逻辑推理基本原理范例6篇

前言:中文期刊网精心挑选了逻辑推理基本原理范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

逻辑推理基本原理

逻辑推理基本原理范文1

摘要:本文针对河北外国语职业学院2013 级小学数学教育专业学生的综合能力,结合小学数学专业的课程设置,经过对学生进行问卷调查后,总结出学生在逻辑推理能力方面存在的问题。为了培养出专业素质高、专业能力强的师范类小学数学教师后备军,针对存在的问题进行剖析,设计解决问题的方法和策略、完善教学内容、调整教学方法和训练方式等。通过课堂教学改革探索,使理论与实践有机结合在一起,以适应当前培养学生逻辑推理能力发展的要求。

关键词 :数学课堂逻辑推理能力素质培养

1 逻辑思维能力的含义

一般定义下的逻辑推理能力是以敏锐的思考分析、快捷的反应、迅速地掌握问题的核心,在最短时间内作出合理正确的选择。对于逻辑推理来说,通常情况下包括归纳推理、演绎推理和类比推理。其中,归纳推理是根据事物所体现的某种性质,对这类事物的所有对象具有的这种性质进行相应的推理。简言之,归纳推理就是从个别性知识推出一般性结论的推理。所谓演绎推理主要是以一般性为前提,通过推导,在一定程度上得出具体或个别的结论。对于演绎推理来说,其逻辑形式对理性的意义是,在严密性、一贯性方面,对人的思维具有不可替代的作用。对于类比推理来说,通常根据两个或两类对象具有的部分属性,进一步对它们的其他属性进行推理,简称类推、类比。这种推理方式是以两个事物的某些相同属性进行判断为前提,同时对两个事物的其他相同属性进行推理。而数学中的逻辑推理能力是指正确地运用思维规律和形式对数学对象的属性或数学问题进行分析综合,推理证明的能力。在课堂上数学老师通过启发式引导、结合实际,灵活运用板书和多媒体课件展示,激发学生的学习积极性和创造力,让学生亲历归纳推理、演绎推理和类比推理的确切含义。

2 该院数学教育专业学生逻辑思维能力现状分析

本次问卷调查的对象是2013 级预报小学数学专业的48 名学生进行的问卷调查,回收有效问卷40 份。问卷结果反映出该院学生现阶段在逻辑思维推理方面存在如下问题:

①逻辑推理定义的含义不明确,容易混淆。

②概念和定理掌握不牢,综合逻辑推理分析、判断思维能力弱。

③不擅长准确尺规作图,不能规范正确书写。

④学生学习数学的兴趣不浓。

⑤学生没有适合自己的学习方法和策略。

数学这一科目具有逻辑严谨性特点,逻辑推理能力应该是小学数学专业学生必须具有的基本能力之一。数学专业学生的逻辑推理能力培养极为重要,也是将来作为数学教师的核心能力。针对该院学生面临以上的问题,笔者所在团队在讲授专业课程时进行了相应的教学改革,希望在培养学生逻辑推理能力培养方面能发挥大家的智慧和力量。

3 如何在数学课堂中培养学生逻辑推理能力

数学被看作是一门论证科学,逻辑推理的重要性是不言而喻的。著名数学家G.波利亚教授说过:“一个认真想把数学作为他终身事业的学生必须学习论证推理,这是他的专业也是他那门科学的特殊标志。”

数学在提高学生的推理能力和创造力等方面有着独特的作用,数学课堂是培养学生逻辑推理能力的主要阵地。那教学中应如何培养学生数学逻辑推理能力呢?应从以下几方面入手。

3.1 重视基本概念和原理教学

数学知识中的基本概念、基本原理和基本方法是数学教学中的核心内容。基本概念、基本原理一旦为学生所掌握,就成为进一步认识新对象,解决新问题的逻辑思维工具。例如在《线性代数》课程中行列式和矩阵的定义的区别和联系:

①从形式上看行列式是一个数,矩阵是一个数表,二者不能混淆;而且行列式的记号为“|*|”,矩阵记号为“(*)”也是不一样的,不能用错。

②从内容上行列式的行数与列数必须相等,而矩阵的行数与列数未必相等。

③在计算过程中行列式用“=”,而矩阵用“”,书写格式也不同,更不能混用。

④在加法运算时,行列式相加与矩阵相加有本质区别,行列式与矩阵不仅有明显的区别也有内在的联系,当且仅当A=(aij)为n 阶方阵时,才可取行列式D=|A|=|aij|n,对于不是方阵的矩阵是不可以取行列式的。

在实际的授课过程中,没有扎实掌握行列式和矩阵定义的学生在学习《线性代数》第四章特征值和特征向量这一章节的时候就把书写格式写错,更严重者竟然把行列式和矩阵弄混了。为了解决这样的问题只能进行先学知识的综合复习,然后再讲授新课程。由此可见学好基础知识的重要性,如果没有科学的概念和原理,在这种情况下,难以进行综合分析、判断、推理等思维活动。

