空中运动。广义相对论实现了观察者对观察对象的客观描述。

广义相对论时空是弯曲的,时空度规是变化的。

六、量子力学中“现象对观察者的主观依赖性”及其“消解”

微观客体具有波粒二象性,同一个电子,通过双缝表现为波,而打在屏幕上又表现为粒子,电子集波和粒子于一身,“量子现象对观察者的主观依赖性”更为突出。经典力学中波动性和粒子性不能集物体于一身,量子力学与经典力学表现出深刻的矛盾。矛盾的产生,可能是描述微观现象的时空出了问题。量子力学的研究领域是微观世界,研究对象是微观客体,不是经典的粒子,用以观察的信号也不是连续的光,而是量子化了的光,通过光信号建立的时空应该与牛顿、相对论时空有所区别。而量子力学使用的还是牛顿时空、狭义相对论时空,时空没有变,物理模型没有变,而研究领域、观察信号和研究“对象”变了。量子力学必须有自己对应的时空,将“量子现象对观察者的主观依赖性”,转化为描述时空的属性,实现客观描述量子现象! 双4维时空量子力学就是为实现这一目标应运而生的。

现有量子力学“量子现象对观察者的主观依赖性”之所以难以消解,与量子力学中的点模型相关。许多量子现象与点模型隐藏的空间自由度有直接联系,但点模型忽略了这些自由度对产生微观量子现象的作用和影响。我们必须将隐藏的空g自由度还原于时空,才可能正确地认识、客观描述量子现象。

可以公认,微观客体不是点{20},是一个有形客体,有一定的空间分布,不存在确定于某点的空间位置,这是客观事实。理论上,牛顿时空几何点位置是确定的,量子力学使用的是质点模型,0 维,位置也是确定的,牛顿时空可以精确描述质点的运动。那么微观客体空间分布的不确定性如何处理?人们只好转而认为点粒子在其“空间分布”区域位置具有概率属性。微观客体自身空间分布的客观实在性在量子世界转化成了一种主观认知,赋予了微观客体“内禀”的概率属性,其运动产生概率分布,或称其为概率波。

这是一个认识上的困惑,似乎量子力学描述失去了客观实在性。这也是量子力学当今的困境。解决困难的方法是:(一)更换点模型,释放点模型隐藏的自由度,展示“这些自由度对产生微观现象的贡献”;(二)建立适合量子力学自身的时空,将释放的自由度植入其中,让“量子现象对观察者的主观依赖性”变成量子力学时空自身的属性。

双4维时空量子力学的办法是:(一)用“转动场物质球”模型取代“质点”模型,释放点模型隐藏的空间自由度;(二)将4维实时空M4(x)拓展到双4维复时空W(x,k),且将“释放的空间自由度――曲率k”作为双4维复时空的虚部坐标;(三)4维曲率坐标将量子力学赋予微观客体自身的概率属性变成量子力学复时空的几何属性,场物质球自身的旋转与运动产生物质波――物理波。

“场物质球”与“物质波”(类似对偶性假设)既是同一物理实在的两种不同描述方式,更是微观客体粒子性和波动性的统一,曲率的大小表示粒子性,曲率的变化表示波动性。场物质球的物质密度是曲率k的函数,因此,物质波既是场物质球的结构波又是场物质密度波。物质波不是传播能量,而是传播场物质球的结构或物质密度变化,可映射成实时空M4(x)的概率分布{21},与实验结果相一致。

这样,点模型中“量子现象对观察者的主观依赖性”通过“释放的自由度”转变为时空W(x,k)的属性,物质波传播其中,量子现象是物质波所为。

研究表明,是量子测量引入的连续作用,使双4维时空W(x,k)全域转换到实时空M4(x),波动形态转变成粒子形态(“相变”),球模型转换成点模型,概率属性内在其中,物质波自动映射成概率波,数学处理类似表象变换{22}。

简言之,传统量子力学,微观客体简化成质点,描述时空不变,人的主观意识介入其中,将其空间分布特性――位置不确定性,变成点粒子的概率属性,实现描述对象从客观到主观认知的转变,具有位置不确定性的点粒子,其运动产生概率波;双4维时空量子力学,微观客体简化成场物质球,“空间分布具体化为几何曲率”,空间分布特性变成曲率坐标,仍然是从客观到客观,描述时空变成了复时空,曲率坐标在其虚部,场物质球的运动产生物质波――物理波。通过量子测量,物质波映射成概率波,球模型演变成点模型,显示概率属性,时空内在自动转换,量子现象对观察者的主观依赖性消解在建构的时空理论中。具体论证方法是:

