高光谱遥感技术及发展范例6篇

前言:中文期刊网精心挑选了高光谱遥感技术及发展范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

高光谱遥感技术及发展

高光谱遥感技术及发展范文1

随着全球环境问题日益突出,环境灾害与环境事故频发,卫星遥感技术在环境监测与管理中得到大量应用,在环境保护中发挥的作用受到国际社会的高度重视。美国、日本及欧洲的一些国家近年来都在大力发展环境遥感监测技术。目前在轨运行的和计划发展的国内外卫星传感器提供数据的空间分辨率已从公里级发展到亚米级,重复观测频率从月周期发展到几小时,光谱波段跨越了可见光、红外到微波,光谱分辨率从多波段发展到超光谱,遥感数据获取技术正走向实时化和精确化,卫星遥感应用正在向定量化和业务化快速发展[1]。当前,我国环境监测任务十分繁重,特别是对基于卫星遥感技术的环境遥感监测有着迫切需求。

1、遥感技术简介

遥感技术(remotesensing,简称rs)是在现代物理学、空间技术、计算机技术、数学方法和地球科学理论的基础上建立和发展起来的边缘科学,是一门先进的、实用的探测技术,目前正进入一个能快速、及时提供多种对地观测及测量数据的新阶段。按遥感平台的高度大体上可分为航天遥感、航空遥感和地面遥感,按所利用的电磁波的光谱段分类可分为可见反射红外遥感,热红外遥感、微波遥感3种类型,按研究对象可分为资源遥感与环境遥感两大类。随着热红外成像、机载多极化合成孔径雷达和高分辨力表层穿透雷达和星载合成孔径雷达技术日益成熟,遥感波谱域从最早的可见光向近红外、短波本文由收集整理红外、热红外、微波方向发展。波谱域的扩展将进一步适应各种物质反射、辐射波谱的特征峰值波长的宽域分布。高光谱遥感的发展,使得遥感波段宽度从早期的0.4μm(黑白摄影)、0.1μm多光谱扫描)到5nm(成像光谱仪),遥感器波段宽度窄化,针对性更强,可突出特定地物反射峰值波长的微小差异;同时,成像光谱仪等的应用,提高了地物光谱分辨力,有利于区别各类物质在不同波段的光谱响应特性。

2、环境遥感基础工作的应用技术

水环境遥感监测方面,初步开展了水环境可遥感指标体系研究,对叶绿素a悬浮物有色可溶性有机物溶解性有机碳水面温度透明度等监测指标的光谱特征和规律进行了研究;初步开展了环境一号卫星在水环境领域中的应用潜力分析研究;初步开展了水环境指标(如叶绿素a悬浮物水温)遥感反演与信息提取的技术流程研究大气环境遥感监测方面,初步开展了大气可遥感指标体系研究,对气溶胶悬浮颗粒物o3,so2,no2,co2,ch4等监测指标的光谱特征和规律进行了研究;初步开展了环境一号卫星在大气环境领域中的应用潜力分析研究以及大气环境指标(如气溶胶光学厚度)遥感反演与信息提取的技术流程研究[2]。

2.1 可见光、反射红外遥感技术

用可见光和反射红外遥感器进行物体识别和分析的原理是基于每一物体的光谱反射率不同来获得有关目标物的信息。该类技术可以监测大气污染、温室效应、水质污染、固体废弃物污染、热污染等,是比较成熟的遥感技术,目前国际上的商业和非商业卫星遥感器多属此类。该类遥感技术用于环境污染监测,目前主要是要提高传感器多个谱段信息源的复合,发展图像处理技术和信息提取方法,提高识别污染物的能力。重点发展其在大气污染、温室效应、水质污染、固体废弃物污染、热污染等监测中的应用。

2.2 热红外遥感技术

自然界中的所有物质,无论白天或夜间,都以一定波长向外辐射能量。在热红外遥感中,所有被观测的电磁波的辐射源都是目标物。目前红外探测器所使用的电磁波段,主要有3~5μm和8~14μm两个波段,对地表常温物体的探测通常使用8~14μm波段。热红外遥感主要探测目标物的辐射特性(发射率和温度),鉴别出物质材料的类型,评价出各种现象根据热辐射特征。

2.3 高光谱遥感技术

高光谱遥感技术的发展是人类在对地观测方面所取得的重大技术突破之一,是21世纪的遥感前沿技术。高光谱遥感数据的特点高光谱分辨率和高空间分辨率,它将传统的图像维与光谱维信息融合为一体,在获取地表空间图像的同时,得到每个地物的连续光谱信息,从而实现依据地物光谱特征的地物成份信息反演及地物识别,因此在环境污染物监测中发挥主要作用。

3、遥感技术在生态环境监测与保护中的应用

我国的生态环境日益恶化,因此,如何在保护和改善生态环境的前提下发展生产已经提到了决策者们的议事日程上来。建立生态监测信息系统已经成为当务之急。这样的生态监测系统集生态环境信息管理、数据库管理、生态环境各要素的实时监测、时间和空间查询分析等多功能为一体,可满足实时动态、分时段监测、查询和分析的要求[3]。

