人工智能辅助医疗诊断范例6篇

前言:中文期刊网精心挑选了人工智能辅助医疗诊断范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

人工智能辅助医疗诊断

人工智能辅助医疗诊断范文1

万东医疗(600055)与包括阿里健康在内的多家人工智能企业开展技术合作,全面开展放射影像的机器智能诊断学习项目;思创医惠(300078)推出了国内唯一以“医疗大数据+认知计算”为基础,同时结合临床应用的人工智能辅助决策解决方案。

【公告】

新华锦(600735):目前没有在雄安设立养老 业务分支机构的计划

舒泰神(300204):上半年净利增两成 拟7000万收购德丰瑞剩余股权

金通灵(300091):拟发行不超6亿元“双创”债

通富微电(002156):总投资70亿封测生产线今日奠基

葛洲坝(600068):联合中标逾80亿元PPP 项目

洛阳玻璃(600876):股价连续三日涨停 无未披露重大事项

美锦能源(000723):发起设立矿业特种智能机器人(300024)研发公司

中国中车(601766):控股股东与中国铁路总公司战略合作

【增减持】

海螺水泥(600585)上半年大幅减持股票收益18.6亿

天原集团(002386)股东东方资产管理公司拟减持不超6%股份

达威股份(300535)股东吴冬梅计划减持不超6%股份

恺英网络(002517)遭股东海通开元减持4.69%股份

高科石化(002778)三名股东拟合计减持不超228万股

飞马国际(002210):副董事长拟减持不超731万股 

【复牌】

人工智能辅助医疗诊断范文2

关键词:新医科;智能医学;人才培养

1绪论

健康中国已上升为国家战略,新医科在我国高等教育中掀起了一阵新的改革浪潮,“智能医学”的应用性人才培养模式也随之开启。智能医学工程是以现代医学与生物学理论为基础,融合先进人工智能及工程技术,挖掘人的生命和疾病现象的本质及其规律,探索人机协同的智能化诊疗方法及其临床应用的新兴交叉学科。目前,高校在进行医工融合培养学生的指导过程中,存在许多问题,如医学和工科的理论结合层面较为薄弱,多学科交叉联合指导的机制不完善,成果转化和临床应用性不高。实践层面,在现有的医学教育模式下,医学生缺乏全面的对数据进行收集、处理与分析的能力。但是在智能医学时代,对数据的处理与分析能力会成为医生工作的重要组成部分。面向医疗健康的智能医学工程交叉学科人才的迫切需求,智能医学工程交叉学科的人才培养的机制有待完善。2019年,一些院校如南开大学和天津大学获得教育部的审批,已经率先实行招收智能医学工程专业的新生[1]。高等医学教育对新医科背景下智能医学工程专业人才培养认知还处于探索阶段,智能医学工程如何实现医工交叉学科的融合发展,如何获取人才培养中的合适方法、模式、关键技术等的研究,协同医学发展、社会需求的人才,还需要深入思考和进一步探索。

2新医科背景下智能医学人才培养

2.1新医科符合医科改革的内在需求

随着“健康中国2030”国家决策不断推进,医疗健康逐渐被国家视为重要的基础性战略资源,在大数据和人工智能技术影响下,临床应用、疾病预测与预防、公共卫生、循证公共卫生决策、健康管理、健康监测与个性化医疗服务等方面的研究以及产业发展,将是未来整个医疗领域的提升方向,给智能医学分析与决策赋予了新的意义和内涵。

2.2医工融合发展的必然趋势

随着精准医疗与智能医学诊疗技术的深度融合,理论层面,把握新医科背景下智能医学工程专业复合型创新人才培养目标,以临床应用性为导向,多学科领域知识相互渗透。调整医工结合课程体系,既符合新医科需求,又实现医工融合课程模块间的交叉互补,体现医工结合特色的宽口径学科结构。培养既懂医药科学、数据科学又懂人工智能应用的高级复合型人才。实践层面,精准医疗与智能医学工程技术紧密结合,利用临床医生在传统医学中积累丰富的临床经验,并融入到智能医学诊疗模式变化中,将彻底改变现有诊疗模式。