将静态场物质球写成自旋波动形式:Ψ0=е■,描述在复空间。ω0是常数,它的变化只与自身坐标系时间t0相关,全空间分布(物理本体所在空间)。设建在“静态”场物质球上的坐标系为K0,观察微观客体从静止开始作蛩僭硕,由洛伦兹变换:

微观客体的运动速度不同,平面波相位不同。复相空间kμxμ即为物质波所在时空。物质波是物理波。

自由微观客体的速度就是建在其上惯性坐标系的速度,惯性系间的坐标变换,隐藏速度突变――“超光速”概念,因为,连续变化会引进引力场破坏线性空间。不同惯性系中平面波之间,相位不同,类似量子力学中的不同本征态。这是相对论中的情形{24}。

但是,量子力学建立其理论体系时,把上述不同惯性系中的平面波(不同本征态,每一本征态则对应一惯性系),通过本征态突变跃迁假设(量子分割),切断因果联系,形成同一时空中“同时”并存的本征态的叠加。态的跃迁不需要时间,“超光速”(非定域),将类空间隔引入量子力学时空,破坏了原有的因果关系。叠加量子态的存在,是“违背”因果律在量子力学中的新表现。

量子力学时空显然不是牛顿、狭义相对论时空,但量子力学却误认为量子跃迁引起的时空性质的变化是牛顿、狭义相对论时空中的特征,这当然会带来不可调和的认知矛盾。

同一微观客体,不同本征态“同时”并存的物理状态,从整体看,是洛伦兹协变性在量子力学中的新表现。突变区“超光速”,是类空空间,“不遵从”因果律;释放光子的运动在类光空间;而本征态自身在类时空间,微观客体运动速度不能超过光速,需保持因果律,物质波讨论的就是这一部分,就像相对论讨论类时空间物理一样。量子纠缠态将涉及到上述三种不同性质物理空间量子态的转换,有完全合理的物理机制,不需要思维的特殊作用。不过,相对论长度收缩效应,将以物质波波长在运动方向上的收缩来体现。有了双4维时空量子力学,量子力学与相对论就是相容的,光锥图分析一样适用。

相对论与量子力学的不同,关键在于认知层次发生了变化,光由连续场演变成了量子场。而我们用来观察世界的光信号直接与时空相关,光的物理性质的变化,必然带来物理空间性质的变化,带来物理模型的变化,带来量子力学时空W(x,k)与相对论时空M4(x)之间的区别,带来对物质波――物理波的全新认知。我们预言,物质波有通讯应用价值{25},但与量子力学非定域性无关。

《双4维复时空量子力学基础――量子概率的时空起源》的理论实践表明,我们的工作是可取的{26}。结论是,量子力学中,物质告诉时空如何具有概率属性,时空告诉物质如何作概率运动。量子现象对观察者的主观依赖性消解在对应的时空理论之中,实现了观察者对量子现象的客观描述。

双4维时空是描述量子现象的物理时空,时空度规,无论实数部分,还是虚数部分,都是平直的{27}。

近年来,由于量子通讯技术的飞速发展,量子纠缠的物理基础引起了人们的特别关注,波函数的物理本质,量子力学的非定域性讨论十分热烈。“量子现象对观察者的主观依赖性”更是讨论的核心。人们甚至被量子现象的奇异性迷惑了,特别是,有科学家甚至认为:“客观世界很有可能并不存在”。世界是人臆造出来的?科学实在论者当然不能赞成!更加深入的探讨,我们将另文讨论。

按照曹天予的评论,《双4维复时空量子力学基础――量子概率的时空起源》值得关注{28}。双4维复时空与弦论、圈论比较,最大优点是将时空拓展、推广到了复数空间,数学没有那么复杂,而物理学基础却更加坚实、清晰。