目前,环境污染已成为一些国家的突出问题,利用遥感技术可以快速、大面积监测水污染、大气污染和土地污染以及各种污染导致的破坏和影响。近些年来,我国利用航空遥感进行了多次环境监测的应用试验,对沈阳等多个城市的环境质量和污染程度进行了分析和评价,包括城市热岛、烟雾扩散、水源污染、绿色植物覆盖指数以及交通量等的监测,都取得了重要成果。国家海洋局组织的在渤海湾海面油溢航空遥感实验中,发现某国商船在大沽锚地违章排污事件,以及其它违章排污船20艘,并作了及时处理,在国内外产生了较大影响。随着遥感技术在环境保护领域中的广泛应用,一门新的科学——环境遥感诞生了。

高光谱遥感技术及发展范文2

[关键词]地质勘探 遥感技术 发展前景

[中图分类号] TP7 [文献码] B [文章编号] 1000-405X(2015)-9-265-1

遥感技术的出现在很大程度上提高了人类原本及其狭小的视野范围和视觉能力,带给了人类宏观、多角度、多层次看待地理事物的机会,遥感技术发展到当今社会,已经成为人们必不可少的一个地质勘查技术手段,对人类的地质调查、矿产查询都起着十分重要的作用。

1地质勘探中遥感技术的应用范围

1.1对于地质构造信息的获取

利用遥感技术进行相关的地质勘探工作最为主要的一个标志就是反映在相关的空间信息上。从地理环境所处的区域成矿线状影像图上就可以提取到许多十分重要的信息,包括酸性、碱性的岩体,火山形成的盆地,火山的构造以及热液活动等一系列的地理环境都可以为遥感系统提供许多重要的内容。当断裂是一个较为主要的控矿构造的时候,对于断裂地区的构造遥感信息的重点提取可以收获常规手段收获不到的内容。遥感技术在地质勘探中的成像过程中还有可能会产生“模糊作用”,常使用户感兴趣的线性型际,纹理等重要信息显得模糊不清,难以令相关的工作人员进行辨识工作,从而给遥感技术的进一步扩大使用留下了隐患。

1.2基于植被波谱的找矿意义

从生物的角度来说,在地下微生物和低下暗河的参与下,矿区内部的很多金属元素或者是金属矿物质都会引发矿区上层地质结构的构造变化,从而导致矿区上层地表覆盖土壤成分的变化。而在矿区上层地表覆盖有土壤的地方,往往生长着许多的植被,而这些植物对于金属元素都能够产生不同程度的吸收和聚集作用,进而影响到绿叶体内的叶绿素的含量,从而使得遥感卫星所观察到的植被波谱出现异常。在矿区上方生长的这些植物的变化在没有遥感技术之前,是很难被地质勘探的工作人员总结出来的,而遥感技术的出现在很大程度上帮助地质勘探工作有了一个更好的手段发现矿区构造。

1.3矿产改造信息的标志性

当矿区的主题矿床形成之后,受到矿床所在地区地理环境、地理空间位置变化的影响,往往会导致矿床的某些性状发生一个根本性的变化,从而导致地质勘查人员的工作难度增大。而通过遥感技术获取到的宏观遥感技术图像的对比,就可以十分轻易的研究出矿床的剥蚀改造作用,进而结合矿床进行成矿深度的详细研究。通过深入的研究区域内平面构造关系图和矿床位置的关系,就可以找到不同矿床在不同的区域构造图中的变化规律,进而建立一个较为完善的地质勘探标志体系,从而有利于后续开发工作的进展。

2地质勘探过程中遥感技术的发展前景

2.1高光谱数据及遥感微波的运用

高光谱技术是指集探测器技术、精密光学仪器、微弱信号检测、计算机技术等多种高精技术于一体的综合性技术,对于地质勘探工作效率的提升有着十分显著的作用。基于高光谱技术的遥感微波可以以纳米级的光谱分辨率,在完成的生成图像的同时记录下多达上百条的光谱数据通道。而从每个成像单元上提取出的光谱数据则可以建立一条连续的光谱曲线,从而进一步的实现了地理物理空间信息、辐射数据信息和光谱成像信息之间的同步,因此这种基于高光谱技术的遥感微波有着十分光明的应用前途和发展前景,我们应该充分的关注这种技术的发展,并不断的与自身的实际情况相结合,将其应用到自身的实际工作当中,为地质勘查工作做出应有的贡献。

