前言:中文期刊网精心挑选了遥感成像原理与遥感图像特征范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
遥感成像原理与遥感图像特征范文1
关键词:遥感地质制图 蚀变信息提取 构造信息提取 高光谱遥感技术
中图分类号:P237 文献标识码:A 文章编号:1672-3791(2015)05(c)-0000-00
一、遥感技术的基本特征
长期以来,地质工作者迫切希望能有一种“窥一斑而知全豹”的方法来找矿,因此遥感技术以其独有的远程观测以及判断特点在地质找矿中的作用就突显出来。首先,由于遥感是远距离探测技术,所以遥感可以不对物体进行接触而进行探测,正因为如此遥感技术可以覆盖更广的范围,因此在进行找矿工作时,遥感可以将所观测范围内地表以及地貌的情况通过影像传输给卫星,然后由地面接收站接收图像,让工作人员对观测到的数据进行处理和分析。其次,因为遥感技术覆盖范围广,并且能同时观测多个区域,所以节省了观测时间,并且传输的图像信息更加准确,工作人员能够通过处理后的数据和图像找到矿产资源的位置,甚至能了解大致的分布范围,这为找矿工作节省了人力以及物力。通过研究遥感影像上的地质构造与成矿的关系,可认识成矿规律并圈定找矿远景区,通过对遥感图像进行增强处理,综合分析,可提取地质信息,在我国最早使用遥感图像的行业是地质行业。
遥感技术从字面上可以理解为“遥远的感知”,因此遥感技术是通过远距离传输来进行观测和新词采集的,这就需要电磁波、红外线以及可见光等的帮助。遥感技术在进行影像分析时,检测到的影像中会出现特定的光谱特征和纹理特征,含矿区域会呈现出较为明显的标志。现人们将许多先进的科学技术应用到遥感技术当中,其中对计算机的应用是必不可少的,因为通过遥感技术传输到地面的图像需要经过计算机软件的图像和数据处理,才能将含矿区域显示出来,从而根据显示的情况进行工作项目计划的设计以及开展。遥感技术在地质方面的应用一般都是以制图为主,并与地质图相套合,使得遥感影像图与地质图具有相同的地图投影坐标系统,这可使工作区遥感概貌与地质图相互对应的,并能产生立体感较强的画面,以综合图件来反应工作成果。
随着现有矿产资源不断地被发现并且开采,导致矿产所在地普遍有自然及地理环境较为恶劣的情况,不便于人工的探测及寻找,因此遥感技术在这种地形条件差、交通不便的高寒地区具有常规地质方法不可替代的优越性。
二、遥感技术的找矿应用
遥感探测矿产的核心就是通过遥感探测器以及遥感图像等提取岩矿蚀变情况以及区域地质信息。在找矿中的直接应用就是提取遥感蚀变信息,围岩蚀变是热液与原岩发生的相互作用,是成矿作用。因此,蚀变岩矿物的存在能够帮助遥感技术进行探测,因为这种物质有光谱特征,在遥感影像上具有特殊的显示,因此能够根据蚀变的类型,预测矿物的种类以及分布。
遥感技术进行矿物探测的原理,是因为地物普遍都能够进行电磁波的反射和投射,而每种地物因为其结构以及特性不同,所以反射出的光谱也不相同,因此就可以根据地物反射出的光谱特征,判断地物的种类,并通过光谱图像进行信息的提取。
遥感技术能够对地物进行探测,并向地面传回遥感图像以及数据,通过对遥感影像的前期处理,进行图像的降噪,以及真彩色或者假彩色的合成,对遥感影像进行目视解译,所谓的目视解译就是通过以往的经验以及知识,对遥感影像上存在的地物根据其形状、颜色、周围环境等情况进行判读,从而判断出影像中存在的物体都是什么。在利用遥感影像进行找矿的应用时也是如此,需要针对遥感图像的内容联系周边地质环境判断是否有成矿的可能。利用遥感技术进行找矿时,可以通过多种空间影像进行信息的提取,比如影像上的线状区域、环状区域、带状区域等情况,都能够研究矿物资源是否存在。除此之外,对于色异常以及断裂构造的信息提取都能够进行隐秘矿物资源分布的探测,这是找隐伏矿床的重要手段之一,是区域地质填图的理想技术之一。
三、遥感地质找矿技术的发展趋势及前景
(一)高光谱数据的应用
遥感技术一直被作为辅助手段应用于地质学中,但随着计算机领域高新技术的快速发展,遥感技术的进步和应用,尤其是作为现展的技术手段也愈加显得重要,领域也在不断的扩大。遥感技术本身包含多方面的内容导致其复杂无比,但是因为高光谱遥感的广泛应用,利用这种方法辅助地质工作进行探测的技术也开始逐步成熟。高光谱遥感技术在地质找矿中因其高空间分辨率给遥感地质找矿添加新的血液,高光谱是集多种探测及信息处理技术于一体的综合性技术。它的基础工作原理是利用成像光谱仪与纳米级的光谱分辨率来进行成像,成像的同时记录下成百条的光谱通道数据,这种技术能够进行辐射信息、光谱信息、地物空间信息的同步获取,从每个像元上均可以提取一条连续的光谱曲线。高光谱图像能够显示出丰富的信息,并可通过反演圈出矿化区。
(二)3S技术的结合