3.2 有计划、按步骤地进行逻辑推理训练

对于数学推理来说,一方面具有推理的一般性,另一方面具有其特殊性。通常情况下,这种特殊性主要表现为:其一,数学表达式、图形中的元素符号、逻辑符号等抽象事物是数学推理的对象,而不是选择日常生活经验作为推理对象;其二,数学推理过程需要保持连贯性,下一个推理需要以前一个推理的结论为前提,并且推理的依据需要从众多的公理、定理、条件、已证结论中进行提取。在推理论证方面,数学推理的这些特性会增加学生学习的难度。因此,在授课过程中要从学生熟知的知识为出发点,有计划、有步骤地进行归纳推理、类比推理、归纳推理等,这样学生能够逐渐地学习并掌握新知识。在讲授《线性代数》中矩阵和向量时,为了加强学生推理训练,任课教师在课堂中将矩阵与向量的定义、相等和运算律等分别进行类比,学生分组讨论总结。在实际教学中要有目的、有计划、有步骤、潜移默化地进行逻辑推理的训练和引导,学生一定会逐渐理解并掌握这些推理方法,并在学习掌握知识的过程中使他们的推理能力不断得到提高,使自己解决问题的能力有新的突破和创新。

3.3 利用多媒体设备增强学生的空间想象能力

在认识现实世界空间形式方面,空间想象是一种重要的能力因素,同时也是帮助学生发展创造力的基础。因此在数学教学过程中,需要将空间想象能力作为基本的数学能力来培养。在几何数学教学过程中,在制作模型、画图、识图时,让学生进一步对图像进行描述,同时对图形进行分类、整理等,在现实世界中,通过认识、理解几何空间,进而在一定程度上帮助学生形成空间观念,从逻辑的角度进一步帮助学生弄清几何空间的现实意义。

随着科学技术的不断发展,当前社会已进入信息化时代,社会对数学的要求呈现出多元化、深层化的趋势,在这种情况下,数学技术被广泛地应用到社会各层次、各领域。因此,在教学过程中,对于解析几何,需要注重培养学生的代数———几何关系,同时需要在几何和代数之间实现相互转换,进而在一定程度上对学生的数学素质进行培养。当前,教学的功能就是培养学生的创新能力,因此需要不断创新教学教学手段,通过数学软件直观再现解析几何中的复杂图形,进一步体现解析几何的主体性、过程性、合作性等特征。为此,在解析几何教学过程中,引入数学软件具有重要的意义,同时也是实现数学专业基础课程实践教学环节的重要组成部分。

4 总结

综上所述,在数学教学过程中,培养和发展学生的逻辑推理能力,这是组织开展数学教学的一个重要方面。它需要教师长期的付出,深挖教材内涵,要求学生在平时多观察,多思考,借助多种教学手段,不断激发、培养学生的学习兴趣,进而在一定程度上增强学生学习逻辑推理的积极性。同时,由于个体学生学习情况的个体差异,还要根据学生自身特点进行私人定制学习方法。希望在师生共同努力,共同合作的情况下,实现逐步提高学生的分析、综合、归纳、推理等方面的能力。

参考文献:

[1]吴建生,周优军.基于MATLAB 计算机辅助解析几何课程的数学实验[J].柳州师专学报,2010-02-15.

[2]侯卫民.教学中如何培养学生数学逻辑推理能力[J].数学大世界(教师适用),2010-09-15.

逻辑推理基本原理范文2

关键词:模糊控制; 直接转矩控制; 感应电机; 速度调节器

中图分类号:TN919-34文献标识码:A

文章编号:1004-373X(2010)21-0151-03

Direct Torque Control System of Induction Motor Based on Fuzzy Control

LIN Hui

(Xi’an Railway VocationalTechnical Institute, Xi’an 710014, China)

Abstract: A simulation model of the direct torque control (DTC) system for induction motors was constructed with Matlab 6.5/Simulink according to the principle of direct torque control. In order to improve the static and dynamic perfor-mances of induction motors, a novel fuzzy adaptive PI regulator is proposed, which adopts a fuzzy controller to modify the PI parameter according to the speed error and its vary rate, and improves the speed control performance effectively. The simulation results show that the fuzzy controller has better control effect in comparison with the conventional PID controller.

Keywords: fuzzy control; direct torque control; induction motor; speed regulator

0 引 言

直接转矩控制 (DTC) 是继矢量控制技术之后又一先进电机控制技术,其结构简单、对电机参数不敏感、转矩响应迅速而被广泛应用[1]。感应电动机直接转矩控制系统中,速度控制器大都是用PID控制器,传统的PID控制技术不能有效克服因电机参数变化、负载变化和非线性因素带来的影响,而模糊控制适应非线性时变、滞后系统的控制,具有鲁棒性强的优点[2]。在常规PID速度调节器由于参数固定而无法满足系统高性能调速的要求时,引入模糊控制技术构造速度模糊控制器,设计了一种模糊自适应PI速度调节器,根据速度偏差与偏差变化率,通过模糊推理在线调整PI参数,有效地改进了直接转矩控制系统性能,达到了较好的控制效果。

1 直接转矩控制基本原理

直接转矩控制的核心思想是以转矩为中心来进行磁链、转矩的综合控制。它不需要解耦电机数学模型,而强调对电机转矩进行直接控制,即用空间矢量的分析方法,直接在定子坐标系计算和控制交流电动机的转矩。直接转矩控制的结构原理如图1所示,它由磁链估算、转矩估算、磁链位置估算、开关表和调节器、逆变器等部分组成。其工作过程如下:首先由检测单元检测出电机定子电流和电压值、实际转速ω,然后输入到感应电机数学模型模块计算出Ψα,Ψβ和实际转矩值Te。Ψα和Ψβ通过磁链计算单元,得到定子磁链Ψs的幅值|Ψs|和所在区间信号SN。实际转速ω和给定转速ω*通过转速调节器得到转矩给定值Te*。实际转矩Te与转矩给定值Te*经转矩调节器处理后得到转矩开关信号TQ。磁链给定值|Ψs*|与磁链反馈值|Ψs|经磁链调节器处理后产生磁链开关信号ΨQ[3]。开关信号选择单元综合ΨQ,TQ和SN,通过查表的方式得到逆变器开关信号SUabc来控制逆变器提供合适的电压驱动感应电机运行。