2.2数据的融合

随着在地质勘探过程中遥感技术的不断发展,尤其是微波、多光谱等各种新型的传感器材的不断问世,他们开始以各种不同的空间尺度和时间周期以及光谱范围等多个方面反映出目标物品的各种特性,构成了同一地区的多源头数据链。但是相对于单源头的数据来说,这种多数据源头的数据形式可以在多个方面形成一个较为鲜明的对比,从而帮助地质勘探人员更好的完成相关地质勘探数据汇总工作,从而极大程度上提高了工作的准确性和效率。基于这方面的数据融合主要包括来自遥感卫星上个数据的融合处理,遥感数据和非遥感系统产生的数据融合处理。尽管在遥感技术中数据的融合取得了许多令人可喜可贺的进展,但是相对来说并不十分成熟的算法公式令数据的融合仍然存在着许多的问题。因此,在以后的工作中仍然需要地质勘探的相关工作人员不断的进行相关的补充和完善。

2.3图像接受、处理及信息提取技术的发展和完善

除了以上几个方面之外,遥感技术另外一个十分值得重视的发展方面就是要不断的提升遥感图像的接收成像能力、以及对于遥感系统所产生信息的提取和处理能力。而要想做好这个方面的遥感系统开发工作,则应该从以下方面入手,首先应该进一步发展具有高分辨率的传感器,以便能够接收更加微弱、更加细小的地质信息信号。其次,加强信息的提取方法还包括应该解决计算机处理的技术问题,如补偿信号在传递过程中的丢失以及失真,图像的不清晰成像等。这些问题都是十分值得重视的方面。另外,加强对于后备人才梯队的培养也是一个十分重要的方面,只有不断的提升地质勘探人员的技能素养,才能够满足相关技术的发展需求。

3结语

综上所述,在地质勘探的工作当中,遥感技术为其效率的提高和工作范围的扩大提供了强有力的支持并获得了极大的成功。遥感技术的直接应用是遥感信息的提取,遥感技术的间接应用范围更加广泛,包括对于地质构造信息的获取、基于植被波谱的寻矿等。因此,地质勘探行业的从业人员一定要从实际出发,不断的加强对于遥感技术的学习,以满足日益发展的地质勘探行业的要求。

参考文献

[1]党永峰.遥感技术在森林资源连续清查中的应用---以利用遥感技术分析森林植被、地类的动态变化为例[J].林业资源管理,2004,(06):94-95.

高光谱遥感技术及发展范文3

【关键词】遥感技术;水质监测;污染水体;光谱

1水体遥感监测的基本理论

水质参数的遥感监测过程。首先,根据水质参数选择遥感数据,并获得同期内的地面监测的水质分析数据。现今广泛使用的遥感图象波段较宽,所反映的往往是综合信息,加之太阳光、大气等因素的影响,遥感信息表现的不甚明显,要对遥感数据进行一系列校正和转换将原始数字图像格式转换为辐射值或反射率值。然后根据经验选择不同波段或波段组合的数据与同步观测的地面数据进行统计分析,再经检验得到最后满意的模型方程。

2水质遥感监测常用的遥感数据

2.1多光谱遥感数据。在水质遥感监测中常用的多光谱遥感数据,包括美国Landsat卫星的MSS、TM、ETM+数据,法国SPOT卫星的HRV数据,气象卫星NOAA的AVHRR数据,印度遥感IRS系统的LISS数据,日本JERS卫星的OPS(光学传感器)接收的多光谱图像数据,中巴地球资源1号卫星(CBERS--1)CCD相机数据等。

Landsat数据是目前应用较广的数据。1972年Landsat1发射后,MSS数据便开始被用于水质研究中。如解亚龙等用MSS数据对滇池悬浮物污染丰度进行了研究,明确了遥感数据与悬浮物浓度的关系;张海林等用MSS和TM数据建立了内陆水体的水质模型;Anne等人用TM和ETM+数据对芬兰的海岸水体进行了研究。

2.2高光谱遥感数据

2.2.1成像光谱仪数据。成像光谱仪也称高光谱成像仪,实质上是将二维图像和地物光谱测量结合起来的图谱合一的遥感技术,其光谱分辨率高达纳米数量级。国内外的学者主要利用的有:美国的AVIRIS数据、加拿大的CASI数据、芬兰的AISA数据、中国的PHI数据以及OMIS数据、SEAWIFS数据等进行了水体水质遥感研究,对一些水质参数,如叶绿素浓度、悬浮物浓度、溶解性有机物作了估测。

2.2.2非成像光谱仪数据。非成像光谱仪主要指各种野外工作时用的地面光谱测量仪,地物的光谱反射率不以影像的形式记录,而以图形等非影像形式记录。常见的有ASD野外光谱仪、便携式超光谱仪等。如对我国太湖进行水质监测时,水面光谱测量就用了GRE-1500便携式超光谱仪,光谱的响应范围0.30~1.1um,共512个测量通道,主要将其中0.35~0.90um的316个通道的数据用于水质光谱分析。并且非成像光谱仪与星载高光谱数据的结合,可望研究出具有一定适用性的水质参数反演模型。