所谓的3S技术就是遥感(RS)、地理信息系统(GIS)及全球定位系统(GPS)这三种技术,3S技术是目前地质勘探的业界利器,三种技术各自有各自的优势。利用GPS能够通过微信信号进行定位,并能够测量三维空间数据,在信号足够好的情况下,探测的数据是十分准确的。地理信息系统作为地理信息的集合,具有储存、处理地理信息数据等多种功能,并且地理信息系统的数据库具有高集成、一体化并且储存空间大的特点,因此地理信息系统与遥感技术的结合,能够为遥感技术提高海量的数据储存空间,并且还能够进行数据以及图像的管理及浏览,并能够将搜集到的海量地理数据信息然后回馈给信息中心进行分析,然后遥感技术RS负责在地理区域内进行找矿工作。
(三)遥感技术与传统地物化找矿方法的融合
因为矿床的形成并不是一种物质造成的结果,因此想要实现利用遥感技术进行找矿工作,就必须要将遥感技术与地、物、化找矿方法结合起来,避免因为探测单一的物质而造成的失误和阻碍情况的发生。目前以遥感信息为主体,建立多源地学数据库进行综合信息找矿法势在必行。
结束语:
遥感技术作为地质勘查的重要手段,对矿产资源的可持续发展有着积极的作用。利用这一高新技术不但破解了我国目前由于资源匮乏而出现的深层次找矿难题,也为我国勘探科学的进步找到了新的出发基点。因为遥感技术实时、准确的特性,被广泛应用于地质找矿工作中,这项技术在地质找矿中的运用,不仅有效地提高了地质找矿的质量以及数量,还提高了找矿工作的准确性,并且提高了工作效率,因此遥感找矿技术的实运用还拥有更加广阔的发展空间。
参考文献
[1] 钱建平,伍贵华,陈宏毅.现代遥感技术在地质找矿中的作用【L】.地质找矿论丛, 2012,27(3):355-359.
遥感成像原理与遥感图像特征范文2
关键词:合成孔径雷达:几何校正;数字高程模型;
Abstract: With the country"s economic development, there is a growing demand for the topographic maps . High-resolution remote sensing satellites and SAR have had an unprecedented progress and it becomes an important data source for the topographic mapping. SAR as an positive microwave remote sensing, high geometric resolution of its images are very beneficial to mapping. It can be used for mapping topographic maps, produced orthophoto maps, compilation of various thematic maps. This paper describes the principles of radar remote sensing and image geometric correction method.
Keyword: Synthetic Aperture Radar; Geometric Correction; Digital elevation model
中图分类号:TP7文献标识码:A 文章编号:
一、引言
高分辨率遥感卫星以及影像处理系统的相继出现使得困难地区的地形图测绘和快速更新大比例尺地形图成为可能。合成孔径雷达作为一种特殊的微波遥感器,其影像分辨率在不断提高,且利用SAR测图,具有仅用少量控制点、测图自动化程度高、工作效率高等优势。因此,深刻理解SAR成像原理,探索如何对SAR图像进行几何校正具有很强的理论意义和现实意义。
二、SAR的成像原理
SAR,是用多普勒频移这一物理现象来改善雷达成像的方位向分辨率的,它利用一个小天线作为单个辐射单元,将此单元沿直线不断移动,在移动过程中选择若干位置,在每一个位置上发射一个信号,接收相应发射位置的回波信号存储记录下来,同时保存接收信号的相位和幅度。如图1,假设一个长度为L的真实孔径雷达天线从点a移动到点b再到点c,被成像点D的雷达斜距则由大变小再变大,雷达接收到从地面点D反射回来的雷达脉冲频率也会产生变化,即频率漂移由大变小。通过精确测定接收脉冲的雷达相位延迟并跟踪频率漂移,最后可以合成一个脉冲,使方位向的目标被锐化,即提高了方位向分辨率。
图1 SAR成像几何原理
三、SAR图像的特点
雷达侧视斜距投影受到地形起伏的影响,使得SAR图像存在几何畸变,主要畸变特征有:斜距显示的近距离压缩、雷达图像透视收缩、雷达迭掩、雷达阴影、影像位移等。
(1)斜距显示的近距离压缩。在斜距显示的图像上,地面上等间距的地物目标间距离均被缩短了,但近距端(即雷达波束照射在距雷达近的一端)要比远距端缩短得更多,使图像产生几何畸变,这种现象称为图像沿斜距向的近距离压缩。
(2)SAR图像的透视收缩。SAR图像上斜坡的长度按比例尺换算后总有比实际长度短的现象,称为透视收缩。如图2所示,斜坡AB在SAR图像上的构像A1B1,显著的缩小了,而BC线段的构像BlC缩小的比较少。