2.3人工智能助力智能医学工程人才培养

随着科学技术的飞速革新,人工智能核心技术推动传统学科专业建设和医工交叉融合。助力人才培养主要表现在以下三个方面。一是从智能医学诊疗技术创新的角度,技术的革新引领人工智能与各个产业领域深度融合,创造新的产业或领域,计算机模拟人脑的思维过程,实现人机交互,提高医疗资源的利用率,推动医疗产业的高效运转。智能医学诊疗主要包括疾病早期诊断、临床决策支持、正确用药、诊疗方案的选择等。如KopR和HoogendoornM等探索了医院对病人电子病历(EMR)数据进行分析,结合结直肠癌预测模型,更准确的预测早期直肠癌和干预治疗实践[2];HoshyarAN和Al-JumailyA等探索了医学影像自动诊断皮肤癌,通过数据预处理去除噪音和不必要的背景图像,提高图像质量,辅助医生进行临床决策[3]。二是从医疗健康大数据的角度,随着大数据、数字技术、机器学习和人工智能等信息技术在医疗领域的应用,电子健康记录数据呈指数型增长,医疗大数据来源包括医院记录、患者医疗记录、医疗检查结果和物联网设备[4]。智能医疗系统具有识别、筛选和决策等智能医疗辅助功能。2017年上海计算机软件技术开发中心对医疗大数据可视化系统的实践与研究[5];2018年,阿里健康与阿里云宣布共建阿里医疗大脑2.0[6],加强在图像识别、生理信号识别、知识图谱构建等能力的建设[7];同年,腾讯推出医疗AI引擎“腾讯睿知”,具备更智能化的医疗垂直搜索功能,帮助患者精准匹配合适的医生。三是从人才培养的角度,多学科交叉融合发展是大势。人工智能将打破不同学科专业的壁垒,推进多学科交叉融合发展,形成“人工智能+”的专业新的人才培养模式。高校也应根据产业需求变化调整专业设置,构建新的专业结构。高校人工智能相关的本科专业将会蓬勃发展,形成颇具特色的“人工智能+”专业集群。“人工智能+”技术所衍生的新医科、新工科专业之间的协同创新发展,实现技术创新与医疗应用的统一。以“人工智能+医学”为契机,结合医学产业发展趋势和智能医学工程专业的特点,研究相应的教学体系、制定科学的教学计划,建立具有行业特色的课程群、制定合理的课程大纲,解决学生在医学诊疗和工程技术两方面协调发展的问题,全面提升医学生的综合素养以及未来的职业竞争力。综上所述,新医科人才培养在人工智能助力下,培养学生具备较强的创新意识和具有智能医学领域科研能力,掌握关键理论与方法,创造性地将计算机科学技术、人工智能技术和方法、大数据关键技术与医学应用系统相结合,进而创新性完成的医学信息处理、行为交互和人工智能系统集成及应用。以上需培养的能力,对现有医学专业的改造升级、人才培养模式的改变、师资队伍的全面建设具有较高的要求。

3培养新医科人才的实施路径

3.1从医工融合研究的视角

智能医学工程的专业培养建设要体现医工融合发展需求,推进智能工程、医学与教育的深度融合,提升人工智能在医学中的应用,满足新医科发展要求的卓越工程师为育人目标,强调学科交叉渗透、重视临床应用、把握科技前沿,推动教学创新等。

3.2从医工融合研究的广度

目前我国部分高校开展了医工融合人才培养模式的探索,但有区域特色的医工融合研究还不多。针对新医科临床需求分析,把握智能医学工程高等教育体系,重点聚焦区域特色,研究面向健康和重大及特殊疾病防治需求的“新医科”对人才的需求。

3.3从医工融合研究的深度

(1)整体设计智能医学工程专业教学环节。建立知识能力矩阵,整体设计教学、实验、课程设计、专业实习、毕业设计等环节,突出新医科相关课程及实践,加强附属医院和教学医院的联系,深化临床实践能力。(2)培养学生专业能力和科研创新能力。智能医学工程专业教学与知识能力培养的思考是以智能医学学科的特点为基础,通过知识能力矩阵的智能医学工程专业课程创新教学,根据智能医学工程专业课程知识点的内在联系和相对独立性,优化核心知识模块形成知识能力矩阵,构建课程内容架构。通过系统理论知识教学、优化课程实验和上机安排,引导学生自主设计性学习,提高学生的学习积极性,达到有效教学效果。(3)结合学生兴趣偏好,研究如何提高学生的专业兴趣,探索将专业兴趣转换为“工匠精神”的教育理论及方法:广泛调研,全面建立当前地方高校智能医学工程专业学生与专业偏好的培养模式。

4结语

人工智能辅助医疗诊断范文3

【关键词】计算机;人工智能技术;应用

1引言

人工智能技术已经成为目前最受社会关注的新兴科技之一,随着该技术在各行业和领域中的应用不断深入,人们的工作和生活方式不断向智能化方向发展,工作和学习效率都得到了质的飞跃,未来,人工智能技术也必然会获得更加广阔的发展前景。

2人工智能技术概述

人工智能是计算机科学的一个分支,这门学科的主要目标是了解人类智能的本质,并通过将人类智能转移到智能机器中,使智能机器能在不同应用场景下做出类人思维的反应。人工智能是一项综合了多项高新科技的综合性学科,包含5项核心技术,分别是计算机视觉、机器学习、自然语言处理、机器人技术和生物识别技术。其中,机器学习是实现计算机人工智能技术的核心技术,该技术使智能机器在算法复杂度理论、凸分析、统计学等学科的支持下,能自主模拟人类行为。目前已经发表的机器学习策略主要包括模拟人脑的机器学习和采用数学学习方法2种策略。其中模拟人脑的机器学习策略又可细分为符号学习和神经网络学习,符号学习是以认知心理原理为基础,在机器中输入符号数据,用推理过程在图或状态空间中搜索并进行符号的运算,对概念性和规则性知识的学习能力较为突出,如示例学习、记忆学习、演绎学习等;神经网络学习是从微观生理角度对人脑活动进行模拟,利用函数结构模型代替人脑神经网络,以函数结构进行数据运算,并在数据迭代过程中在系数向量空间中搜索,对函数型问题具有较好的学习能力,如拓扑结构学习、修正学习等。采用数学方法的机器学习主要是利用统计机器,建立相应的数学模型,拟定超参数,输入样本数据后根据不同的运算策略对模型进行训练,最后根据训练结果进行结果预测。