2.3新型卫星遥感数据。新的卫星陆续升空为水质遥感监测提供了更高空间、时间和光谱分辨率的遥感数据。如美国的Landsat ETM+、EO--1ALI、MODIS,欧空局的Envlsat MERIS等多光谱数据和美国的EO-1Hyperion高光谱数据。Koponen用AISA数据模拟MERIS数据对芬兰南部的湖泊水质进行分类,结果表明分类精度和利用AISA数据几乎相同;Hanna等利用AISA数据模拟MODIS和MERIS数据来研究这两种数据在水质监测中的可用性时发现;MERIS以705nm为中心的波段9很适合用来估算叶绿素a的浓度,但是利用模拟的MODIS数据得到的算法精度并不高。Sabine等把CASI数据和HyMap数据结合,对德国梅克莱堡州湖区水质进行了监测,为营养参数和叶绿素浓度的定量化建立了算法。

3水质遥感存在的问题与发展趋势

3.1存在的问题:①多数限定于定性研究,或进行已有的航空和卫星遥感数据分析,却很少进行定量分析。②监测精度不高,各种算法以经验、半经验方法为主。③算法具有局部性、地方性和季节性,适用性、可移植性差。④监测的水质参数少,主要集中在悬浮沉积物、叶绿素和透明度、浑浊度等参数。⑤遥感水质监测的波段范围小,多集中于可见光和近红外波段范围,而且光谱分辨率大小不等,尤其是缺乏微波波段表面水质的研究。

3.2发展趋势

3.2.1建立遥感监测技术体系。研究利用新型遥感数据进行水质定量监测的关键技术与方法,形成一个标准化的水安全定量遥感监测技术体系,针对不同类型的内陆水体,建立多种水质参数反演算法,实现实验遥感和定量遥感的跨跃,从中获得原始创新性的成果。

3.2.2加强水质遥感基础研究。加深对遥感机理的认识,特别是水质对表层水体的光学和热量特征的影响机理上,以进一步发展基于物理的模型,把水质参数更好的和遥感器获得的光学测量值联系起来;加深目视解译和数字图象处理的研究,提高遥感影象的解译精度;增强高光谱遥感的研究,完善航空成像光谱仪数据处理技术。

3.2.3开展微波波段对水质的遥感监测。常规水质遥感监测波段范围多数选择在可见光或近红外,尤其是缺乏微波波段表面水质的研究情况。将微波波段与可见光或近红外复合可提高对表面水质参数的反演能力。

3.2.4拓宽遥感水质监测项。现阶段水质遥感局限于某些特定的水质参数,叶绿素、悬浮物及与之相关的水体透明度、浑浊度等参数,对可溶性有机物、COD等参数光谱特征和定量遥感监测研究较少,拓宽遥感监测项是今后的发展趋势之一。应加强其他水质参数的光谱特征研究,以扩大水质参数的定量监测种类,进一步建立不同水质参数的光谱特征数据库。

3.2.5综合利用“3S”技术。利用遥感技术视域广,信息更新快的特点,实时、快速地提取大面积流域及其周边地区的水环境信息及各种变化参数;GPS为所获取的空间目标及属性信息提供实时、快速的空间定位,实现空间与地面实测数据的对应关系;GIS完成庞大的水资源环境信息存储、管理和分析。将“3S”技术在水质遥感监测中综合应用,建立水质遥感监测和评价系统,实现水环境质量信息的准确、动态快速,推动国家水安全预警系统建设。

参考文献:

[1]刘红;张清海;林绍霞;赵璐h;林昌虎.遥感技术在水环境和大气环境监测中的应用研究进展 [J].贵州农业科学,2013,(1).

高光谱遥感技术及发展范文4

关键词:遥感技术;国土资源管理;土地资源调查;应用现状

中图分类号: P237文献标识码: A

1、概述

遥感(RemoteSensing)也就是遥远感知,指的是在高空与外层空间的各种平台上,运用各种传感器来充分的获取反映地表特征的各种数据,通过传输、变换与处理,来提取其中有用的信息,最终实现研究地物性质、位置、变化、空间形状及其与环境的相互关系的一门现代应用科学。遥感信息具有信息丰富、动态性以及周期性,且其获取的效率是比较高的,可以直接的以数字方式记录传送等特点。遥感技术以精确、动态、快速、综合以及宏观的优势为国土资源管理与调查提供了先进的探测与研究的手段,国土资源遥感调查的成果将会成为经济建设的决策以及规划来提供有效地依据,从而为国土的综合开发、整治规划以及地区的经济发展来提供关键的系列基础资料,并可以充分的保障资料的全面性、现实性以及科学、合理性。

2、遥感技术在国土资源管理的应用

2.1、土地资源调查监测中遥感技术的具体应用

作为一种获得信息的有效方式,遥感技术的信息量丰富、信息获取周期短,并具有多光谱的特性,所以,它在我国的土地资源调查当中有着十分重要的作用。20世纪80年代,MSS卫星遥感数据采集技术便开始应用于全国土地概查工作当中;80年代后期,原国家土地管理局应用航空遥感技术开展了全国绝大多数地区1:1万土地利用现状调查。90年代初,全国县级土地详查工作也在遥感技术的支持下展开,进入新世纪以来,大量新设备、新技术,诸如QuickBird,IKONOS,SPOT-5等高分辨率、多时段卫星数据开始广泛应用于土地资源的调查监测当中,在全面展开利用动态遥感进行土地监测工作的前提下,逐步建立了全国的土地遥感监测体系。