(3)雷达叠掩。SAR成像时,地距大的地物目标的斜距小于或等于地距小的地物目标的斜距,在SAR图像上表现为斜距小的地物目标先于倾斜大的地物目标成像(如图3,B点和C点所成的像b和a),或者表现为一个以上的地物目标点成像为一个像点(如图3中所示,A点和C点所成的像a),这种图像变形称为雷达叠掩。
图2 SAR 图像的透视收缩图3 雷达叠掩
(4)雷达阴影。雷达波束在山区除了会造成透视收缩和雷达叠掩以外,还会形成阴影,即雷达阴影。在山的后坡雷达波束不能到达,因而就不可能有回波信号,在图像上的相应位置出现暗区,没有信息。当侧视角与地面坡度α之和大于90º时,在斜坡的背部形成雷达盲区,即有阴影形成。阴影的长度L与地物高度H和侧视角有关。
(5)地形起伏引起的影像位移。由于地形起伏或高大建筑物等具有相对高程,其顶部的雷达回波先于底部被天线接收,故产生影像向底点方向移位的现象,在此称为影像位移。雷达图像上地形起伏引起的像点位移与中心投影产生的像点位移相反。
四、SAR图像的几何校正方法
目前对SAR图像进行几何校正主要有基于地面控制点的校正方法和基于DEM来模拟SAR影像的校正方法。基于地面控制点的校正方法根据校正变换模型的不同又可以分为多项式校正法、共线方程校正法以及基于SAR成像原理的距离多普勒模型校正法。
1、基于地面控制点的多项式校正原理
这类校正方法的主要思路是通过在待校正图像选择地面控制点,并获取其相应的地理坐标,从而在图像空间与地理坐标空间之间建立一种变换关系模型,实现图像坐标空间向地理坐标空间的变换。
(1)多项式校正
多项式校正法的基本思想就是回避成像的空间几何过程,而直接对图像变形的本身进行数学模拟。它认为雷达图像的总体变形可以看作是平移、缩放、旋转、仿射、偏扭、弯曲以及更高次的基本变形的综合作用结果,因而校正前后图像相应点之间的坐标关系可以用一个适当的多项式来表达。
一般多项式校正变换公式可表达为:
(式1)
其中:x,y为某像素的原始图像坐标;
X,Y为同名像素的地理坐标;
(i=0,1…9),(i=0,1…9)为多项式的待定系数。
多项式的待定系数可用最小二乘法原理求解。先根据(式1)确定所需要的最少控制点数目(N,不小于待定系数的一半),再按照最小二乘原理求解系数。
这种方法适合于地形比较平坦的地区,但由于简单,因而利用率最高。
(2)基于地面控制点的共线方程校正原理
传感器的共线方程本身就是共线法的校正公式。1988年的第16届国际摄影测量与遥感学会上,国际摄影测量学者G.Konency利用类似的共线方程式构造SAR图像点与地面点之间的关系,称之为G.Konency公式
(式2)
其中:
为姿态参数 的方向余弦。
遥感成像原理与遥感图像特征范文3
[论文摘要]为适应当前高等教育中新型农科人才培养的要求,针对农科本科生的特点,本文明确了遥感课程教学目标,通过分析当前遥感教材的优缺点确定了适宜教材,依据理论联系实际以及学以致用的原则提出了以应用为目标的主要教学内容。
遥感就是对地球表面的地学过程及特征进行物理量测量,并以数字量的形式客观地收集、记录、传输、处理和重现这一信息的科学技术,是现代空间信息科学的主要组成部分[1],涉及到空间、电子、光学、计算机和生物学、地学等学科领域,特别是在资源监测、环境管理、全球变化、动态监测等中应用非常广泛,显示其优越性。目前已广泛应用于农业、林业、地质、地理、水文、海洋、气象、环境等领域,已发挥重大作用。农业遥感即为将现代遥感技术与农业科学相结合,而应用于农业生产领域的一门新兴前沿技术,在当今遥感领域中最为活跃,也是迄今遥感应用最成功的领域之一,一直受相关科研机构、高等院校以及政府的积极关注。其中与农业学科领域关系密切的应用主要有:土壤调查,水分监测,草原调查、估产及监测,农学中的作物长势监测、营养诊断与作物估产,植保中的病虫害监测,农业气象中的农业气候研究与监测,农业生态中的环境保护和鱼情水产研究等[2]。伴随我国农业信息化进程的快速提升,遥感课程在高校农科本科生教育中的地位日趋重要。面对当前高等教育中新型农科人才需求,许多本科专业,对遥感技术都提出了很高的要求[3],因此,为适应农业现代化和信息化的要求,必须进一步加强遥感课程教学以及提升学生遥感技术应用水平。基于此,根据笔者近5年的遥感课程教学实践,本文结合农科本科生的实际特点制定遥感课程教学目标、选择适宜教材以及调整教学内容。
一、教学目标
通过本课程的教学,使农科本科生了解农业遥感的基本理论、基础知识、研究现状及农业遥感技术发展趋势与应用,了解电磁辐射与电磁波谱的相关知识,学习地物波谱的测定方法,认识地物反射光谱的响应规律,学习绘制地物反射光谱曲线的方法,掌握常规的遥感仪器和软件的操作方法,理解遥感技术农学机理,掌握遥感图像处理的基本原理和方法,掌握遥感图像的地物影像特征、遥感图像解译及遥感制图的基本技能,掌握光谱数据处理方法,使农科本科生掌握研究农业遥感的基本方法和基本技能,注重培养农科本科生的实际操作和应用能力。
