前言:中文期刊网精心挑选了电工电子实验教学案例范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
电工电子实验教学案例范文1
[关键词]Multisim;教学;电路;仿真
[中图分类号]G642
[文献标识码]A
[文章编号]2095-3712 2015 13-0075-03
[作者简介]陈少航 1981― ,男,广西桂林人,研究生,桂林航天工业学院自动化系讲师,研究方向:信号分析及处理。
“电路分析基础”课程是自动化、测控技术与仪器、电子信息工程技术等电类本科专业十分重要的基础课,该门课程理论性和抽象性都比较强,学习难度比较大,又由于课程教学条件的限制,学生的学习积极性及教学效果不是很理想,需进一步提升。因此,因系制宜改革教学方法及方式是一项重要的研究课题。近年来,随着软件技术特别是仿真软件技术的飞速发展,越来越多的高校将仿真技术引入到电类课程教学过程。下面结合我校相关专业特点及教学现状,详细介绍Multisim在“电路分析基础”课堂教学和实验教学中的应用。
一、Multisim简介
Multisim是美国国家仪器公司开发的以Windows为平台的仿真工具,是一款专业的电子仿真软件,可以模拟单片机应用系统、模拟电子线路、数字电子线路及混合电路的工作过程及结果,仿真界面人性化强,元器件模型、虚拟仪器仪表及MCU非常丰富,能够实时仿真“电路分析基础”课程的各种电路,并能实时观察不同元件参数对电路造成的影响。
二、Multisim在课堂教学中的实践
目前,“电路分析基础”课堂教学主要是PPT静态演示为主,也就是课程的讲授是以PPT为主,这样的讲授方式持续了很多年,但教学效果并没有获得质的突破,究其原因,主要是没有对本课程抽象的理论知识建立相应的教学模型,因此,学生对教师讲解的内容理解得不够深刻,有一种似懂非懂、知其然而不知所以然的感觉。
Multisim是一款很强的实物模型仿真软件,课堂PPT教学过程穿插对应的Multisim仿真电路模型,能建立起一种交互式、讨论式的教学模式,提升学生对空间实物电路的理解能力,下面介绍一下Multisim仿真技术在课堂教学中的具体应用:
一 一阶电路状态、响应的仿真
一阶电路的状态及响应分析是“电路分析基础”课程的重点内容,同时也是学生比较难掌握的内容,它主要是分析电路中的零状态、零输入以及全响应,图2是用于仿真一阶电路的RC电路,激励是一个幅值为1伏,频率为1000赫兹,占空比为50%的方波。设计电路的时间常数,当方波值为1伏时,用来模拟电容的充电过程;当方波值为0时,用来模拟电容的放电过程。电容充、放电过程的电路响应实际就是图1的零状态和零输入响应过程。
采用Multisim10.0里的Simulite/Analyses/Transient Analysis 瞬态分析 对图2进行仿真分析,利用软件自带的虚拟示波器,得到如图3所示的响应结果。图2中的粗线是方波信号,细线上升阶段是电容充电过程,细线下降阶段是电容放电过程,在图2中利用Multisim的坐标定位功能,可以得到电容的充、放电过程是符合一阶电路零状态储能和零输入衰减过程,在一个时间周期内,图1的响应结果也是电路全响应的结果。
另外,图1中的电阻的变化会引起时间常数的变化、引起电路响应的变化,利用Multisim的Simulite/Analyses/Parameter Sweep 参数扫描分析 功能,同时观察不同电阻值对电路引起的响应结果如图2所示,图2显示了R1分别为50Ω、100Ω、150Ω以及200Ω的电路响应。
图2、图3 在仿真过程中,融合了一阶电路的零输入、零状态、全响应对电路响应的影响,利用参数扫描功能同时观察不同电路参数对电路响应结果的影响,这有利于学生理解和掌握这一抽象的难点内容,同时,学生可以自行修改实验参数,进一步加深印象和理解。
二 谐振电路仿真
串、并联谐振是正弦稳态电路分析的重要内容,图4 由电感、电容以及电阻串联构成,用来仿真串联电路的谐振,图4阻抗为:
将电路元件参数代入①式,计算出①式中的虚部位为零,由串联谐振条件可知,图4发生谐振,并且信号源和电阻R1上的电压值相同,同时电容、电感的串联支路电压为零,通过仿真软件内嵌的虚拟交流电压表测量显示,仿真和理论分析结果相同。
三、Multisim在实验教学中的应用
“电路分析基础”课程实验内容较多、较难,而单次实验课时间又较短,以前,每次做电路实验都比较仓促,实验的效果也不是很好,需要进一步改进实验教学模式。Multisim的引入取得了传统实验教学模式达不到的效果。课外提前布置实验内容的仿真验证任务,要求学生提前用Multisim进行实验,而且学生可以在实验要求范围内自行修改Multisim仿真参数和仿真电路,仿真达到预定目标之后,再搭建具体的实物电路,经过一个学期的教学实践,证明这种实验模式能缩短实验时间、降低实验器材的损耗,学生反应更能适应这种新式的实验模式,而且实验效果获得显著提高。下面用图5验证戴维南定理为例,介绍Multisim仿真技术在实验教学中的具体应用,图中的A图有一个由流经R4电流控制的电流源, 断开RL1,计算 也可以用Multisim内嵌的虚拟仪器测量 得到A图的等效Uoc=1V;等效Req=5Ω;其戴维南定理等效电路如图B所示,同时相同改变A、B图负载参数,仿真结果显示A、B图的直流电流表读数始终保持相同。仿真结果表明对负载RL的戴维南等效电路是正确的。
四、结束语
经课堂和实验教学双重实践证明,将Multisim仿真技术引入“电路分析基础”教学过程,课堂教学中结合理论分析不断穿插仿真案例,实验教学前布置仿真任务,实验中加入电路的仿真环节,有利于提高学生的学习兴趣,利于激发、调动学生的学习积极性和主动性,有利于培养学生设计电路、分析电路、解决电路故障的能力,有利于培养学生探索和创新思维,有利于降低实验器材损耗,并能加强师生之间交流和合作,提高实验的安全性和可靠性,提升学生的学习效果和课程的教学质量,促进教学健康、快速、跨越式发展。
参考文献:
[1] 邱关源.电路[M].北京:高等教育出版社,1999.
[2] 张新喜,许军,王新忠,等.Multisim 10电路仿真及应用[M].北京:机械工业出版社,2010.
[3] 王庭才.Multisim11电子电路仿真分析与设计[M].北京:机械工业出版社,2012.