所以,近些年来,遥感技术在国土资源管理中的应用已经开始朝着规模化与标准化的方向发展。然而随着科学技术的发展,各级政府也逐渐的开始顺应形势,

颁布了《SPOT2.5m数字正射影像图制作技术规定》、《土地利用动态遥感监测规程》以及《土地利用现状调查技术规程》等等的标准规程,2005年,国土资源部承担了国家“863”课题“规模化高效土地资源遥感业务运行系统”建设,进而开展了高分辨率遥感影像的数据处理、土地利用信息自动提取等等各种遥感高端技术的研究;2007年,第二次全国土地调查利用了大量的技术路线以及技术方法,使得遥感技术得到了广泛的应用与发展。

2.2、在地质环境调查与地质灾害监测中遥感技术的应用

现代遥感技术的进步和发展,对环境监测、地质灾害监测的研究提供了崭新的道路。在地质灾害,诸如地震、滑坡、泥石流等的调查研究中,遥感技术的优势和作用被充分发挥,在1976年唐山地震的救灾工作的时候,我们利用机载遥感资料进行震后相应的救灾工作,而且利用高科技的1:1万航片制定了相应的震害图,在唐山地震的营救中起到了重要的作用,有效提升救灾工作效率,能够节省时间和资金的耗费,更加真实客观地反映了灾害地区的受灾状况。

2.3、在矿产资源调查、开发利用监测中遥感技术的应用

高光谱遥感通常是利用搭载于航空或航天平台上的成像光谱仪监测各类地物的光谱特性,取得相应的图谱合一的信息。所以,它被充分地利用到矿产资源调查、开发和利用的各类监测活动,为其提供了技术支持和发展空间。

随着AIS-1的出现,遥感技术在地质方面的应用由多光谱的定性描述向高光谱定量物质组成鉴别进行技术跨越,至此,我国高光谱矿物填图技术逐步开始应用到地表岩石、矿物的具体识别与填图当中。20世纪90年代开始,国土资源部利用遥感技术对多个矿产资源进行了开发和监测,基本查明了进行监测的区域各类矿种能够进行开采的具置、废弃物分布状况等,并方便进行各类执法活动,经过多年的实践,各类与矿产资源开发有关的遥感技术已经有了很大发展,为矿产资源开发活动能够长期有效地进行奠定了坚实的基础。

3、遥感技术应用中存在的种种问题

3.1、数据资源不够丰富

高分辨率、多时相的遥感信息资源在国土资源管理工作当中显得尤为的重要,虽然它已经在各个方面均有很大的提高,但是,因其资金与科技等等问题的限制,高水平、高质量的遥感数据的卫星源却是非常的少。在国内虽然有“遥感三号”以及“遥感四号”等等均可以有效地用于国土资源的管理工作,但是这些卫星的分辨率具有成像周期长、相对比较低等的缺点,所以就不能够充分的满足国土资源管理工作的各类需求。因此,我国通常都是从国外来购买相应的遥感资料以及遥感数据,高质量遥感数据资源是相当的珍贵,我国自主获取高水平、高质量的遥感影像数据源的各种手段均有待提升与提高,才可以获得更好的遥感资料。

3.2、遥感技术实力薄弱,高分辨率遥感影像的信息自动化水平不高

现今,遥感技术可以对中分辨率遥感数据来进行一个非常成熟的科学研究。而目前土地利用遥感监测务必要在充分满足管理以及生产需要的大前提之下来进行,但是目前基于纹理的分类和信息的提取技术依旧满足不了其的各项要求,高分辨率遥感影像的信息自动化水平较低。

4、遥感技术在未来的国土资源管理中的发展状况

作为一项新的技术手段,随着科学技术的发展以及各类数据库资源的有效利用,遥感技术在国土资源管理中的应用向更深层次和更广泛的空间发展。

4.1、地质环境调查与地质灾害监测方面遥感技术的利用前景

遥感技术应用于地质环境调查与地质灾害监测具有不可代替的优势,针对目标区域的特点,利用遥感技术,可以对目标区域的地质环境和地质灾害进行监测,而且遥感技术应用于地质灾害监测逐步从定性化向定量化发展,并可逐步应用于地震前期的监测,今后,利用遥感技术研究地质灾害,一般需要在使用卫星系统的基础下,以航空、地面等多种监测为主要的手段,进行全天候、多时相的连续观测,从而达到事半功倍的效果和作用。

4.2、资源开发和管理方面遥感技术的利用前景

利用高光谱遥感技术光谱信息层次丰富、波段窄、分辨率高等优势,能够做到反复演示某些指示矿物的丰度,将使遥感技术能够更好地利用在各种矿产资源的开发管理和监测方面,成为地质及矿产资源找矿、监测等方面的重要技术手段。