2 模糊直接转矩控制系统设计

模糊控制是一种典型的智能控制方法,以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制,其基本思想是把人类专家对特定被控对象或过程的控制策略总结成一系列控制规则,通过模糊推理得到控制作用集,作用于被控对象或过程[4]。与传统的控制方法相比,模糊逻辑控制无需系统的精确数学模型,具有鲁棒性强,控制性能好的优点,更适合对复杂、非线性时变、滞后系统的控制[5]。模糊自适应PI速度调节器由常规PI控制器和模糊控制器两部分组成,其原理如下:模糊控制器选用速度误差e和速度误差变化率ec作为输入变量,利用模糊规则经过模糊推理,输出比例修正系数ΔKP、积分修正系数ΔKI,以在线实时调整PI控制器的参数,进而产生给定转矩Te*信号,送入DTC控制系统对感应电机转速进行控制。图2给出了系统的原理图[6]。

图1 感应电机直接转矩控制系统基本原理图

图2 基于模糊自适应PID速度调节器的

感应电机DTC系统原理图

2.1 模糊变量

本模糊控制器采用两个输入变量和两个输出控制量。两个模糊输入变量分别为速度误差、速度误差变化率,分别用e和ec表示,输出控制量为比例修正系数和积分修正系数,分别用ΔKP和ΔKI表示。e包含7个模糊子集,相应的语言变量为:负大(NB)、负中(NM)、负小(NS)、零(Z)、正小(PS)、正中(PM)和正大(PB),论域为[-1,+1],隶属分布函数如图3所示。

图3 速度误差隶属函数

ec包含3个模糊子集,相应的语言变量为:负(N)、零(Z)和正(P),论域同样为[-1,+1],隶属函数如图4所示。

ЕKP,ΔKI分别包含4个模糊子集,相应的语言变量为:零(Z)、小(S)、中(M)、大(B),论域为[0,1],隶属函数如图5所示。

图4 速度误差变化率隶属函数

图5 比例修正系数和积分修正系数隶属函数

2.2 模糊控制规则

模糊PI参数自整定基本原则如下[7]:

(1) 当系统偏差(e)较大时,为使系统尽快消除偏差,Р还ec的符号如何,都应取较大的KP和KI,б源锏剿跣∑差的目的。

(2) 当系统偏差(e)是适中时,为防止系统超调过大,вθ〗闲〉KP,同时为保证一定的响应速度,KI要选取适中的数值。

(3) 当系统偏差(e)较小或为零时,为缩短系统的调节时间,вρ∪∈手械KP和较小KI的数值。Ц据上述调整规则和多次仿真结果,模糊控制器的控制规则如表1所示。

表1 ΔKP/ΔKI控制规则表

ec

e

NBNMNSZOPSPMPB

NB/ZM/SS/MM/BS/MM/SB/Z

逻辑推理基本原理范文3

关键词:地理 改革 转变 关系

普通高中地理课程改革已在我校施行将近一学期。如何更好地熟悉新课程、理解新课程、实施新课程、开发新课程是教学第一线上每一位教师应该关注的。

一、教学理念的转变

首先,要求教师的教学指导思想必须正确。在模块教学中不可能对所有的学生高标准严要求,我们要培养的是合格公民,而不是地理专家。切忌深挖教材,否则的话,事倍功半,既增加了教学难度又加重学生负担。教学过程中要处理好如下几个关系。

第一,地理事实和地理原理的关系。地 理学 是研究地理环境以及人类活动与地理环境相互关系的 科学 。新教材包含着丰富的地理事实材料和地理基本原理,前者包括地理数据、地理景观和事物及其演变和分布状况等,通常称之为“地”;后者包括地理特征、地理事物的演变和分布的 规律 以及形成原因等,通常称之为“理”。“地”和“理”是统一的。有的教师认为地理事实“易学易懂”,教学中不予重视,以致学生缺乏对地理事实材料应有的感知;有的教师受传统教学的影响,光讲“地”不讲“理”,教学囿于地理事实的单纯描述和堆砌,不重视地理原理和规律的探究,其结果是学生“知其然而不知其所以然”。教师要引导学生把地理事实与所反映的基本原理统一起来,以基本原理统率事实材料,以事实材料印证基本原理,使两者相辅相成,相得益彰。

第二,地理知识与地理技能的关系。知识不同于技能。以《大气的热状况与大气运动》教学为例,学生在用图说明大气受热过程;绘制全球气压带、风带分布示意图,说明气压带、风带的分布、移动规律及其对气候的影响时,所应用的地理概念、基本原理等属于知识,而运用这些知识进行观察、分析、综合、抽象和逻辑推理,以及绘制图表等,属于技能。知识和技能又是密切联系的,一方面地理技能是在掌握地理知识的过程中形成和 发展 起来的;另一方面技能又制约着掌握知识的难易、速度和巩固程度。

第三,地理教学与情感态度和价值观培养的关系。按《课标》要求:①教师要不拘泥于教材,充分利用当地的地理事实材料,努力发掘情感、价值教育素材.②教师在教学中要突出爱国情感,增强民族自豪感,激励学生复兴中华民族的责任感。③价值教育需要一种民主的课堂气氛,并要做到言传身教,学生才会接受所教的价值观。