二、适宜教材
依据农科特点和遥感在农业领域中的应用现状,选择适宜教材是比较困难。如教育部面向21世纪课程教材《遥感导论》[2],这部教材的特点是内容丰富,涉及技术原理较多、较深,对于农科本科生而言,技术原理显得过深、有些内容较为陈旧,尤其应用案例。《植被与生态遥感》[4]教材内容系统,编排合理,理论分析深入、学术价值较高,但有关遥感基础概念和基本技能甚少,作为农科本科生教材尚不合适。《遥感概论》[5]内容编排逻辑性强,概念清晰易懂,实验内容简单而易开展,但很多应用案例比较陈旧,不能满足当今新型农科本科生人才需求。21世纪高等院校教材《遥感技术导论》[6]内容系统,理论构架完整,概念清晰易懂,技术注解详细,但对于农业应用涉及较少,所选应用案例也较老化。《农业定量遥感基础与应用》[7]是一本系统阐述农业遥感新应用的专著,可作为农科本科生教学的参考书,但由于技术理论基础体系不完整、内容因偏重于农情遥感而显得覆盖面不够广泛,不适宜作为农科本科生教材。为此,笔者讲解遥感原理时选择《遥感技术导论》作为教材,讲解较新遥感农业应用案例时选择《农业定量遥感基础与应用》作为教材,这样可有效地提高学生的遥感理论和实践应用水平,以适应新型农科人才培养的要求。
三、教学内容
科学地选择教学内容,优化教学内容,合理教学分配,是《遥感导论》教学的关键环节[8]。主要内容为遥感的基本概念、类型、特点、发展概况与在不同应用领域中所发挥的作用、电磁辐射与地物光谱特征、遥感成像原理与遥感图像特征、遥感图像处理、遥感图像目视解译与制图、遥感在农业领域的应用等。
电磁辐射与地物光谱特征主要讲解斯忒藩-玻尔兹曼定律、维恩位移定律、基尔霍夫定律、黑体辐射规律或普朗克公式、大气的成份和结构、典型植被光谱反射特性以及地物反射三种形式(镜面反射、漫反射和方向反射),重点解释该内容所涉及到的一些术语或概念,比如电磁波谱、光谱特征、辐照度、辐射出射度、朗伯源、绝对黑体、太阳常数、大气窗口、光的干涉和衍射、反射率及反射波谱等,该内容要配套开展光谱测定仪的使用及光谱数据处理操作方法等光谱实验。遥感成像原理与遥感图像特征主要讲解世界范围内主要的陆地卫星、气象卫星、对地观测系统(EOS)卫星和海洋遥感卫星平台、摄像像片的几何特征(垂直摄像、倾斜摄像、几何特征、中心投影、垂直投影和像片的比例尺)、微波遥感的概念和特点以及四种分辨率(光谱分辨率、空间分辨率、时间分辨率和辐射分辨率)间的关系。遥感图像处理主要讲解光学原理(亮度对比、颜色对比、颜色性质、明度、色调、饱和度以及加色法和减色法等)、遥感影像的预处理(包括辐射校正、几何校正、对比度增强、空间滤波、彩色变换、图像运算、多光谱变换等)和多源信息复合等,该内容要配套开展辐射校正、几何校正、拼接、镶嵌、掩膜、融合、link等上机操作性实验。遥感图像目视解译与制图主要讲解遥感影像的目视解译、遥感影像的监督分类和非监督分类及其误差和精度评价、专题图制作等。遥感在农业领域的应用主要讲解植被遥感、土壤遥感、水体遥感等。
四、结语
遥感技术是20世纪60年代兴起的一种从远距离不实际接触物体而感知地表目标物及其特征的综合性探测技术,是现代空间信息科学的主要组成部分,涉及到多种学科领域,它的功能和价值引起了许多学科的关注。
近5年,面向农科本科生基础知识的实际情况,笔者以学生发展为本紧扣教学大纲开展遥感课程教学,教学目标制定明确,教材选用适宜,教学内容丰富,覆盖面广,应用实例典型且较新。结合遥感技术在农业领域中的应用,主要内容涵盖了农业资源与农田环境监测、数字农作技术、精确农业、农情监测预报等主要应用领域,集中体现遥感可视为农业资源利用的“好管家”、农田管理的“好帮手”、农情监测的“千里眼”等重要作用。
课程教学目标定位合理,重点突出,符合农科本科生实际,适应当前新型农科人才发展的需求。所选用的教材互补性强,主次分明,难易程度适中,有利于农科本科生人才培养。教学内容本着理论联系实际以及学以致用的总体原则进行系统讲授,概念讲解透彻,有明显的重点和难点,遥感图像解译方法适应当前农业应用需求,覆盖面较广,且系统性强,适应当前高等教育中新型农科人才培养的要求。
近5年教学实践证实,针对农科本科生的特点,本文该课程的教学目标、教材和教学内容是合理的,与当前高等教育中新型农科人才培养的要求是相适应的。
[参考文献]
[1]杨邦杰.农情遥感监测[M].北京:中国农业出版社,2005.
[2]梅安新,彭望琭,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.
[3]王鹏新,严泰来,张超,等.农业院校研究生遥感科学与技术系列课程建设初探[J].高等农业教育,2008,06:80-83.
[4]张佳华,张国平,王培娟.植被与生态遥感[M].北京:科学出版社,2010.
[5]彭望琭.遥感概论[M].北京:高等教育出版社,2002.
[6]常庆瑞,蒋平安,周勇等.遥感技术导论[M].北京:科学出版社,2004.