4.3、土地利用调查与监测方面遥感技术的利用前景

一般来说,国土资源部每年对全国50万人口以上城市的土地利用情况进行相应的监测工作。但近些年来,随着对国土资源管理工作的需要,许多省市进行监测的时间间隔越来越短。随着管理工作的需要和科技的发展,遥感技术的各类特征和优势,十分有利于相应工作的开展,所以,一些地级市为了更好地进行国土管理工作,也开始进行相应的监测工作,其趋势是省级监测的时间间隔将会越来越短,地级市进行监测的次数越来越多。

近年来,随着遥感技术调查工作的顺利开展和进行,帮助国土资源管理部门和各级政府基本实现了遥感监测技术在国土资源管理中的产业化经营和应用。但由于种种限制,在天气状况不好的情况下,常用的遥感影像数据技术对于数据和资料的获取有着很大的缺陷性和局限性,不能准确地获取国土利用问题的各类资料,所以,随着科学技术的发展和提高,遥感技术需要避免恶劣天气所带来的种种影响,使其具有全天候穿透能力等优势,这样将会在未来的土地利用和调查中充分发挥其重要作用和价值。

总之,随着遥感技术的发展,更多的方面和领域通过利用遥感技术中高分辨率卫星数据,对土地变更、土地执法以及土地利用情况等等问题来进行一个深入的调查,在国土资源管理问题方面来发挥着巨大的作用,随着科学技术的发展以及遥感技术的深入运用,遥感技术已经可以应用到土地资源调查评价领域之中,并且还具有十分广阔的应用前景。

参考文献

[1]王瑾.浅谈遥感技术在国土资源管理中应用和发展[J].吉林农业,2011,09:61+69.

[2]王文卿.遥感技术在国土资源管理中的应用现状及前景[J].测绘通报,2009,06:38-40.

高光谱遥感技术及发展范文5

【关键词】遥感技术;地质找矿;应用;影响

在当前形势下,矿产资源已成为制约社会经济发展的重要因素,经济的飞速发展对矿产资源的需求也随之增大,但由于矿床深埋于地层之下很难通过普通的找矿手段发现,给找矿工作增加了巨大的难度。利用新的科学找矿技术是适应地质找矿工作的要求,也是满足社会经济发展的需要,遥感技术就是在这种情况下不断发展,并为找矿技术提供必要技术支持。通过遥感技术进行地质找矿工作,能够真实全面地反映地质结构的具体成分信息,在将信息加以分析,能够迅速准确地找到矿床的具置,极大地减少了人工工作量,提高了工作效率。

1 遥感技术概述

遥感技术是产生于上世纪六十年代的一种综合性的探测技术,当前信息技术等高新技术的快速发展,使遥感技术逐渐应用与各个领域中。具体来说,遥感技术即通过对远距离相关目标辐射和反射的可见光、红外线、卫星云图以及电磁波等数据信息加以收集和处理,然后感知成影像资料,是进行探测和识别相关目标事物的一种技术。遥感技术具有综合性强、宏观系统显现、层次丰富以及快速准确和具备动态性等特点,其能够有效提高地质找矿工作效率和经济效益,应用价值极为广泛,逐渐受到各领域的关注和应用。

遥感技术在地质找矿工作中一般以地质绘图为主,准确再现区域地质状况和信息。在地质找矿工作中纳入遥感技术是当前开展的促进地质找矿工作的重要途径和必然要求。遥感技术可以客观真实地反映地质内的分层信息和成分数据,还能够对这些地质信息加以全面的分析和处理,对勘探和发现地质矿床的具置有巨大的作用和意义,实现矿产资源的合理开发。遥感技术在地质找矿工作中的应用和影响主要包括以下几个方面:对地质矿体范围加以细致勘察、将勘察信息呈现出几何形态、矿床的地段分析以及成矿区域的相关地质条件等,通过对这些方面的勘察和分析,能够有效地促进地质找矿工作的进行,提升找矿工作的效率。

2 遥感技术在地质找矿工作中的应用和影响

2.1 利用遥感技术识别地质岩石矿物

岩石是成矿的主要物质基础和条件,成矿需要适当的不同类型岩石组合,利用遥感技术识别地质岩石矿物是勘测成矿区域的重要途径。识别和提取地质岩石矿物的具体信息数据需要利用遥感技术分析地质岩石矿物的光谱特征,采用图像变化、图像增强以及图像分析的方法,对地质岩石矿物加以分析处理,能够最大限度地将不同岩相、不同类型和不同岩性的地质岩石矿物加以区分,勘察最适合和需要的地质岩石矿物。利用遥感技术对地质岩石矿物加以识别对地质填图工作有重要的影响和作用,其识别很大程度上要依靠地质岩石矿物的光谱和空间特征差别,当前在岩石矿物识别工作中应用交为广泛的是高光谱遥感成像技术,具有分辨率高、波段多和数据信息量大的技术特点。通过利用高光谱的窄波段对地质岩石矿物加以识别,能够清晰识别岩石矿物的具体特征,地物光谱的重建和量化提取使区分矿物岩石工作更为容易。