3人工智能技术的发展历程

3.1人工智能技术的兴起

虽然新兴技术的兴起获得了广泛的关注,但由于人工智能技术涵盖的学科和技术范围过大,兴起阶段的该技术的理论知识、产品应用、发展应用等均存在明显缺陷。除此之外,计算机技术在当时也并不成熟,当时的计算机编程和计算水平较为落后,很多超前的想法以当时的技术水平来说实现较为困难。在多种因素的影响下,人工智能技术在兴起阶段并未得到快速发展。

3.2人工智能技术的高速发展

人工智能技术这一概念在提出后近20年的时期中其发展始终处于停滞状态,直至20世纪70年代,该领域的专家研发出全新的人工智能专家系统DENDRAL,该系统的诞生带动人工智能技术迈向新的发展阶段,并且在这之后进入高速发展时期。日本始终重视本国科学技术的发展,并且在20世纪80年代提出“科技立国”的政策,此后很长一段时间,日本依托此国策使经济得到迅速恢复和发展。在1982年,日本国内对第五代计算机的研究以失败告终,但此次研究中提出了新的计算机算法和逻辑程序语言Prolog,Prolog在处理自然语言过程中具有比LISP语言更好的应用效果,这一创新进一步促进了人工智能技术的发展。人工智能技术的发展建立在多项先进学科共同发展的基础上,与其他技术相比,人工智能技术在处理数据、整合资源方面具有更大优势。

3.3人工智能技术的发展现状

3.3.1专家系统

专家系统指的是一种智能计算机程序系统,是人工智能技术应用最为广泛也最为重要的领域之一,系统中涵盖大量某领域专家水平的知识与经验,通过应用人类在该领域中的专家级别知识来为用户解决在该领域中遇到的问题。专家系统有效地将人类智能延伸到专业领域中,实现了理论研究向实际应用方向过渡的目标,大幅提高了人类对专业问题的处理效率,并且专家系统依托复杂的算法能对专业问题未来发展的可能性进行更全面的计算,工作效率甚至会比人类专家更高效、更准确。随着对专家系统研究的不断深入,目前很多专家系统都能依据对人类行为的模拟在不同的应用场景中作出智能化的反应和判断,并且能够利用知识库,深入挖掘复杂问题的内在联系。专家系统已经在多个领域中都得到了广泛的应用,帮助企业更客观地摸索市场规律,从而作出正确的生产决策、调度规划、资源配置计划等,大幅提高了企业经营的科学性,使企业能在节省生产成本的同时,获得更好的经济效益。

3.3.2模式识别

模式识别是利用计算机技术将识别对象按一定特征归类为不同类别,目前人工智能技术在模式识别中的主要研究方向包括语音语言信息处理、计算机视觉、脑网络组等,希望通过人工智能技术实现对复杂信息的识别和处理,这一应用能促进多个行业向智能化方向发展,如军事领域、医疗领域等。

3.3.3机器人学

机器人学的主要研究方向是机器人的设计、制造和应用,随着人工智能技术的成熟与应用,机器人的智能水平不断提高,并且在不同行业中的应用已经较为普遍,日常生活中常见的机器人包括扫地机器人、迎宾机器人、快递机器人、早教机器人、无人机等,人们可以利用可移动设备对其进行操作,极大程度地提高了人们生活的智能性和便捷性。

3.3.4机器学习

机器设备并不具备自主思考能力,在不同应用场景下的反应主要是依托计算网络技术和算法对人类思维模式进行模拟,并将人类行为进行充分消化以使自身性能得到优化,能对不同问题进行处理。机器学习是一项涵盖多个学科且复杂程度很高的科学,包含统计学、概率学、算法复杂度理论等,是人工智能的核心技术,也是推动计算机向智能化方向发展的关键技术。

3.3.5人工神经网络

人工神经网络是人工智能技术自进入高速发展时期后广泛研究的重点内容。利用计算机算法将人脑神经元进行简单化、抽象化、模式化,并构建成与人脑神经元网络相似的网络结构。人工神经网络技术的成熟与发展为专家系统、模式识别、机器人学、生物、经济等多个学科的发展提供了技术支持,解决了很多人工智能技术发展中的实际难题。

4人工智能技术的应用

4.1人工智能技术在计算机网络技术中的应用

4.1.1计算机网络安全管理

人工智能技术与计算机网络技术互相依存、互相促进、共同发展,在计算机网络技术的多个方面都有深入的应用。其中,在网络安全管理方面主要有如下应用:①智能防火墙技术。防火墙技术随着计算机的普迅速发展,应用人工智能技术的防火墙技术比传统防火墙技术的性能更加优异。智能防火墙技术具有智能记忆功能,能自动记录并储存历史处理病毒的记录,在后续应用过程中依据记录直接优化计算机匹配环节,减少计算机数据量,提高防火墙的隔离病毒能力。另外,智能防火墙还能结合用户的需求,对用户不需要的弹窗功能、访问权限、有害信息等进行智能化拦截。②计算机入侵检测。防火墙的主要功能就是为计算机设备创造安全的运行环境,保证系统和内部数据不被侵害。计算机入侵检测功能是保障防火墙正常工作的基础功能模块,对提高计算机数据的安全性和可靠性具有直接的影响。应用人工智能技术的入侵检测功能,能对计算机系统进行智能化分析和处理,根据预定算法将处理数据整理成为入侵检测报告,让用户能全面地掌握计算机设备的安全状态。③垃圾邮件智能化处理。该技术依托人工智能技术中的模式识别功能,对接收邮件进行扫描和归类,发现垃圾邮件后直接将其标注为垃圾邮件,为用户发出风险警告,避免用户因误操对计算机系统造成损害。