遥感成像原理与遥感图像特征范文4
随着空间技术的不断发展,空间遥感活动中所使用的遥感器的工作波段得到了充分扩展,空间分辨率也在迅速的提高,同时遥感影像的数据量也在成几何倍数地增加。面向对象的遥感信息提取技术是最近几年才发展起来的遥感图像解译新方法,与以往采用面向图像基元的图像解译不同,它是以影像中的像素集合为分析对象,通过对各对象的特征分析进行信息提取。
关键词:高空间分辨率;面向对象
中图分类号: TP7文献标识码:A 文章编号:
1遥感信息提取的概念
所谓遥感信息提取是指从海量、不完全的、有噪声的、模糊的、随机的实际应用遥感影像数据中提取出蕴涵在其中的大量的对用户有用的信息例如建筑物、植被、温度等,并将其形成结构化的数据放入数据库中或以其它形式提供给用户查询使用的过程。
2高分辨率遥感影像信息数据获取与特点
2.1遥感影像信息获取方式的发展
遥感技术的发展经历了四个阶段:无记录的地面遥感阶段、有记录的地面遥感阶段、空中摄影遥感阶段、航天遥感阶段。
20世纪年代70初,美国成功发射了世界上第一颗地球资源卫星Landsat-1,此卫星传感器所获得的MSS影像数据空间分辨率为88米。其后Landsat-2、3、4、5相继发射,所获得的影像数据空间分辨率为30米,SPOT卫星发射成功,可见光传感器的地面分辨率提高到10米。长期以来,航天影像测图一直局限在中小比例尺的水平,这与国土资源监测、城市规划、城市管理和工程建设等领域对大比例尺地图越来越迫切的需求存在很大的供求不平衡性,发展高空间分辨率对地观测技术势在必行。
当前,高分辨率遥感卫星的成功发射,高分辨率遥感卫星影像获取技术的高速发展,让我们能够获得更多的信息,但是,如何使用和处理这些数据并成功运用到具体的实际当中去成为当前急待解决的问题。目前已有许多学者开发出了许多遥感信息处理系统,并取得了成功,但是在影像的自动信息提取方面还是远远不能满足实际当中的需要,因此,提高信息的提取速度以及尽可能多的提取出有用的信息是遥感数据处理领域最重要的研究方向。
2.2高分辫率遥感影像的特点
高空间分辨率遥感影像与低空间分辨率遥感影像相比具有以下特点:
(1)遥感影像的数据量显著增加,空间信息量更加丰富,空间地物的几何信息、拓扑信息、纹理信息等表现更加明显。
(2)成像光谱波段变窄,单色波段的光谱分辨率明显提高,从而极大地提高了利用光谱空间特征来区分和判定地物类别的精度。
(3)遥感影像的二维信息量更加丰富,使得利用遥感数据复原地物二维形态成为可能。
(4)同一地区遥感成像时间周期显著缩短。重复轨道周期都缩短在一天之内,使得动态监测地表环境的运动变化和人类活动成为可能。
(5)地物影像中的噪声信息更加明显,“同物异谱”、“异物同谱”现象更加凸显,迫切需要改变传统的面向像元的遥感信息提取方法。
2.3常用的遥感图像解译方法
遥感图像解译分为两种:一种是目视解译,它指专业人员直接观察或借助辅助判读仪器在遥感图像上获取特定目标地物信息的过程。另一种是遥感图像计算机解译,它以计算机系统为支撑环境,利用模式识别技术和人工智能技术相结合,根据遥感图像中目标地物的各种影像特征(颜色、形状、纹理与空间位置),结合专家知识库中目标地物的解译经验和成像规律等知识进行分析和推理,实现对遥感图像的理解,完成对遥感图像的解译。其中计算机解译通常又可分为基十像元的遥感目标识别和面向对象的遥感目标识别两种。
2.3.1基于像元的遥感目标识别
基于像元的目标识别是将图像的所有像元按其性质分为若干个类别的技术过程,也就是通过对各类地物的光谱特征分析来选择特征参数,将特征空间划分为互不重叠的子空间(类别),然后将图像内各个像元划分到各个子空间中去,从而实现遥感目标的识别。本文中简单介绍几种传统的基十像元的遥感目标识别方式。
监督分类与非监督分类
监督分类是一种有先验类别标准的分类方法。首先要从欲分类的图像区域选定一些训练样区,在这些训练样区中地物类别是已知的,通过学习,用它建立分类标准,然后计算机将按同样的标准对整个图像进行识别和分类[1]。
非监督分类是一种无先验类别标准的分类方法。对于待研究的对象和区域,没有已知类别或训练样本作为标准,而是利用图像数据本身能在特征测量空间中聚集成群的特点,先形成各个数据集,然后再核对这些数据集所代表的物体类别。
3、面向对象的遥感目标识别
遥感影像中的地物信息不仅仅表现在单纯的色彩上,还表现在形状、纹理、空间位置关系等特征上。当目标的光谱特征比较接近的时候,纹理及其它特征对十区分目标会起到积极的作用。在影像分析中如果单纯以像元的光谱信息识别地物类别,缺乏空间信息与纹理特征的描述,类别错分的现象将会十分严重,为使最终结果达到一定的精度要求,需要花很大的精力来进行人工干涉。
面向对象的影像分类方法的特点:
(1)由十分类目标都有其特有的尺度,所以尺度分析是面向对象分类方法的重要特性。多尺度分割就是按照给定的尺度将具有明显区分的像元划分到不同的基元对象中。