2.2 利用遥感技术提取矿化蚀变数据信息

岩石蚀变信息的提取能够有效提升地质找矿工作的效率,在地质矿床内围岩和矿热液的相互作用会使产生围岩蚀变现象,围岩蚀变的类型取决于围岩自身的内部元素成分和所处矿床的类型,围岩蚀变类型的判定是找矿工作顺利进行的重要依据。围岩蚀变的常见类型有绢云母化、高岭土化、硅化、青磐岩化等,当前对矿化蚀变信息的提取主要采取铁染和羟基进行,矿化蚀变岩石与普通岩石的差异较大,其结构、类型和颜色等都有一定的特殊性,利用遥感技术可使蚀变岩石在特定的光谱波段下显现出异常的光谱,从而即可进行异常信息的提取,目前广泛应用的数据源主大多是数据源与ETM相结合的形式。

2.3 利用遥感技术提取地质构造信息

地质找矿工作中地质构造信息的提取是一项重要的环节,实践证明,矿化蚀变带的分布具有一定的规律可循,一般地质构造明显的位置存在矿化蚀变带的可能性较大,地质构造对成矿的影响较大,成矿的可能性和矿床范围的大小很大程度上取决于地质构造的实际情况,因此,利用遥感技术加强对地质构造信息的提取和勘测,是寻找矿床的重要因素和途径,需对其加以科学利用。在具体地质构造信息勘测和提取过程中,提取地质构造的信息主要可分为环形影像解译和线性影像解译。需要依据不同类型的成矿构造具体环境,对地质构造数据信息加以提取,比如,对矿化、接触带和蚀变相关的地质构造,常常提取其色带、色环和色块等异常数据信息;对一些区域性成矿构造往往提取其线性结构的数据信息;对于火山盆地、热液活动以及中酸入体相关的地质构造需要提取其环形构造数据信息。利用遥感技术提取地质构造信息在成像时可能会出现模糊作用的情况,致使矿区线性形迹各纹理信息变模糊,出现这种情况时,可使用遥感影像中的灰度拉伸、比值分析、边缘增强以及方向滤波等功能对其加以处理即可。通过对线性和环形影像进行全面、系统的整理和分析,有效结合该区域地质、化探和物探等数据资料,即可判断成矿区域的分布位置及具体特点,还可以采用数学地质的方法统计分析已经解译的线性结构,从而准确地判定找矿位置。

2.4 利用遥感技术分析植被波谱特点找矿

地表矿化蚀变岩石成分结构的改变是在微生物或地下水的作用下进行的,这种作用力还能够改变矿化蚀变岩石上的土壤成分,利用遥感技术分析植被波谱的变化特点来寻找矿床,是一种先进的找矿技术,其主要采用的方法和原理为遥感生物地球化学找矿原理。这种方法主要是在类似矿区的区域,长期观察植物的生长状况和变化特点,从而来判定该区域是否存在矿产资源,因为植物在其生长过程中会大量吸收地下土壤和岩石中的矿物元素,致使植物在不同时期的生长也有不同的外部变化,通过利用遥感技术对植物的波谱特征变化加以观察和分析,寻找矿区的具置。在植物吸收的某项矿物元素超标时,就会使植物产生一定程度的度化作用,就有了相应的生物地球化学效应,这种效应会使植物的生态和生理方面发生相应的变异。比如,植物吸收过多的重金属会使其产生褪绿或矮化等变化,能够通过遥感图像清晰观察出其植被红光光谱曲线逐渐向短波方向进行“蓝移”,从而迅速、准确地确定矿床或矿区的地理位置。

3 结束语

当前,遥感技术除了以上在找矿工作的应用和影响,也随着科技的发展不断更新,出现了多光谱遥感蚀变信息提取技术、高光谱遥感技术等新兴的先进技术,为地质找矿工作提供了巨大的技术支持,有效节省了找矿所需的人力、财力和物力需求,提高了地质找矿工作的整体效率。

参考文献:

[1]魏磊,赵鹏海,何晓宁.等.浅谈遥感技术在矿产开发中的应用[J].测绘与空间地理信息,2012(09).

[2]刘德长,叶发旺,赵英俊.等.地质找矿中遥感信息的综合研究与深化应用―以铀矿为例[J].国土资源遥感,2011(03).