4.1.2计算机网络管理

人工智能技术的发展和应用促进计算机网络技术向智能化方向发展。在实际应用中,除计算机网络安全管理模块外,还能解决多种网络管理问题。随着计算机技术的普及,网络数据呈爆炸式增长,网络管理工作量和工作难度都达到了空前高度,通过应用人工智能技术,能大幅提高计算机网络管理效率,优化网络管理效能。

4.2人工智能技术在企业管理中的应用

企业是市场经济活动的主要参与主体,是维持市场经济稳定运行和发展的关键要素,在企业生产活动中科学地应用人工智能技术,能有效提高企业的生产能力,促进企业获得更高的经济效益和社会效益。具体应用渠道如机械自动化、智能监控、推荐系统、用户购物行为分析、零售分析、数据提取、文本归类、文章摘要等,从员工工作的细微之处实现工作效率上的提升,进而提升企业整体的运行效率。对工业行业来说,应用机械自动化技术还能有效降低传统工业生产中对人工的依赖性,大幅提高工业企业的生产能力,在行业发展的过程中起到了非常积极的促进作用。

4.3人工智能技术在航空航天技术中的应用

航空航天技术是目前人类最高科技的集合体,涵盖众多学科,如信息技术、卫星技术、生物技术、天文学、生命科学等,对提高国家的国防力量、提高国家的国际地位、促进国家经济增长都具有非常重要的意义。航天器设计是航空航天领域中的关键工作之一,而远程控制又是航空航天技术长久发展以来研究的重点,因我国对该技术的研发起步较晚,我国对航空航天技术的研发存在重重困难,但经过国家和科技工作者的不懈努力,目前我国航空航天技术已处于世界先进水平。将人工智能技术应用于航天远程控制中,利用智能系统对数据进行自动采集、处理和储存,如通过采集航天器的轨道信息,并以此分析航天器的运行状态,根据分析结果制定运行决策,对提高航天器的运行安全性和运行质量都是非常重要的举措,推动国家航空航天事业获得进一步发展。

4.4人工智能技术在医疗领域中的应用

目前,人工智能技术在医疗领域中的应用已经非常广泛,使医护人员的工作内容不断得到优化,提高工作效率,还有效提高了国家医疗水平。具体应用包括以下几项内容:①在电子病历中的应用。传统就医诊断环节,医生都需要以手写方式记录病患病例,并根据病例详细列出治疗方案,工作量大,且效率较低,病例保存便捷性较差。通过应用电子病例,不仅能大幅减少病例记录的工作量,还能在医疗系统中直接勾选治疗所需药品,完成病例及用药的勾选后打印即可,既能大幅提高工作效率,还能将病例在计算机中进行储存,且现阶段病例文件的储存格式不再局限于文字,语音和图像也可被添加到病例中,提高医疗诊断的准确性。②在健康管理中的应用。在现代医疗中应用人工智能技术,对病患的病情进行智能化分析,能使医生对疑难病症的分析更加全面准确,制定针对性更强的医疗方案,提高医疗水平,为改善患者的健康状况提供辅助。

5结语

综上所述,计算机人工智能技术的应用,对社会各行业都产生了不同程度的影响,人们的工作和生活方式得到优化和改变,国家科技水平也不断提升。加强对计算机人工智能技术的研究,推动人工智能技术在各个行业中的应用,让人们能切身感受到科技为生活带来的改变,对促进人类社会的发展具有非常重要的意义。

【参考文献】

【1】辛颖楚.计算机人工智能技术研究进展和应用分析[J].信息与电脑(理论版),2019(9):121-122+125.

【2】陈长印.计算机人工智能技术研究进展和应用分析[J].计算机产品与流通,2019(12):5.

【3】杨坤,顾兢兢.计算机人工智能技术研究进展和应用分析[J].电脑知识与技术,2019,15(33):197-198.

【4】郑骜.浅谈计算机人工智能技术研究进展和应用[J].科学与财富,2019(19):276.

【5】赵智慧.计算机人工智能技术研究的进展及应用[J].信息与电脑(理论版),2019,31(24):94-96.

【6】李子青.计算机人工智能技术的应用与未来发展分析[J].科技经济市场,2019(10):9-11.

【7】罗柱林,韩文超,吕文杰,等.计算机人工智能技术的应用及未来发展探究[J].中国航班,2019(16):90.

【8】李乔凤.计算机人工智能技术的应用与未来发展分析[J].数字技术与应用,2020,38(3):91+93.

【9】肖梅.计算机人工智能技术的应用及未来发展初探[J].缔客世界,2019(1):39.