二、教学方法的改变

实施地理新课程要运用 科学 的、多样的学习方式和教学模式。《课标》中课程目标的第二部分是“过程与方法”目标。新课程重视地 理学 习的过程与方法,给学生提供了展现自我的机会,有利于在学习过程中通过师生之间、学生之间的相互学习,提高学生的综合实践能力和创新能力。学会学习是整个课程改革最突出的方面之一。如何使学生学会学习?要求教师在教学过程中,不仅重视“教”,更要重视“学”。由于每个地理教师的思想水平、知识结构、教学能力和应用信息技术的能力不同,在针对不同教材内容和学生实际从事教学活动时,可以选择自己得心应手的教学方法。但无论采用怎样的方式和模式,下述几点必须引起足够重视。

第一,改变教师的教学方式和学生的学习方式,鼓励积极探究。教师的教学方式服务于学生的学习方式。学是教的出发点,要求学生改变学习方式,必然要求教师改变教学方式。例如,探究式学习的每个步骤都可以设计多种形式的活动。拿收集证据来说,可以通过观测、实验和调查来收集,也可以通过查阅 文献 和上网来收集。教师在引导学生进行课内学习的同时,还可积极开展课外探究,包括野外实习观察、乡土地理研究、专题讲座、地理墙报和地理教具制作等。

逻辑推理基本原理范文4

一、会计逻辑思维的涵义

会计专业在我国一直是热门专业,其涉及的领域较广。会计专业的学生应在学习会计学、管理学、经济学的基本理论和基础知识的同时,掌握会计学的分析方法,运用会计逻辑思维培养较强的会计实务操作能力和解决实际问题的能力。

会计工作简单来说就是信息的处理。信息的处理需要大量的逻辑思考。如果思路不清甚至逻辑混乱,在面对复杂多变的市场形势下必然会产生不知所措的感觉。就如同一个在沙漠中迷路的人,在茫茫戈壁中不知所措,找不到正确的方向。

会计逻辑是由会计和逻辑构成的。通俗地说,是会计人员在会计工作中所应该遵循的思维规律或逻辑规则。会计逻辑思维是按照会计逻辑规律反映现实的思维方式,例如,通过分析、综合、比较、分类、归纳等思维操作,对经济业务相关账务处理进行深层次的认识。

二、会计实务教学中逻辑思维的运用

1.实务教学中逻辑思维运用的必要性

在会计实训课程教学中,逻辑思维的运用很重要。我校会计专业针对目前的专业现状及发展前景,进行企业视角的专业建设,引进一款针对各类院校会计专业教学而设计的仿真实训平_――虚拟商业社会环境VBSE财务综合实践教学平台。通过实训,受训者可以熟悉财会及相关业务岗位的日常工作内容。这其中,如何培养学生的逻辑思维能力是关键。

2.VBSE财务综合实践教学中逻辑思维的运用实例

在VBSE财务综合实践教学平台的教学工作中,逻辑学的运用是提高教学效果的重要手段。以支票的连续背书业务为例,我国《票据法》规定背书应当连续,违反规定的、不连续的背书会引起票据权利的争议,给企业的日常经济活动带来不便。

票据背书的连续性,一般来说有以下三个方面的要求:背书形式上均为有效;背书的记载顺序具有连续性;连续的背书须具有同一性。《票据法》对背书连续性的要求是指前一背书的被背书人是后一背书的背书人。例如,在第一次背书中(A转让给B),背书人为A,被背书人为B;在第二次背书中(B转让给C),背书人为B,被背书人为C;在第三次背书中(C转让给D),背书人为C,被背书人为D。此时,D作为最后持票人,该票据的背书即属连续。如果第一次(A转让给B)的背书中,背书人为A,被背书人为B,而在第二次(B转让给C)的背书中,背书人为C,被背书人为D,则第一次背书与第二次背书发生中断,背书即为不连续。

在具体的实训业务中,学生对背书的概念没有完全弄明白,导致背书人与被背书人在业务操作中的关系混淆不清。为了解决这个问题,教师可以指导学生运用演绎推理思维及归纳逻辑思维,培养自主学习能力,进而增强其处理全盘账务的信心。

情境一(一般的转账支票业务):A企业开出一张支票给B企业。

B企业凭支票办理收款业务(出票人是A,收款人是B),B企业在支票背书人处盖章并注明“委托收款”字样(如图1、图2)。

情境二(背书转让转账支票业务):A企业开出一张支票给B企业,B企业不办理收款业务而转让给C企业。

根据背书连续性的要求,B企业在支票背书人处签章并在被背书人处写上C企业名称后交给C企业,C企业在支票背面第二栏背书人处签章,同时注明“委托收款”的字样(如图3)。

情境三(连续背书业务):A企业开出一张支票给B企业,B企业转让给C企业,C企业转让给D企业。

C企业在支票背书人处签章并在被背书人处写上D企业名称后交给D企业,D企业在支票背面第三栏背书人处签章同时注明“委托收款”的字样。D企业再转让给E企业,以此类推(如图4)。

在具体教学任务中教师可以采用角色扮演的模式分别请学生扮演A、B、C、D企业的出纳人员,指导学生运用演绎推理思维及归纳逻辑思维,鼓励其独立进行归纳,总结如下:

(1)票据转让背书业务中,形式上的背书人就是转让人,其转让时须在背书人处签章;