七、结论与讨论

1.“现象对观察者的主观依赖性”普遍存在于人与自然的关系之中,融入时空的只能是物理实体对时空有影响的部分,时空具有建构特征。

2. 物质运动与时空的关系:牛顿力学中,物质告诉时空如何搭建运动背景,时空告诉物质如何在背景上运动;狭义相对论中,物质告诉时空如何修正测量单位,时空告诉物质如何在运动方向长度收缩、时间减缓;广义相对论中,物质告诉时空如何弯曲,时空告诉物质如何在弯曲时空中运动;量子力学中,物质告诉时空如何具有概率属性,时空告诉物质如何作概率运动。

3. 量子力学时空是平直的,其方程是线性的,而广义相对论时空是弯曲的,其方程是非线性的{29}。量子力学与广义相对论的统一,不能机械地凑合,它们的统一,必须从改变时空的性质做起,建立相应的运动方程,并搭起非线性空间与线性空间的相互联络通道。

注释:

① 赵国求:《双4维时空量子力学基础》,湖北科学技术出版社2016年版,第5页;Cao Tian Yu, From Current Algebra to Quantum Chromodynamics: A Case for Structural Realism, Cambridge: Cambridge University Press, 2010, pp.202-241.

② Rocher Edouard, Noumenon: Elementaryentity of a Newmechanics, J. Math. Phys., 1972, 13(12), pp.1919-1925.

③④⑥⑦⑩{13}{15}{17}{21}{22}{24}{25}{27} w国求:《双4维时空量子力学基础》,湖北科学技术出版社2016年版,第5、105、9、147、179、94、133―136、106、151、151、159、152、149页。

⑤ 主观与客观:“客观”,观察者外在于被观察事物;“主观”,观察者参与到被观察事物当中。 辩证唯物主义认为主观和客观是对立的统一,客观不依赖于主观而独立存在,主观能动地反映客观。

⑧ L・斯莫林:《通向量子引力的三条途径》,李新洲等译,上海科学技术出版社2003年版,第29―33页。

⑨ 张永德:《量子菜根谭》,清华大学出版社2012年版,第29页;赵国求:《双4维时空量子力学基础》,湖北科学技术出版社2016年版,第178页。

{11} 冯契:《哲学大辞典》,上海辞书出版社2001年版,第1579―1582页。

{12} 参见L・斯莫林:《物理学的困惑》,李泳译,湖南科学技术出版社2008年版。

{14} 相互作用实在论中的基本概念:(1)物质:外在世界的本原。(2)基本相互作用:遍指自然力,有引力,电磁、强、弱等力。(3)自在实体:指未经观察的“自然客体”(相互作用实在论中,自在实体作为物理研究对象时称物理本体)。(4)现象实体:经过观察,系统的、稳定的、深刻反映事物本质的理性认知物。现象则表现自在实体非本质的一面。(相互作用实在论中,现象实体作为物理研究对象时称物理实体)。(5)观测信号:人类认知世界使用的探测信号。

{16} 参见伊・牛顿:《自然哲学之数学原理宇宙体系》,武汉出版社1996年版。

{18} 参见倪光炯等:《近代物理学》,上海科学技术出版社1980年版。

{19} 参见A・爱因斯坦:《相对论的意义》,科学出版社1979年版;爱因斯坦等:《物理学的进化》,周肇威译,上海科学技术出版社1964年版。

{20} 坂田昌一:《坂田昌一科学哲学论文集》,安度译,知识出版社2001年版,第140页。

{23} 参见Guo Qiu Zhao, Describe Quantum Mechanics in Dual 4d Complex Space-Time and the Ontological Basis of Wave Function, Journal of Modern Physics, 2014, 5(16), p.1684;赵国求:《双4维时空量子力学基础》,湖北科学技术出版社2016年版,第149页。

{26} 参见Guo Qiu Zhao, Describe Quantum Mechanics in Dual 4d Complex Space-Time and the Ontological Basis of Wave Function, Journal of Modern Physics, 2014, 5(16), p.1684;赵国求:《双4维时空量子力学描述》,