(2)分割后的均质对象去掉了大量的冗余信息,减少了参与分类的单元,分类过程更快,分类结果中也不会出现椒盐现象。
(3)分割后分类基础单元为有意义的实体,分类过程中能够综合运用地学中的空间语义关系等信息,识别结果更为精确。
(4)不同分辨率的分类目标可以在不同尺度的层面进行识别,不同层次之间的分类结果互相联系,丰富用十分类的语义关系,可以更好达到分类目的。
(5)面向对象的遥感目标识别方法是以矢量基元作为信息处理基础的,该方式能够更加方便的运用诸如拓扑关系等各种地学数据,识别结果更有说服力。
4、面向对象的目标数据提取
面向对象的目标提取方法首先利用波谱、形状等信息,使用合适的尺度对影像进行分割,以分割后的基元为基本单位,综合利用建筑物的各项特征属性,识别并处理建筑物基元,实现对建筑物的提取。
4.1 数据的提取方法
4.2.1最小距离分类法
最小距离分类(Minimum Distance Classifier)法是以特征空间中的距离作为基元分类的依据。首先由训练组数据得出每一类别的的均值向量和办方差矩阵,然后以各类的均值向量作为该类在多维空间中的中心位置[2]。计算输入图像中每个基元到各类中心的距离,到哪一类的距离最小,就将像元归入哪一类,因此这种方法中距离就是一个辨别函数。
4.2.2隶属度函数法
隶属度函数是一个以[0,1}同一范围来表达任意特征范围的简单方法。在评估完形成每个类的每个特征后,会由隶属度函数返回一个在0和1之间的隶属度值。这些值可以通过逻辑运算符组合起来进行类赋值的计算。隶属度函数提供了组合不同维数不同范围值的可能性。隶属函数可以是任意形式的曲线,取什么形状取决十具体的分类目的,唯一的约束条件是隶属函数的值域[0 l]。
5小结
本文所讲的高分辨率影像数据的提取主要是采用面向对象的研究思路,通过影像预处理、目标特征分析、目标提取等环节实现高空间分辨率遥感影像中的目标信息的提取。介绍了常用的两种目标提取的方法,为高空间分辨率遥感影像在城市规划、测绘等领域的应用打下基础。
参考文献
遥感成像原理与遥感图像特征范文5
关键词∶遥感技术;水文地质;应用探索
本文利用新兴的综合性遥感技术作为探测数据来源,其原理主要是依据遥感器对地表物体进行探测,利用波谱的不同反应来识别地面上的各类地物。利用遥感技术对地下水勘察相关因素信息进行科学准确的评价、判断。通过对地表含水断层、线性构造、裂隙、地面湿度等信息,准确地评价一个地区的地下水资源。同时,微波遥感还能够直观的对地下潜水层进行探测,使地下水资源的开发利用更为全面、科学。
1.遥感技术应用概述
1.1遥感技术概念及特征
目前,人们对于遥感技术的普遍定义为从远处探测和感知事物和物体的技术的统称。因此遥感技术有以下几个特征。首先,遥感技术相较于其他探测技术来说,探测的覆盖范围较大。其次,遥感技术获取的探测数据,信息种类众多,手段多样,技术也相对先进。最后,探测信息表现大多是通过图像的形式来表现,获取探测数据信息方式更为直接、快速。同时整个探测用时也相对较短。
1.2遥感技术体系概述
遥感技术的应用体系一般为探测信息的获取、传输、解译和应用。其中信息的获取主要通过对地表物体波谱进行探测。通过专业的遥感探测数据传播设备和软件对初步信息进行传输,然后再对原始探测信息进行对比统计处理。信息的解译则是主要通过模式识别、模拟实验和地物分析等方法进行信息的细化。最后对这些经过解译的系统性数据信息进一步的应用加工。
1.3遥感技术水文勘察中具体应用流程概述
在水文勘察中,遥感技术的具体应用重视对地下水位有关的环境因素的综合分析,同时注重对遥感图像数据的处理方法。具体应用流程如下∶首先,对勘察地区背景进行必要了解,同时,确立明确的水文勘察目标。根据目标收集相关原始资料。其次,围绕勘察目标对遥感技术的相关原始资料进行分类。对各遥感资料信息进行细致的遥感图像信息处理。同时,根据各类信息不同的遥感图像波段,进行合成波段的合理选择。以此对各类遥感探测图像信息进行解译。然后,再加工各类相关资料信息的解译结果。综合分析地下水位的分布情况,根据土壤的水分、反射率、像元关系等原理,构建科学合理的地下水位分布模型。根据土壤水分以及地下水位分布模型,对单波段以及多波段地下水位进行详细估算。把估算结果和地区背景资料、历史勘察资料等进行对比,检验勘察结果。最后,构建更为全面合理的地下水位分布模型,进行详尽专业的勘察结论以及勘察土建制作。
2.水文气象条件概述
水文气候条件是影响地下水资源最为直接的环境条件。其主要包括地表水文条件以及气象环境条件。地表水文条件包括地区的河流、湖泊等地表水系环境,以及这些地表水系分布位置地表蓄水量。地区地表水系条件的优劣对判断地下水资源有很好的参考价值。气象环境条件包括地区降雨量、地区季节温度、风速等气候条件。降雨量也是判断地区地下水资源的重要参考依据。温度包括日照时长日照强度等,通过这些条件能够准确地判断地区水分蒸况。同样道理,也要对地区风速进行详细定量侦测。这些气候环境条件的数据获取首先要以年为单位,判断地区长期所处的气候环境。同时还要获取地区短期的气候环境数据。通过当前气候环境的变量来判断地区所处的水文气象条件。