人工智能辅助医疗诊断范文4

应用人工智能技术摸索消化道疾病早期精准筛查的可行性。

不能普及的消化道筛查

根据世界卫生组织的数据,中国是胃癌第一大国,每年新发胃癌68万人,占到全球总数的40%;死亡50万人,几乎每分钟都有人因胃癌离世。而根据英国癌症研究中心(Cancer Research UK)研究表明,四期胃癌的5年存活率仅为5%,而一期胃癌则超过80%(截止2011年研究数据)。因此,胃癌筛查至关重要。

但在中国,胃癌筛查并不普遍,早期胃癌的筛查率不到20%,绝大多数病人一经发现已是晚期。相比较而言,日本早期胃癌的筛查率已经达到70%到80%。这是因为日本40岁以上的人,每两年就被要求做一次胃镜,并属于医保报销范畴。

“中国也应这样做。”中华医学会消化、青年委员会副主任委员廖专说。但中国筛查不能普及有两个主要原因:第一是传统消化道检查往往要接受胃镜、肠镜检查,而这种方式通常让患者感到很难受,特别是对于麻药不耐受的老人和儿童。第二个原因则更为重要,中国有14亿人口,40岁以上的人群有几个亿。而中国所有消化科医生每年能做大约在2000多万个胃镜,需求和现实之间存在巨大反差。“更进一步说,一个病人的片子就有好几万张。医生一般看一个患者的片子需要半小时左右,我一天看五六个已经很多了。”廖专说。

安翰医疗技术有限公司董事长吉朋松期望,安翰医疗和IBM的合作,能通过人工智能方法,先对病人的片子进行初筛,把有问题的片子选出来,由医生最后审阅。“这样,我以后一天能看100个人,能服务更多老百姓,就厉害了。”廖专赞同地说。

胶囊机器人与数据采集

在项目之前,IBM在全球进行了调研,发现利用人工智能技术开展的医疗影像分析集中在乳腺超声和X光、皮肤癌筛查、冠心病和血管栓塞筛查。

“调研显示,人工智能与消化道影像,业界做得很少,因为数据获取比较难。”IBM中国研究院认知医疗研究总监谢国彤说。

不^,这种现状正在被改变。过去8年,安翰医疗通过自主研发,推出“安翰磁控胶囊内窥镜”,已通过临床验证,并在 400多家医院和体检机构得到应用。

胶囊内窥镜外形比一颗胶囊略大一点,上面装有发光灯管、磁定位芯片和探头,就像一艘“巡航舰”。被检查者用水吞服一颗胶囊,平躺下来,医护人员便可控制胶囊内窥镜在胃内行走,检查过程20分钟。之后“胶囊机器人”会排出体外。

在此之前,以色列等国研发的胶囊式内窥镜只能利用自身重力与肠道蠕动在消化道内前进,而安翰胶囊采用磁控技术,内窥镜可在三维空间内实现毫米级控制。同时,胶囊胃镜光学系统可在小范围内完成光学远近距离高清晰、无失真拍摄。这些技术让胶囊内窥镜可以在胃部“无死角检查”。

这个“胶囊机器人”解决了人工智能在消化道筛查中的第一步――数据采集。之后,数据经过包括七八道工序在内的数据预处理。

目前,双方团队一起设计深度学习网络,设定参数,做出病灶识别模型,并用数据反复迭代验证。

这是一个工程化过程,还有许多未知的东西要去尝试。 安翰医疗执行总裁、联合创始人肖国华介绍,在未来几个月内将又一个初步结果,很有希望做出一个不错的识别效果。

“火眼金睛”

“未来在1分钟左右,可以把一个病人的片子通过机器先全部筛查一遍。大夫所做的工作就是检查核实。看片子的过程会变得轻松,时间也会很短。”安翰肖国华说,“我们希望人机协同,实现前所未有的高度智能医疗服务。”

医生廖专则用孙悟空的法力来比喻这套智能系统。“孙悟空能‘72变’,胶囊内窥镜相当于孙悟空把传统庞大的插入式胃镜变成小小的内镜。孙悟空还能‘翻筋斗云’,我们可以控制胶囊机器人在胃里‘翻筋斗云’,把内部看得更清楚。这两个法力现在都实现了。我们要实现它的第三个法力,即‘火眼金睛’。通过IBM和安翰的人工智能技术,片子筛查能像孙悟空一样具有火眼金睛的法力,从而造福更多老百姓。”

肖国华还谈及安翰正在摸索的一套商业模式。“中国有2.6万名消化科医生,其中相当大比例集中在大城市,基层医疗资源极为缺乏。我们已经有一个云平台,把这个技术推动到一些基层”。

人工智能辅助医疗诊断范文5

关键词:决策支持系统 人工智能 专家系统

一、智能决策技术概述

1.决策支持系统的形成

随着计算机技术和应用的发展,如科学计算、数据处理、管理信息系统的发展以及运筹学和管理科学的应用,为决策支持系统的形成打下了基础。决策支持系统(Decision Support System—DDS)是80年代迅速发展起的新型计算机学科。70年代初由美国M.S.Scott Morton在《管理决策系统》一文中首先提出决策支持系统的概念。