《现代物理》2013年第5期;赵国求、李康、吴国林:《量子力学曲率诠释论纲》,《武汉理工大学学报》(社会科学版)2013年第1期。

{28} 曹天予:《当代科学哲学中的库恩挑战》,《中国社会科学报》2016年5月31日。

量子力学的基本概念范文4

本书给出物理学(特别是力学,电动力学,量子力学,统计力学等)中常用的具有基本工具性质的数学理论和方法,包括线性代数、实分析和复分析、特殊函数和Fourier分析、群轮、数值方法、概率和统计等经典数学,还涉及混沌、分形、弦论等新的数学领域。除基本概念和重要结果外,还配备了具有物理背景的例子和习题,列出相应的进一步研究的专著。本书作者从事多个物理领域的研究(如量子光学,量子场论,格规范理论和生物物理等)。本书是作者在美国New Mexico大学及上海复旦大学的有关课程讲稿的基础上形成的,主要用作研究生和大学高年级学生的一学年的专业教材,也适合物理学研究人员的需要。本书2013年出版后重印了3次,颇得同行好评。其明显的特点是:论述简明而直接,涉及数学分支较全,例题数量较多并与物理学结合紧密,具有实用性和可读性。

全书共19章:1.线性代数。除经典内容外,特别论述了具有物理(量子力学)背景的关于Dirac记号、反酉算子、反线性算子和密度算子、对称性、Moore-Penrose广义逆等的基本结果;2.Fourier级数;3.Fourier变换和Laplace变换。2-3章特别包含了关于Dirac δ函数和调和振子的主要结果;4.无穷级数。其中包含Dirichlet级数和 ζ函数,Bernoulli数和多项式,以及一些静电学问题;5.复变理论。以解析函数等为主,并给出复分析方法对弦论的一些应用;6.微分方程;7.积分方程。6-7章主要讲述常微分方程和积分变换的基本结果;8.Legendre函数;9.Bessel函数。8-9章在前两章的基础上给出特殊函数的基本结果;10.群论。主要讨论Lie代数,以及应用于物理学的一些重要类型的群的性质和表示,如旋转群、紧单Lie群、辛群、Lorentz群、Poincare群等。第11章:张量与局部对称性;12.型。11-12章包含有关的基本数学理论和方法,给出对电动力学,引力场理论,黑洞等有关问题的应用;13.概率和统计。给出常用统计方法,还介绍了随机数生成;14.Monte Carlo 方法。给出一些试验实例及在统计力学中的应用;15.泛函导数。讨论泛函微分方程;16.道路积分。研究一些经典的道路积分,摄动理论,以及它们对量子电动力学和非Abel规范理论的应用;17-19.讨论一些比较专门的数学理论和方法:重正规化群,混沌和分形,弦论。

本书可作为我国大学理科有关专业研究生和大学高年级学生的教学用书,也可供物理学和数学研究人员参考。

量子力学的基本概念范文5

1、相对论是20世纪杰出的物理学家阿尔伯特·爱因斯坦提出的。相对论是关于时空和引力的理论,依其研究对象的不同可分为狭义相对论和广义相对论。

2、相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非经典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。

3、狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。

4、这就从根本上解决了以前物理学只限于惯性系的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。

(来源:文章屋网 )

量子力学的基本概念范文6

关键词:结构化学;课程特点;学习兴趣;教学

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2014)20-0118-03

结构化学是在原子、分子的水平上研究原子、分子和晶体结构的运动规律以及物质微观结构与其性能关系的科学[1-4]。著名化学家L.Pauling说过“当任何一种物体,当它的性质和物体的结构联系起来时,那么这样一种性质最容易最清楚地被理解”,理论化学家R.Hoffmann也曾说过“化学理论最重要的作用是提供一种思维机制,以总结更新知识”。从中可见结构化学地位的重要性。该课程涉及的知识面广,内容相对抽象,要求学生具有较多的数理知识和丰富的空间思维能力,同时还要努力摆脱宏观现象的传统概念的束缚。大部分学生始终把学习结构化学当成一种负担,学习起来感觉很枯燥,一知半解,似懂非懂,难以进入状态。因此,本人根据结构化学课程的特点和学生在学习过程中存在的主要问题以及如何培养学生的学习兴趣三方面进行了积极的思考和有益的探索。

一、结构化学课程的特点

在高等师范院校中,结构化学课程通常开设在第三学年,是在学生修完高等数学、大学物理、无机化学、有机化学、分析化学、物理化学等课程基础上开设的。该课程主要包括三种理论(量子理论、化学键理论和点阵理论),三种结构(原子结构、分子结构和点阵结构),三个基础(量子力学基础、对称性基础和晶体学基础),这也是学生学习结构化学时所要掌握的主要内容及学习方法[2]。