(2)形式上的被背书人即为受让人,受让人如果要办理收款业务,即应该在背书人处签章同时注明“委托收款”的字样;

(3)第一种形式称为转让背书,第二种形式称为委托收款背书。

在上面的例子中,背书是票据的收款人或持有人在转让票据时,在票据背面签名或书写文句的手续。这一内涵就可以得到背书人与被背书人在这一业务中的关系。运用逻辑学的逻辑法,比如限制和概括、定义、划分等方法,学生能够明确背书人与被背书人之间不同的角色关系,以保证在实务操作中不滥用概念,混淆身份。

三、如何培养逻辑思维

会计理论结构本身就是一个逻辑系统。会计逻辑思维主要依靠人的大脑对事物的外部联系进行加工整理,由表及里,逐步把握事物的本质和规律,从而形成概念、建构判断,进行推理活动。培养逻辑思维,可从以下方面入手:

1.有良好的学习心态

学习逻辑思维的运用需要平和、耐心的心态。学生如果期望过高,当感觉达不到期望时就会变得心浮气躁,进而失去耐性;如果抱有急功近利的学习态度,指望立竿见影,就会忽略思维状态的改善。所以,思维能力的提高是一个循序渐进的过程。掌握如何驾驭逻辑思维并应用于会计实际业务,可以在工作中增添思维或精神的愉悦感。

2.有正确的学习方法及思维习惯

(1)应当秉承循序渐进的方法。会计学是由会计基本概念、会计核算基本原理构成的一个理论体系,会计核算业务内容之间存在前后相继的内在联系。在学习会计理论及业务知识的过程中,学生必须一步一个脚印,在真正掌握前期内容的前提下再开始后续内容的学习,切忌走马观花式的学习态度,否则将很难达到理想的效果,学习过程也会变得难以为继。

(2)养成逻辑思维习惯。在实训业务中提高业务能力就应培养良好的逻辑思维,而良好的逻辑思维不是一蹴而就的。逻辑思维的培养要在学习过程中始终结合具体的思维实际,对会计业务中的综合材料进行加工整理,由表及里,逐步把握会计理论的本质和规律,从而形成概念、建构判断,再进行推理,最终养成经常归纳总结的逻辑思维习惯。

总之,理论联系实际绝非是一朝一夕的工夫,在生活中,学生应多观看演讲或辩论节目;在工作或者学习中,要经常用逻辑的眼光读书或者学习。如此长期坚持,逻辑思维能力自然会有所提高。

逻辑推理基本原理范文5

关键词:离散数学;计算机科学;人工智能

离散数学是计算机科学的基础理论,也是现代数学的一大分支。离散数学将离散性的结构和相互间的关系作为主要研究对象,目前计算机学科的多个方面都已经提出并使用了离散数学理论。数学为计算机的优化和程序编写起到了积极作用。如人工智能技术、信号处理以及数字电视等媒体技术。

1离散数学应用于计算机数据结构

计算机具体问题的解决依赖于数据机构的建立。从数学角度,就是通过建立严格数字模型,然后解开此模型的过程。是通过数学知识和计算机程序编写的过程,而数学模型的构建就是数据结构研究的内容。寻求数学模型的过程就会提出操作对象,分析操作对象的过程,找到数学语言与计算机语言之间的契合点是研究的起点。一般情况下,数据结构主要分为树形结构、线性结构、图状结构、网状结构四种。数据结构可用于企业结构员工工资的发放问题,还可以解决一系列的距离问题,其具有广泛的应用。

2离散数学应用于计算机数据库

数据库技术已经成为社会认可并广泛应用的计算机技术,笛卡儿积是离散数学中的一个重要理论,它在计算机数据库的建立中起到了明显的作用。代数理论是关系数据模型建立的理论基础,在这一基础上建立了由行和列共同组成的二维表,我们称之为二元关系理论,这一理论主要可应用于表结构设计、域和域间关系、关系操作数据查询与维护功能等。

3离散数学应用于人工智能

离散数学中的逻辑推理是人工智能研究的基础理论之一,谓词逻辑语言的使用使我们了解了推理的子命题。逻辑规则将数学进行了更准确的定义,人工智能研究最初,就应用了离散数学理论的数学推理和,尤其是布尔代数。因此,在人工数学定理证明是人工智能所采用的理论,在现实设计中有很广泛的应用,如推理机的设计与应用。推理机以逻辑推理和产生式推理为主,推理机主要以数据库中的知识解决问题,是专家思想的一种体现。因此我们也可以将人工智能视为一种专家系统,是应用离散数学理论应用于数学问题分析、解决问题的方法。

4离散数学应用于计算机体系结构

离散数学主要应用于计算机体系结构设计中的指令吸引设计及其内容改进,对计算机整体性能的发挥具有良好的作用。指令系统优化方法以指令格式化为主。其主要作用是它能够以操作码与地址码共同实现以最短的位数来操作地址信息和操作信息。目前,主要应用哈夫曼的压缩概念来解决这一问题。这种方法是数学方法之一,是一种无损压缩法。哈夫曼的压缩概念主要是应用了数学中概率不均等原理,将最大概率事件以最短的位数来处理。相反,发生概率最低的事件则以最长的位数来处理,这样平均位数得以缩短。其基本原理是使用哈夫曼算法构造出哈夫曼树。利用哈夫曼树来对系统指令中的使用数据频度进行统计,将其以从小到大的顺序进行排列,将两个最小频度合并成一个大的频度并形成新的结合点,按照同样的原理降低进行从小到大的排列,按该频度大小插入其他未参与结合的频度值中指导所有频度完成结合。将节点能够向下延伸的分支分别标注“1”或“0”,沿着根结点开,沿线到达各频度结点所经过的代码序列就构成了所谓的哈夫曼编码。所得到的编码系列与指令使用概率低的指令编以长码相符合,即指令使用概率高的指令编以短码的目的。