高光谱遥感技术及发展范文6

关键词:遥感监测技术;环境保护;应用

1遥感监测技术的概述

遥感监测技术(remotesensingmonitoring)是基于空间技术,现代物理学和数学方法基础上建立和发展的科学技术,其作为一种实用和先进的检测技术,及时快速的提供了更多种类的测量数据方法,实现对地监测的新阶段。根据专业领域的划分,遥感平台在根据监测高度的不同可以分为三种类型:航空遥感,航天遥感和地面遥感。根据电磁波中使用的光谱段,微波遥感和反射红外遥感是其主要的类型。大部分的遥感都是采取的直接从地面上的高空监视事物,这种方式,可以充分利用时空和频谱方面的独特优势,避免大量信息由于地面限制条件的而产生遗漏或错误。遥感监测技术和全球定位系统(GPRS)与地理信息系统相结合统称为“3S”综合监测系统,除常规监测分析系统外,还加大了重大灾害事件的快速评估综合能力,形成了时间和空间整合的完整监控技术体系。

2遥感监测技术在水体污染以及土壤污染的综合应用解析

遥感监测技术在水体污染以及土壤污染的综合应用上,可以利用地面、航空、航天等遥感平台对河流、湖泊以及水库进行监测,诊断水体的状况变化,从而实现快速确定水污染的分布状况。常见的水污染探测仪器包括红外扫描仪以及微波系统等。监测对象主要是水中悬浮物以及污水排放。而植被的反演,土壤监测,是遥感监测技术中土壤污染研究方式主要的两个方面。土壤重金属含量可以由植被光谱数据检索,从而间接的去评估重金属污染程度。另外,可以通过重金属对土壤的波特特征和评价,判定土壤光谱数据监测重金属的含量和特征。

3遥感监测技术在水污染监测的应用

3.1水体富营养化现象

一般来说,当水体富营养化发生时,由于“陡坡效应”,即浮游植物叶绿素对红外光具有明显的反应,水中植物和水分的光谱特征都在紫外或红棕色的谱段上更加明显。遥感监测技术中可以选择针对长江口特点的叶绿素浓度遥感破译方法,选择总磷,总氮,叶绿素相关的技术特征,获得适合长江河口特征的富营养化评价结果。

3.2水体热污染以及废水污染

由于废水和悬浮物在水色和性状上存在较大差异,因此反射峰的位置和强度在特征曲线上会出现较大的差别。我们可以通过多光谱合成图像对废水污染进行检测,也可以使用热红外法根据温差进行测量。大多数热污染是由工厂排放的废水造成的,不仅不利于作物的生长,也威胁着水中的生物的安全。热红外传感器可以轻松监控热污染程度。利用多光谱合成图像可以显示热污染的流动方向,排放强度以及温度分布等情况。

4遥感监测技术在土壤污染的应用情况解析

4.1地面污染监测

遥感技术的应用不仅可以预防地面污染,还可以检测到在煤炭污染区中的地面污染分布,对其进行圈定或预防。现在已经有了遥感技术在煤炭自燃隐火监测中的先例。煤的自燃不仅浪费了大量的煤,还造成了大面积的空气污染,水质污染等。而红外线扫描仪和红外线温度计就针对这种污染类型工作,从隐藏区域的微妙差异的表面温度对污染区进行圈定,并分析了蔓延的规律以及方向,为解决煤炭隐患提供新的经验和方法。

4.2遥感监测技术在土壤污染监测中的应用

有机物污染和重金属污染是土壤污染最重要的两个方面。农药和化肥的滥用极有可能造成的农田污染叫做有机物污染,而重金属污染则集中在由于工业废水灌溉和工业垃圾的排放所造成的污染环节上。土地污染指数是今天城市可持续发展程度和区域环境质量的重要参照数据,因此利用新兴的技术对土壤污染的治理显得尤为重要。通过分析和比较土壤光谱信息,分析土壤光谱信息的差异,不仅可以确定土壤污染的时空分布,也可以确定和分析土壤污染的时空分布趋势、特征和污染水平,起到传统的地面采样分析难以发挥时空监测的作用。我们在利用遥感监测技术对土壤污染进行监测时,有以下两种主要的方法,一是可以直接测量土壤中出的固体废物的数量,金属的分布情况以及难分解的重金属影响范围,并且分析潜在的污染物和污染程度。二是经受污染土壤的土壤环境复杂,其生长的作物和正常种植的作物相比,具有不同的光谱表现。可以利用光谱确定作物的土壤污染分布情况,分析污染评估的程度。由于土壤污染监测的机制主要集中在不同的物体具有不同的反射和辐射的光谱特性上,所以当光谱范围越窄时,不同特征之间的区别就越有效。因此,高光谱遥感监测就可以在土壤污染监测中发挥最大的作用。高光谱遥感监测将传统图像尺寸和光谱信息组合成整体,在获取地表空间图像的时候,也得到了每个地物的连续光谱信息。该监测技术在土壤污染监测中的应用,就是利用农作物的光谱响应来识别土壤污染的程度。

5感监测技术在环境保护方面的前景

遥感技术的应用表明,未来的环境监测观测系统应由航天,航空和陆地三方位观测站等一系列子系统组成,充分发挥定性,定向和定量数据的能力技术系统的巨大优势,让全球定位系统可以提供更准确的实时定位系统和地面高程模型。

参考文献

[1]万余庆,张凤丽,闫永忠.高光谱遥感技术在水环境监测中的应用研究[J].国土资源遥感,2003(3):10-14.