结构化学是学生本科阶段初次接触的理论课程,它是一门以量子力学为基础,从微观的角度来研究物质结构的学科,具有概念多,内容抽象,系统性、理论性较强等特点。另外,结构化学与数学、物理等学科互为交叉,所以要求学生具有严密的逻辑思维和扎实的数学、物理学等基础知识。其次,化学是一门以实验为基础的自然科学,但是其研究的微观结构状态很难在宏观的实验中观察出来,所以还要求学生具有较强的空间思维能力。因此,结构化学比较深奥、难学、难懂,往往被大多数学生认为是最难学的课程之一。

二、学生学习结构化学过程中存在的主要问题

1.从心理上害怕结构化学。结构化学所涉及的基本概念及理论高度抽象,一方面,有些老师在上第一节课时会告诉学生结构化学这门课程很重要,也很难学,许多同学都因不及格而重修;另一方面,学生还没开始正式学习,就从高年级学生那里得知结构化学难学,不及格率较高。因此,从心理上学生对学习结构化学产生一种畏惧和抵触心理。

2.学生学习结构化学存在误区。很多学生对结构化学的学习内容没有充分认识,认为研究生入学资格考试不考结构化学,学习结构化学根本没用,只是为了应付考试。实际上这是一种误区,部分高校(如南开大学)物理化学专业硕士学位研究生的入学考试就包含结构化学。而且结构化学也非常有用,可以了解化学反应的本质,可以合成满足人类一定需要的新物质,也是学习高等化学的基础等。

3.学生数理知识薄弱。结构化学内容涉及面广,如需具备高等数学、无机化学、有机化学、物理化学及量子力学等知识,学习化学的学生数理知识普遍较差,对于结构化学中大量的数学推导过程感觉很费力,致使学生对该课程产生排斥心理。

4.缺乏微观分析能力。量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础[5]。结构化学以量子力学为理论基础,使人们对物质世界的认识从宏观层次进入了微观层次。而量子力学独立于经典物理学,自成一套理论体系,内容抽象,脱离生活实际,逻辑性强,抽象思维程度高,学生易受宏观思维定式束缚。

5.理论与实践脱节。结构化学是重要的基础科学之一,是一门以实验为基础的学科,在与物理学、生物学、天文学等学科的相互渗透中,得到了迅速的发展,也推动了其他学科和技术的发展。但是,在学习这门课程的同时,多数学生只在乎教程中的理论知识,从而忽略了思考与其他学科的相互关联。另外,大多数学生学习结构化学缺乏实践,把学习它当成了一项应付考试的任务,这与学习这门课的宗旨背道而驰。

6.学生之间缺乏交流。结构化学以数学逻辑推导为基础,物理模型抽象难懂,学生学习方式单一、被动。学生的学习方式主要体现个体性,教师与学生之间,学生与学生之间经常处于一种紧张甚至对立的状态,课堂上很少看见人际间的交流、观点的交锋和智慧的碰撞,学生的学习始终处于被动应付状态。学生缺少自主探索、合作交流、独立获取知识的机会,很少有机会表达自己的理解和意见。

三、激发学生学习结构化学的兴趣

根据结构化学课程的上述特点及学生学习过程中存在的主要问题,培养学生学习兴趣是提高结构化学教学质量的前提和关键。爱因斯坦说过:“兴趣是最好的老师。”学生只有有了学习兴趣,才会积极配合教师的教学,教师才能够更新教学理念,提高课程教学效果。下面笔者结合两年来在结构化学教学实践中的亲身体会,介绍在结构化学课程教学中如何激发学生的学习兴趣。

1.明确学习结构化学的目的与意义。结构化学包括很多有用的基本概念和许多重要的规律和原理。教师要让学生了解通过结构化学的学习可以学到扎实的基础知识和和理论知识,可为后续专门化课程的学习做好必要的理论基础。同时也让学生知道通过结构化学的学习可以了解化学反应的机理,例如,NO分子分解为N2和O2时在热力学上是可以自发进行的,但此反应是动力学禁阻的,只有用结构化学中的前线轨道理论才能够容易证明这一点。另外,通过结构化学知识的学习,人们很容易合成出新物质(如新材料、新药的合成),其结构测定与分子的设计过程必须具有扎实的结构化学知识。还有结构化学的发展对化学学科的发展也有重大的推动作用(化学界化学的两次革命性飞跃)等。