5离散数学在计算机中的应用发展趋势

基于计算机中的离散数学理论应用逐渐广泛,数学理论应用于计算机也逐渐完善。当然,除了上文中提到的离散数学的基础作用外,它还在计算机的其他方面具有重要作用,具有发展前途。未来,计算机硬件的性能将进一步提高,而设计者的离散数学知识则是这一技术发展的基础,数学逻辑的应用将为计算机的软件设计提供理论基础。另外,数学中的关联词概念可用于计算机高低电平的信号运算通二进制数据之间的运算,这就是数学在电路设计中的作用,应用数学理论,设计过程更加清晰化、直观化。数学集合论概念主要应用于数据结构和算法分析,这一理论主要应用于软件工程及计算机数据库的设计,确保了计算机数据库的更新速度。代数结构作为数学的基本理论,对计算机甚至对多个领域具有重要作用,计算机程序设计时,要区分其可计算性和不可计算性,在这一前提下,形式语言与自动机、网络与通信理论、密码学、程序理论或形式语义学都成为数学对计算机的指导项目。最后,代数中的格与布尔理论为计算机硬件的设计以及网络通讯系统的设计提供了基础,这一数学理论应用计算机制度、计算机操作系统以及C语言程序进行编译、研究和检索,在多个领域如树的结构对于集成电路的布线、电子信息网流量上都能够具有一定的发展。人工智能也将成为未来离散数学理论应用于计算机更新、设计和发展中的重要理论。

6总结

总之,离散数学理论在计算机人工智能,数据库建立中都具有指导意义。计算机在科技领域、工业领域以及人们的生活中的应用以及普及,离散数学是以离散性的结构和相互间的关系作为主要研究对象,其在计算机中的应用帮助减少计算机漏洞并提高计算机运行效率。离散数学是计算机技术的基础,缺乏对离散数学的了解,计算机更新和发展无从谈起。无论是信息处理还是理论对于计算机科学,都有着密切的关系,因此如何离散数学理论应用于计算机发展中是本文研究的重点。

作者:周菲苹 单位:海南师范大学

参考文献:

[1]朱家义,苗国义等.基于知识关系的离散数学教学内容设计[J].计算机教育,2010(18).

逻辑推理基本原理范文6

一、理论物理学的重要方法

探索性的演绎法是理论物理学的重要方法。在爱因斯坦看来,理论物理学的完整体系是由概念,被认为对这些概念是有效的基本原理(亦称基本假设、基本公设、基本定律等),以及用逻辑推理得到的结论这三者所构成的。因此,理论物理学家所运用的方法,就在于应用那些作为基础的基本原理,从而导出结论;于是,他的工作可分为两部分:他首先必须发现原理,然后从这些原理推导出结论。对于其中第二步工作,他在学生时代已得到很好的训练和准备。因此,如果在某一领域中或者某一组相互联系的现象中,他的第一个问题已经得到解决,他就一定能够成功。可是第一步工作,即建立一些可用来作为演绎的出发点的原理,却具有完全不同的性质。这里并没有可以学习的和可以系统地用来达到的的方法。科学家必须在庞杂的经验事实中间抓住某些可精密公式来表示的普遍特征,由此探求自然界的普遍原理。

爱因斯坦指出,一旦找到了作为逻辑推理前提的基本理,那么通过逻辑演绎,推理就一个接着一个地涌现出来它们往往显示出一些预料不到的关系,远远超出这些原理依据的实在的范围。但是,只要这些用来作为演绎出发点原理尚未得出,个别经验事实对理论家是毫无用处的。实际上,单靠一些从经验中抽象出来的孤立的普遍定律,他甚至么也做不出来。在他没有揭示出那些能作为演绎推理基础原理之前,他在经验研究的个别结果面前总是无能为力。

爱因斯坦把物理学理论分为两种不同的类型,其中之一是“原理理论”。建立这种理论使用的是分析方法,而不综合方法。形成它们的基础和出发点的元素,不是用假设造出来的,而是在经验中发现到的,它们是自然过程的普遍特征,即原理。这些原理给出了各个过程或者它们的理论表述所必须满足的数学形式的判据。热力学就是这样力图用分析的方法,从永动机不可能这一普遍经验得到的事实出发,推导出一些为各个事件都必须满足的必然条件。用探索的演绎法建立起来的相对论,就属于“原理理论”。但是物理学理论大多数是构造性的。它们企图从比较简单的式体系出发,并以此为材料,对比较复杂的现象构造出一幅图像。气体分子运动论就是这样力图把机械的、热的和扩散的过程都归结为分子运动——即用分子假设来构造这些过程。当我们说,我们已经成功地了解一群自然过程,我们的思想必然是指,概括这些过程的构造性的理论已经建立起来了。爱因斯坦认为,构造性理论的优点是完备,有适应性和明确,原理理论的优点则是逻辑上完整和基础巩固。([1],pp.109~110)