DSS实质上是在管理信息系统和运筹学的基础上发展起来的。管理信息系统重点在对大量数据的处理。运筹学在运用模型辅助决策体现在单模型辅助决策上。随着新技术的发展,所需要不得不解决的问题会愈来愈复杂,所涉及的模型会愈来愈多,模型类型也由数学模型扩充数据处理模型。模型数量也愈来愈多。这样,对多模型辅助决策问题,在决策支持系统出现之前是靠人来实现模型间的联合和协调。决策支持系统的出现就是要解决由计算机自动组织和协调多模型运行,对大量数据库中数据的存取和处理,达到更高层次的辅助决策能力。决策支持系统的新特点就是增加了模型库和模型库管理系统,它把众多的模型(数学模型和数据处理模型以及更广泛的模型)有效地组织和存储起来,并且建立了模型库和数据库的有机结合。这种有机结合适应人机交互功能,自然促使新型系统的出现,即DDS的出现。它不同于MIS数据处理,也不同于模型的数值计算,而是它们的有机集成。它既有数据处理功能又具有数值计算功能。

决策支持系统概念及结构。决策支持系统是综合利用大量数据,有机组合众多模型(数学模型与数据处理模型等),通过人机交互,辅助各级决策者实现科学决策的系统。

DSS使人机交互系统、模型库系统、数据库系统三者有机结合起来。它大大扩充了数据库功能和模型库功能,即DSS的发展使管理信息系统上升到决策支持系统的新台阶上。DSS使那些原来不能用计算机解决的问题逐步变成能用计算机解决。

2.人工智能概念和研究范围

(1)人工智能定义。由计算机来表示和执行人类的智能活动(如判断、识别、理解、学习、规划和问题求解等)就是人工智能。人工智能的研究在逐步扩大机器智能,使计算机逐步向人的智能靠近。

(2)人工智能的研究范围。人工智能研究的基本范围有:问题求解、逻辑推理和定理证明、自然语言处理、自动程序设计、学习、专家系统、机器人学、机器视觉、智能检索系统、组合高度问题、系统与表达语言等;其主要研究领域有:自然语言处理、机器人学、知识工程。

自然语言处理:语音的识别与合成,自然语言的理解和生成,机器翻译等。

机器人学:从操纵型、自动型转向智能型。在重、难、险、害等工作领域中推广使用机器人。

知识工程:研究和开发专家系统。目前人工智能的研究中,最接近实用的成果是专家系统。专家系统在符号推理、医疗诊断、矿床勘探、化学分析、工程设计、军事决策、案情分析等方面都取得明显的效果。

3.决策支持新技术

(1)数据仓库的兴起和概念。数据仓库(Data Warehouse—DW)的概念是Prism Solutions公司副总裁W.H.Inmon在1992年出版的书《建立数据仓库》(Building the Data Warehouse)中提出的。数据仓库的提出是以关系数据库,并行处理和分布式技术的飞速发展为基础,它是解决信息技术在发展中一方面拥有大量数据,另一方面有用信息却很贫乏(Data rich—Information poor)这种不正常现象的综合解决方案。

W.H.Inmon在《建立数据仓库》一书中,对数据仓库定义为:数据仓库是面向主题的、集成的、稳定的、不同时间的数据集合,用于支持经营管理中决策制定过程。

传统数据库用于事务处理,也叫操作型处理,是指对数据库联机进行日常操作,即对一或一组记录的查询和修改,主要为企业特定的应用服务的。用户关心的是响应时间,数据的安全性和完整性。数据仓库用于决策支持,也称分析型处理,用于决策分析,它是建成立决策支持系统的基础。

(2)数据仓库的特点。数据仓库是面向主题的:主题是数据归类的标准,每一个主题基本对应一个宏观的分析领域。

数据仓库是集成的:数据进入数据仓库之前,必须经过加工与集成。对不同的数据来源进行统一数据结构和编码。统一原始数据中的所有矛盾之处,如字段的同名异义,异名同义,单位不统一,字长不一致等。总之将原始数据结构作一个从面向应用到面向主题的大转变。

数据仓库是稳定的:数据仓库中包括了大量的历史数据。数据经集成进入数据仓库后是极少或根本不更新的。

数据仓库是随时间变化的:数据仓库内的数据时限在5-10年,故数据的键码包含时间项,标明数据的历史时期,这适合DSS进行时间趋势分析。

数据仓库中数据很大:通常的数据仓库的数据量为10GB级,大型的是一个TB级数据量。数据中索引和综合数据占2/3,原始数据占1/3。

数据仓库软、硬件要求:需要一个巨大的硬件平台和一个并行的数据库系统。

(3)数据开采的概念及方法。1995年在加拿大召开了第一届知识发现(Knowledge Discovery in Database—KDD)和数据开采(Data Mining—DM)国际学术会议以后,“数据开采”开始流行,它是“知识发现”概念的深化,知识发现与数据开采是人工智能、机器学习与数据库技术相结合的产物。KDD一词是在1989年8月于美国底特律市召开的第一届KDD国际学术会议上正式形成的。