3.地下水资源遥感勘察具体应用方法概述
遥感技术对地下水资源的勘察主要依赖于卫星拍摄的当地地形变化以及气候特征等因素信息,然后通过地质学解译标志进行处理。解译标志的方法大致可以分为两种。一种是直接解译标志,一种为间接解译标志。本文采用的是人机交互式的间接解译标志中的人机交互式解译方式。首先,应该对地下水资源相关的地形地貌遥感图像、以及岩性构造、土壤植被、地表水系特征等进行遥感特征分析。其次,通过对遥感图像中光谱信息的提取分析,判断地层岩性情况。确定地区是否存在潜水含水层以及易存水性地层岩性构造。最后,通过数学统计学技巧以及模型学技巧等信息处理方法,对地下水位进行单波段和多波段的评估模型构建。同时,对评估结果进行进一步实测印证,确保遥感技术勘察数据能够更加准确的反映地区地下水资源分布情况。
4.遥感信息分析方法概述
本次所采用的信息数据分析方法主要通过对遥感图像的解译,再结合地区水质气象环境条件的探测以及对地区地形地貌的判断,对地层岩性以及具置信息的判断,最后,通过综合多波段模型呈现的水文数据的变化规律等信息,分析地下含水层分布情况。从而能从多个角度对影响地下水资源分布的各个因素进行具体判断。更加准确的对地区的地下水含水层数量、地下水储存量、地下水深度、水质、形成年代等进行分析,为开发利用当地地下水资源提供更加全面、科学的勘察数据。
5.遥感图像数据处理以及水文地质信息提取方法分析
5.1遥感数据类型的选取
由于不间断的遥感影像成像方式以及独特的对地物的表现方式,遥感图像数据也有明显的特征。因此,在进行遥感图像解析之前应该选择更为适合的遥感图像类型,然后再根据不同图像类型的地物波谱特性曲线来选择合适的解译波段。例如对于水体多采用TM1波段进行解译,岩性识别则一般会用TM5或TM1波段进行,而对于植被则采用TM2波段进行。影响遥感数据类型选择的因素主要包括环境因素以及解译目标等影响。首先,环境因素包括,遥感探测时间以及地形特点等。如对于地质、地貌等遥感数据的解译一般选择在冬天进行遥感影像探测。而对于植被的遥感探测多选择在春季和秋季。另外,考虑解译目标的面积大小以及时间跨度等因素的不同,所选择的遥感影像尺寸以及波段变化组合等也要符合解译目标的实际需求。
5.2遥感数据的处理
在遥感数据处理中,由于遥感数据特殊的传输处理方式,很容易对遥感数据在传输过程中或软件工具处理过程中出现对比度下降、几何变形等失真现象。因此,首先要对出现失真现象的遥感图像进行科学的误差校正,而误差校正要分两个部分进行。首先,对遥感数据辐射量的校正。遥感图像的辐射量主要是指图像的光谱辐射特征。光谱辐射特征会在经过大气层或传感设备本身是受到一定的影响而出现辐射量误差。因此,应该根据具体的数据对比、数据分析等手段确定误差的范围。然后通过对传感器的工作参数进行微调来校正这种误差。其次,遥感图像几何位置的误差。对于遥感图像像元位置的误差,可以通过以一个典型的准确的地物作为空间位置的控制点,根据控制点对地表坐标和遥感图像坐标进行统一校正。
5.3图像合成波段的选择
大多数勘察对象的地物组成成分都较为复杂,不同地质结构的遥感波段参数也不同,其表现出的光谱特征也有差异。同时,同样的地物在不同波段上所表现出来的光谱特征也不一样。因此,大多数情况下,都要选择遥感图像合成波段对地区地物组合进行全面分析。我们可以依据地区水文地质勘察结果以及图像数据提取目标、各种岩层光谱效应以及各个波段光谱信息等因素,综合考虑,选择更为合适的遥感图像合成波段。
6.结论
本文通过对遥感技术的应用特征以及应用技巧入手,对遥感技术在水文地质勘察中的应用流程进行了进一步说明。本文认为在进行复杂地质环境的水文地质勘察工作时,可以应用遥感技术把水文地质勘察工作。通过对地物遥感图像的定量分析,对影响水文地质的各方面因素进行科学评析。继而更加准确客观的全面判定地区的地下水资源状况。由于本人能力有限,缺乏遥感技术实际应用经验,对于遥感技术的应用知识系统和实践经验不足。可能会对遥感数据的解译过程出现一些不够严谨的理解。对于这方面的欠缺,希望能在今后的工作学习中得到补充。
参考文献:
[1]马瀚青,高峰,黄新宇,等.《遥感技术与应用》30年趋势[J].遥感技术与应用,2016,31(6):1215-1222.
[2]朱鹤.遥感技术在地表水源地水体监测中的应用研究[D].中国水利水电科学研究院,2013.
[3]刘红,张清海,林绍霞,等.遥感技术在水环境和大气环境监测中的应用研究进展[J].贵州农业科学,2013,41(1):187-191.
[4]王润生,熊盛青,聂洪峰,等.遥感地质勘查技术与应用研究[J].地质学报,2011,85(11):1699-1743.