2.介绍科学奇闻趣事,陶冶学生情操。结构化学教学内容理论性较强,若在课堂教学中引入科学大师的物理学史教育,有助于激发学生的学习热情。例如,在介绍薛定谔方程时,可以向大家介绍薛定谔的奋斗历程,薛定谔被称为量子物理学之父,23岁时获得奥地利维也纳大学哲学博士学位,1926年建立波动力学(39岁),1933年获得诺贝尔物理学奖(46岁),同时告诉学生薛定谔不仅仅数学物理好,而且他的文学功底也非常好,于1944年整理出版了一本著作《生命是什么》。这样学生在了解相关知识背景的同时,开阔了视野,提高了思维能力,受到了科学态度、科学精神的熏陶,激发了其学习热情。

3.充分利用多媒体辅助教学,提升课堂教学效果。多媒体辅助教学作为一种现代化的教学手段,可以把文本、音频、视频、图像、图表、动画等多种媒体信息综合为一体化并进行加工处理,为课堂教学提供了丰富、直观、真实的语言材料,启迪学生的思维,从而优化课堂结构,提高课堂教学效果。例如原子核外电子运动状态、电子云的概念、杂化轨道理论、等径圆球密堆积结构、离子晶体结构等都比较抽象,想象力较差的学生理解起来相对困难,若我们在计算机软件中,用二维、三维动画模拟显示[6],将抽象、微观的内容具体化、宏观化,使学生能够实现对物质微观结构更好的理解。

4.把最新科研成果引入课堂,以科研促进教学,激发学生学习兴趣。教师还可以精心创设一些引人入胜的实践环节,增强教学内容的趣味性,使学生在学习过程中能够感受到所学知识的实用性。教材内容往往有所落后,已不适应当今社会发展的需要,而社会生活和科学知识却不断地迅猛发展,及时给学生补充最新的信息,将新的科研动态、知识引入结构化学教学课堂,丰富课堂内容,将抽象生硬的知识点转化为生动具体的科研案例进行解释和说明,调动了学生的学习积极性,保证了教学质量,促进了我们教学理念的转变,使课堂教学的面貌大为改观。

5.不断改进教学方法,吸引学生的学习兴趣。教师可采用多种形式的教学方法,创造一个轻松愉快的学习氛围,激发学生的学习兴趣。教师教学语言要尽可能做到用词准确,条理清晰,生动有趣,富有感染力,学生易于接受。另外教师可以采用讨论式教学方法,这种方法主要运用习题范例和关键知识点的应用实例,或者是就某一个关键问题进行辩论,师生平等互动,活跃课堂气氛,提高课堂教学效率。同时教师也可采用提问式课堂教学,引发学生好奇心,让学生进行创造性的思维活动,不断地激发他们的求知需求。再者,教师还可以精心创设一些引人入胜的教学情境,增强教学内容的趣味性,使学生在学习过程中能够感受到其乐融融,从而达到“我要学”的最佳境地。

6.加强师生之间的情感交流,提高学生的学习热情。课堂教学不仅是知识信息的交流过程,也是情感信息的交流过程。心理学家莫维尔说:“情感如同肥沃的土地,知识的种子就播种在土壤里。”可见积极的情感能调动学生的学习积极性,有利于优化课堂教学,改善课堂教学效果,提高学生的学习热情。

四、小结

综上所述,本文介绍了结构化学课程的特点、学生学习过程中存在的主要问题以及如何激发学生的学习兴趣,那么如何将结构化学抽象、难以理解的知识形象化,如何运用各种合理的教学方法提高自己的教学水平,培养和激发学生的学习兴趣,仍然是教师特别是青年教师需要长期思考的一个问题。

参考文献:

[1]潘道皑,赵成大,郑载兴.物质结构(第2版)[M].北京:高等教育出版社出版,2004.

[2]周公度,段连运.结构化学基础(第4版)[M].北京:北京大学出版社,2008.

[3]彭鹏,柴春霞.高等师范院校结构化学课程的难点探析[J].周口师范学院学报,2010,27(3):75-77.

[4]孙巧珍.关于结构化学教学改革的实践体会[J].考试周刊,2011,(18):27-28.

[5]曾谨言.量子力学教程(第2版)[M].北京:科学出版社,2003.

[6]宋国拓,蔡俊.浅议化学教改前景――计算机辅助教学的应用[J].西北民族学院学报.2000,21(3):23-25.