知识发现被认为是从数据中发现有用知识的整个过程。数据开采被认为是KDD过程中的一个特定步骤,它用专门算法从数据中抽取模式。

数据开采的主要方法和技术有:信息论方法、集合论方法、仿生物技术、公式发现、统计分析方法及其它方法。

二、智能决策技术原理

人工智能辅助医疗诊断范文6

关键词:智能机器人;外科学;专业学位研究生

人工智能(ArtificialIntelligence,AI)通过计算机技术来模拟人类的智能,是一门多学科、多领域交叉的前沿学科[1]。AI的快速发展,促使“AI+教育”模式席卷整个教育行业,能够在一定程度上缓解教育行业持续增长的个性化需求与日益稀缺的师资之间的矛盾,从而成为教育改革的热门和前沿[2]。当前在临床教学过程中,医学专业学位硕士研究生面临跨学科知识面狭窄和临床能力不足、本学科疾病相关基础知识匮乏和遗忘、缺乏横向和纵向的整合式医学知识回顾与临床思维训练等一系列突出问题[3]。而智能机器人作为“AI+教育”的一种形式,集多学科知识库、虚拟检查和操作、病例资料库、课程中心、个性化考核等智能模块于一体[4],在专业学位硕士研究生临床教学中具有巨大潜力。我们将智能机器人应用于外科学专业学位硕士研究生临床能力培养中,取得了较好的教学效果,现报告如下。

1对象和方法

1.1对象

2019年2月至2020年1月,选取重庆医科大学第一临床学院在骨科进行临床实践的2017级、2018级外科学专业学位硕士研究生共82名作为研究对象,其中男生65名,女生17名,年龄23~30岁,平均(25.20±1.24)岁,所有研究对象均知情同意。

1.2方法

本研究采用试验对照方法。利用骨科两个独立楼层的病区作为便利条件,按照随机原则以每病区41人分入骨科两个病区。一个病区配置智能机器人辅助临床教学,作为试验组,男生34人,女生7人,年龄23~30岁,平均(25.05±1.11)岁;另一病区未配置智能机器人,进行传统临床教学,作为对照组,男生33人,女生8人,年龄23~30岁,平均(25.37±1.36)岁。入科前统一进行理论知识考试,所有学生使用同一套试卷。两组基线资料如年龄、性别及入科前理论考试成绩比较均无显著性差异(P>0.05)。

1.3教学实施

两组均按照国家《住院医师规范化培训内容与标准(试行)》[5]进行培训,以住院医师负责制参加临床医疗工作,临床技能操作基本训练要求按统一标准,定期以小讲座、疑难病例讨论形式学习相关专业理论知识。每位学生均固定医疗组,并指定一名带教教师,均为本科室取得中级职称3年以上的医师。临床实践时长均为24周。1.3.1试验组教学实施整体上按照带教教师为主、智能机器人为辅的教学模式,将智能机器人应用于研究生临床医疗实践活动中,包括参与入科教育、岗前培训、小讲座、疑难病例讨论、跟随查房等。(1)移动数据终端功能:通过先期导入骨科教学大纲、骨科学专著、运动系统教学PPT、影像学资料、解剖资料、病理资料、教学视频,建立智能机器人教学多学科数据库。学生可利用智能机器人这一移动数据终端,随时通过输入和语音对话功能查询、获取相关知识,及时解决临床活动中遇到的部分问题。(2)人工智能化辅助教育:依靠人工智能的自适应学习功能,智能机器人可在与学生不断的交互中了解其学习短板,不断更新临床指南、专家共识等临床研究进展,实现教学数据库的持续更新。临床教学过程中,带教教师在讲解典型疾病、分析疑难病例和操作指导时,智能机器人可以就云数据库相关资料及网络资源进行系统检索,快速整合相关图片、视频等资料,配以语音解读及即时问答,实现即时教学基本理论巩固和教学深度及广度的拓展。此外,根据对知识的掌握程度,智能机器人可为不同学生制订个性化学习计划。(3)考核功能:通过实时提问、课后问卷调查等形式对学生进行反馈式考核,通过下一次学习提醒或再考核,不断促进学生巩固所学知识,以考助练,以练代考,练考一体。1.3.2对照组教学实施采用传统临床教学法,学生跟随带教教师参与床旁示教式临床实践,同时参加入科教育、岗前培训、小讲座、疑难病例讨论等教学活动。

1.4教学效果评价

1.4.1理论知识考试24周的临床实践结束后进行理论知识考试。试题命题与组卷由两名具有副高级职称、未承担带教任务的教师负责。所有学生使用同一套试题,均为选择题,题量100题,总分100分,考核方式为机考,每位学员的题目顺序由电脑随机抽取,在相同时间闭卷完成考试。1.4.2问卷调查调查问卷为自行设计,经过本专业基地3位高级职称专家审核。包括5个问题,设置赞同、中立和不赞同3个选项。问卷调查由住培教学秘书负责,于出科理论考核后现场发放并回收,学生匿名填写。1.5统计学处理采用SPSS25.0软件对相关数据进行统计分析。计量资料以均数±标准差(x±s)表示,组间比较采用t检验;计数资料以频数和百分比表示,组间比较采用χ2检验。P<0.05表示差异具有统计学意义。