相对论就是爱因斯坦自觉地运用探索性演绎法的杰作。它不仅以其革命性的新观念和卓有成效的理论结果为人津津乐道,而且它所体现出的科学方法的新颖、精湛以及理论的逻辑结构的严谨,也令人叹为观止。爱因斯坦在创立狭义相对论(1905)时,他依据的仅仅是光行差现象和斐索实验这两个并不充分的实验材料,著名的二阶以太漂移实验即迈克耳孙-莫雷实验,对他并没有直接影响。他主要通过对16岁时想到的“追光”思想实验的沉思,对经典力学和经典电动力学基础的深入考察,发挥了思维的自由创造,提出了两个基本假设——相对性原理和光速不变原理(美国著名科学史家霍耳顿认为,在狭义相对论中,除了被提高为公设的两个基本原理外,爱因斯坦还作了另外四个假定:一是关于空间的各向同性和均匀性,另外三个是定义钟的同步的三个逻辑性质

。霍耳顿的学生米勒后来指出,另外的四个假定也是两个基本原理的必然结果,他们不是独立的假设。参见文献[3],p.196)。然后,他以此为逻辑前提,接二连三地推导出了关于运动学和电动力学的结论,著名的质能关系式是他先前根本没有料想到的,这些结论大大超出了两个原理所依据的实在的范围。广义相对论(1915)的建立也是这样。作为广义相对论的两个基本原理,即广义相对性原理和等效原理,前者是爱因斯坦基于把相对性原理贯彻到底的信念(从惯性系推广到加速系)提出的,后者是依据厄缶实验(惯性质量等于引力质量)和升降机思想实验提出的。

在1905年,由于爱因斯坦采用了探索性的演绎法,从而使他能够高屋建瓴、势如破竹,一举砍断了哥尔提阿斯死结(哥尔提阿斯是古代夫利基阿国王,相传他曾把自己的车乘的辕与轭用绳结系住,死得无法解开,声言能解开此死结者,得以结治亚细亚。这个死结后来被亚历山大大帝用剑砍断),开拓了一个奇妙的新世界。那些恼人的以太漂移实验,那些使人迷惑不解的单极电机电动势的“位置”问题,在爱因斯坦的理论体系中已根本不成其为问题。但是,同时代的博大精深的科学大师,诸如洛伦兹、彭加勒,却热衷于同迈克耳孙-莫雷实验等以太漂移实验打交道,迷恋于做出种种构造性假设,建立他们的构造性理论——电子论和电子动力学。例如,洛伦兹1904年的著名论文尽管声称是以“基本假设”而不是以“特殊假设”为基础的论文,但事实上却包含有11个假设:假设有静止以太,假设静止电子是球形的,假设电子的电荷分布是均匀的,假设电子的全部质量都是电磁质量,假设运动电子收缩,假设电子之间的作用力与分子力相同等等。洛伦兹和彭加勒虽说走到了狭义相对论的大门口,但他们并没有打开这扇大门,其原因固然是多方面的。从方法论上讲,就在于他们运用的是传统的经验归纳法,而没有采用探索性的演绎法。在当时的科学发展的形势下,仅靠个别的经验事实进行归纳,是建立不起什么崭新的理论的。洛伦兹、彭加勒的电子论和电子动力学固然富丽堂皇,但毕竟只是经典物理学的最后的建筑物。它们虽然包罗万象,可是由于不适应科学发展的总趋势,最终还是被人们遗忘了,仅有历史的价值。

二、采用探索性的演绎法是科学发展的必然趋势

从文艺复兴到19世纪的经典科学,一般称为近代科学。在科学史上,这个漫长的时期主要是积累材料和归纳材料的时期。与这一科学发展状况相适应,产生了经典的科学哲学,它始于弗兰西斯•培根的归纳主义。培根认为,科学的发展是从个别上升到一般,从经验归纳出理论。他比喻说,只要及时采摘成熟的葡萄,科学的酒浆就会源源不断。到19世纪,整个科学一般说来还没有摆脱这种“原始”状态,因而经典科学哲学能够得以通过穆勒之手发展成为更完备的经验论形态,经验归纳法依然是正统的科学方法。

在物理学领域,这个时期的最大成就是牛顿力学和麦克斯韦的电动力学。牛顿力学虽则是超越了狭隘经验论的人类理智的伟大成就,但它又同人们的日常经验密切相关。力学中的许多概念都比较直观,可以直接在现实生活中找到某种原型。这种状况掩盖了基本概念和基本原理的思辨性质,甚至牛顿本人也深深陷入这一幻觉之中。他一再声称他“不作假设”,实际上却作了许多假设,他要求人们“必须把那些从各种现象中运用一般归纳法导出的命题看作是完全正确的”。19世纪的经典物理学也具有现象论和经验论的特征:它尽量使用那些接近经验的概念,因而在很大程度上必须放弃基础的统一性。热、电、光都用那些不同于力学量的各个状态的变数和物质常数来描述,至于要在它们的相互关系以及同时间的相互关系中去决定全部变数的任务,主要只能由经验来解决。麦克斯韦及其同代人,在这种表示方式中看到了物理学

的终极目的,他们想像这个目的只能纯粹归纳地从经验得出,因为这样所使用的概念同经验比较接近。从认识论上看,穆勒和马赫大概就是根据这个理由来决定他们的立场的。总而言之,这个时期的科学家和科学哲学家大都以为,“理论应当用纯粹归纳法的方法来建立,而避免自由地创造性地创造概念;科学的状况愈原始,研究者要保留这种幻想就愈容易,因为他似乎是个经验论者。直至19世纪,许多人还相信牛顿的原则——“我不作假设''''——应当是任何健全的自然科学的基础。”([1],p.309)