遥感成像原理与遥感图像特征范文6
随着全球环境问题日益突出,环境灾害与环境事故频发,卫星遥感技术在环境监测与管理中得到大量应用,在环境保护中发挥的作用受到国际社会的高度重视。美国、日本及欧洲的一些国家近年来都在大力发展环境遥感监测技术。目前在轨运行的和计划发展的国内外卫星传感器提供数据的空间分辨率已从公里级发展到亚米级,重复观测频率从月周期发展到几小时,光谱波段跨越了可见光、红外到微波,光谱分辨率从多波段发展到超光谱,遥感数据获取技术正走向实时化和精确化,卫星遥感应用正在向定量化和业务化快速发展[1]。当前,我国环境监测任务十分繁重,特别是对基于卫星遥感技术的环境遥感监测有着迫切需求。
1、遥感技术简介
遥感技术(remotesensing,简称rs)是在现代物理学、空间技术、计算机技术、数学方法和地球科学理论的基础上建立和发展起来的边缘科学,是一门先进的、实用的探测技术,目前正进入一个能快速、及时提供多种对地观测及测量数据的新阶段。按遥感平台的高度大体上可分为航天遥感、航空遥感和地面遥感,按所利用的电磁波的光谱段分类可分为可见反射红外遥感,热红外遥感、微波遥感3种类型,按研究对象可分为资源遥感与环境遥感两大类。随着热红外成像、机载多极化合成孔径雷达和高分辨力表层穿透雷达和星载合成孔径雷达技术日益成熟,遥感波谱域从最早的可见光向近红外、短波本文由收集整理红外、热红外、微波方向发展。波谱域的扩展将进一步适应各种物质反射、辐射波谱的特征峰值波长的宽域分布。高光谱遥感的发展,使得遥感波段宽度从早期的0.4μm(黑白摄影)、0.1μm多光谱扫描)到5nm(成像光谱仪),遥感器波段宽度窄化,针对性更强,可突出特定地物反射峰值波长的微小差异;同时,成像光谱仪等的应用,提高了地物光谱分辨力,有利于区别各类物质在不同波段的光谱响应特性。
2、环境遥感基础工作的应用技术
水环境遥感监测方面,初步开展了水环境可遥感指标体系研究,对叶绿素a悬浮物有色可溶性有机物溶解性有机碳水面温度透明度等监测指标的光谱特征和规律进行了研究;初步开展了环境一号卫星在水环境领域中的应用潜力分析研究;初步开展了水环境指标(如叶绿素a悬浮物水温)遥感反演与信息提取的技术流程研究大气环境遥感监测方面,初步开展了大气可遥感指标体系研究,对气溶胶悬浮颗粒物o3,so2,no2,co2,ch4等监测指标的光谱特征和规律进行了研究;初步开展了环境一号卫星在大气环境领域中的应用潜力分析研究以及大气环境指标(如气溶胶光学厚度)遥感反演与信息提取的技术流程研究[2]。
2.1 可见光、反射红外遥感技术
用可见光和反射红外遥感器进行物体识别和分析的原理是基于每一物体的光谱反射率不同来获得有关目标物的信息。该类技术可以监测大气污染、温室效应、水质污染、固体废弃物污染、热污染等,是比较成熟的遥感技术,目前国际上的商业和非商业卫星遥感器多属此类。该类遥感技术用于环境污染监测,目前主要是要提高传感器多个谱段信息源的复合,发展图像处理技术和信息提取方法,提高识别污染物的能力。重点发展其在大气污染、温室效应、水质污染、固体废弃物污染、热污染等监测中的应用。
2.2 热红外遥感技术
自然界中的所有物质,无论白天或夜间,都以一定波长向外辐射能量。在热红外遥感中,所有被观测的电磁波的辐射源都是目标物。目前红外探测器所使用的电磁波段,主要有3~5μm和8~14μm两个波段,对地表常温物体的探测通常使用8~14μm波段。热红外遥感主要探测目标物的辐射特性(发射率和温度),鉴别出物质材料的类型,评价出各种现象根据热辐射特征。
2.3 高光谱遥感技术
高光谱遥感技术的发展是人类在对地观测方面所取得的重大技术突破之一,是21世纪的遥感前沿技术。高光谱遥感数据的特点高光谱分辨率和高空间分辨率,它将传统的图像维与光谱维信息融合为一体,在获取地表空间图像的同时,得到每个地物的连续光谱信息,从而实现依据地物光谱特征的地物成份信息反演及地物识别,因此在环境污染物监测中发挥主要作用。
3、遥感技术在生态环境监测与保护中的应用
我国的生态环境日益恶化,因此,如何在保护和改善生态环境的前提下发展生产已经提到了决策者们的议事日程上来。建立生态监测信息系统已经成为当务之急。这样的生态监测系统集生态环境信息管理、数据库管理、生态环境各要素的实时监测、时间和空间查询分析等多功能为一体,可满足实时动态、分时段监测、查询和分析的要求[3]。
目前,环境污染已成为一些国家的突出问题,利用遥感技术可以快速、大面积监测水污染、大气污染和土地污染以及各种污染导致的破坏和影响。近些年来,我国利用航空遥感进行了多次环境监测的应用试验,对沈阳等多个城市的环境质量和污染程度进行了分析和评价,包括城市热岛、烟雾扩散、水源污染、绿色植物覆盖指数以及交通量等的监测,都取得了重要成果。国家海洋局组织的在渤海湾海面油溢航空遥感实验中,发现某国商船在大沽锚地违章排污事件,以及其它违章排污船20艘,并作了及时处理,在国内外产生了较大影响。随着遥感技术在环境保护领域中的广泛应用,一门新的科学——环境遥感诞生了。