2结果

2.1两组理论知识考试成绩比较

试验组理论知识考试成绩为(87.02±4.89)分,高于对照组的(80.59±5.86)分,差异具有统计学意义(t=5.406,P<0.01)。

2.2两组对教学方法的评价比较

以问卷调查方式了解两组对教学方法的评价。共发放问卷82份,回收有效问卷82份,有效回收率100.0%。结果显示,试验组对教学方法的满意度高于对照组,差异具有统计学意义(P<0.05,见表1)。

3讨论

3.1专业学位研究生临床教学的特点和存在的问题

专业学位研究生的学习不同于本科学生,需要培养自主探究和解决问题能力[6]。同时,临床实践教学亦不同于课堂教学,更需要学生发挥主观能动性和积极性,解决临床工作中遇到的困难和发现的问题,有目的性地获取知识[7]。专业学位研究生临床教学长期以来存在教学资源较为单一、缺乏新颖性及参与感等问题[8],教学内容主要局限于临床症状与临床处置,缺乏对疾病病理生理基础、解剖基础等相关知识的展示与梳理,导致学生机械地重复临床工作,而对疾病诊断、影像学资料理解及分析能力较差,出现临床实践和基础理论脱节现象[9]。

3.2智能机器人的智能移动数据终端功能有利于学生掌握知识

智能机器人辅助教学可以在一定程度上弥补上述缺陷[10]。本研究结果显示,试验组理论知识考试成绩高于对照组,这提示智能机器人辅助骨科临床教学,使学生能够更深入地理解、更好地掌握理论知识。骨科医疗领域数据中超过50%的是医学影像和病理图片等非结构化数据,智能机器人通过人工智能技术建立骨科和相关学科知识库,在临床教学中及时、实时提供病理生理、解剖等基础知识,进而带来更好的决策体验,提高临床教学效率,让临床教学起到再次巩固整合基础知识的作用,让学生更好地做到学以致用。智能机器人具备的自适应学习功能,高效、准确地提供相关学科知识,使师生双方教与学的效率得以大幅度提升,交互学习和自主学习能力得以增强。

3.3智能机器人利于实施个性化反馈和考核

智能机器人的另一个重要特点就是在与学生交互过程中实时准确记录其对知识的掌握程度,通过信息反馈分析,制订个性化教学计划及考核方案,实现某种程度上的因材施教,这也是带教教师个人工作很难达到的。临床带教教师首要属性是临床医生,并非全日制专职教师,需要承担大量繁重的临床工作,无法随时随地回答学生的问题和亲自指导技能操作。因此,智能机器人对传统带教模式进行了有效补充,弥补了师资不足所带来的缺陷。

3.4智能机器人提高了学生满意度

智能机器人由于形式的新颖性和科技潮流感,激发了学生学习的主动性、积极性和兴趣,活跃了临床教学气氛。与对照组相比,试验组学生对教学模式的评价更高。

4结语

智能机器人辅助骨科临床教学,提高了专业学位研究生临床教学质量,得到了学生的普遍认可,同时对现有培养制度进行了有效补充,丰富了教学手段,创新了培养模式,值得进一步探索。但人工智能在医学教育中的应用尚处于起步阶段,技术上不太成熟,功能设计也有待研发人员和医学教育人员共同完善。值得一提的是,智能机器人可以提高医学生的学习效率,但不能完全取代教师。人类的想象力、独创思维、交流能力是人工智能暂时无法具备的,医学专家丰富的理论知识和宝贵的临床经验,以及言传身教的影响力,在专业学位研究生临床实践教学中始终占主导地位,不可或缺。

参考文献:

[1]HANER,YEOS,KIMMJ,etal.Medicaleducationtrendsforfuturephysiciansintheeraofadvancedtechnologyandartificialintelligence:anintegrativereview[J].BMCMedEduc,2019,19(1):460.

[2]卫荣,马锋,侯梦薇,等.人工智能在医学教育领域的应用研究[J].医学教育研究与实践,2016,25(6):835-837.

[3]温秀杰,岑颖,莫媛媛,等.医学专业学位研究生教育模式与考核体系的思考与建议[J].医学教育研究与实践,2016,25(3):409-411.

[4]HAYASAKAY,FUJIKURAT,KASHIMURAM.Expectationsforthenextgenerationofsimulatedpatientsbornfromthoughtfulanticipationofartificialintelligence-equippedrobot[J].JNipponMedSch,2018,85(6347-349.

[5]国家卫生计生委办公厅.住院医师规范化培训内容与标准(试行)[A].国卫科教发[2014]48号.

[6]葛炳辰,黄华兴,夏添松.临床医学专业学位研究生现状分析及对策思考[J].南京医科大学学报(社会科学版),2017,18(1):67-69.

[7]孙慧.通过全国医学院校大学生技能竞赛反思儿科临床实践教学[J].中国继续医学教育,2018,10(29):43-45.

[8]郝婷,李玉华,李建光.基于“医教协同”背景下的临床医学类专业学位硕士研究生课程教学现状与对策研究[J].新疆医科大学学报,2017,40(8):1125-1126.

[9]KUMARNL,PERENCEVICHML.Howtomaximizelearninginagas-troenterologyfellowclinic:preparetoprecept[J].Mentoring,Education,andTrainingCorner,2018,155(1):8-10.