但是,在某些个别的科学部门,已经悄悄地透进了新时代的曙光;尤其是非欧几何学,它仿佛故意向经验论示威一样,以毋庸置辩的方式显示了理性思维的强大威力和奇妙作用。彭加勒正是在《科学与假设》中通过对非欧几何学的深入研究以及对经典力学和经典物理学的慎密考察揭示出,科学的基本概念和原理不是经验的直接归纳,而只能以经验事实为指导,通过精神的自由活动(其产品即约定)来创造。通过研读彭加勒的科学哲学著作,尤其是通过创立狭义和广义相对论的科学实践,使爱因斯坦清楚地看到,人们可以在完全不同于牛顿的基础上,以更加令人满意和更加完备的方式,来考虑范围更广泛的经验事实。但是,完全撇开这种理论还是那种理论优越的问题不谈,基本原理的虚构特征却是完全明显的,因为我们能够指出两条根本不同的原理,而两者在很大程度上都同经验相符合。这—点同时又证明,要在逻辑上从经验推出力学的基本概念和基本假设的任何企图,都是要失败的。爱因斯坦还清楚地看到,相对论是说明理论科学在现展的基本特征的一个良好的例子。初始假设变得愈来愈抽象,离经验愈来愈远。另一方面,它更接近一切科学的伟大目标,即要从尽可能少的假设或者公理出发,通过逻辑的演绎,概括尽可能多的事实。同时,从公理引向经验事实或者可证实的结论的思路也就愈来愈长,愈来愈微妙。理论科学家在他探索理论时,就不得不愈来愈听从纯粹数学的、形式的考虑,因为实验家的物理经验不能把他提高到最抽象的领域中去。正是科学发展的这种理论化趋势,使爱因斯坦认识到:“科学一旦从它的原始阶段脱胎出来以后,仅仅靠着排列的过程已不能使理论获得进展。由经验材料作为引导。研究者宁愿提出一种思想体系,它——般地是在逻辑上从少数几个所谓公理的基本假定建立起来的。”([1],p.115),他进而指出:“适用于科学幼年时代的以归纳为主的方法,正在让位给探索性的演绎法。”([1],p.262)

三、爱因斯坦大胆运用探索性的演绎法的直接动因

只是在广义相对论建立之后,爱因斯坦才把探索性的演绎法作为一个方法论原则从理论上加以论述。可是,早在创立狭义相对论时,他就在研究中大胆运用这一科学方法了,并在思想上对它已有比较深刻的认识。促使爱因斯坦大胆运用探索性的演绎法的直接原因有两个:其一是赫兹、玻耳兹曼、彭加勒等人的思想影响,其二是当时的物理学现状使得他不能不那样做。

在联邦工业大学期间(1896~1900),爱因斯坦自学了赫兹、玻耳兹曼等科学大师们的著作。赫兹在他的名著《力学原理》(1894)中试图重构力学,为此他仅利用空间、时间和质量三个原始概念。赫兹的力学体系建立在通过科学家个人的“内在直觉规律”从经验引出的公理之上,它能够导出经验预言。赫兹认为“内在直觉规律”的功能像“康德意义上的先验判断”一样,并且声称他的力学重构是演绎系统,与牛顿的《原理》(全称《自然哲学的数学原理》)有许多相同的风格。在这个公理体系中,我们可以推演出与我们的观察记录相对照的可检验的结论,依据该结论与可观察的世界一致还是不一致,来决定这个体系是否正确。尽管爱因斯坦不赞同赫兹的隐质量概念和“把自然现象追溯到力学的主要定律”

的长远目标,但是赫兹强调公理描述的威力却给他留下了深刻的印象。这种公理描述与其说在经验材料上预言理论结构,倒不如说在公理和直觉上预言理论结构。

爱因斯坦也自学了玻耳兹曼的《力学讲义》(1897)。在该书中,玻耳兹曼把力学作为物理学的核心,爱因斯坦当然不会同意这种看法的。但是,玻耳兹曼重构力学的方法的下述特点,一定会强烈地震撼爱因斯坦敏感的心弦:“恰恰是力学原理的不明晰性,在我看来不是同时以假设的智力图像为起点而得到的,而是从一开始就以与外部经验相联系的尝试而得到的。”([2],p.127)玻耳兹曼的意思很清楚:力学原理的不明晰,在于经验归纳,而不在于智力图像。玻耳兹曼的“智力图像”概念比赫兹的“外部对象的图像或符号”更自由,爱因斯坦可能山此注意到,力学的发展已使原理凌驾于经验材料之上。

彭加勒在《科学与假设》(1902)中对约定主义的论述,对爱因斯坦的探索性的演绎法的形成必定大有裨益,爱因斯坦在“奥林比亚科学院”时期(1902~1904)曾和他的同伴索洛文、哈比希特一起研读过这本脍炙人口的畅销名著。彭加勒通过对数理科学的基础进行了敏锐的、批判性的审查和分析后得出:几何学的公理既非先验综合判断,亦非经验事实,它们原来都是约定。物理学尽管比较直接地以经验为基础,但它的一些基本原理也具有几何学公理那样的约定特征。例如惯性原理,它不是先验地支配我们的真理,否则希腊学者早就知道它了,它也不是经验的事实,因为人们从来也不能用不受外力的物体做实验,因而无法用实验证实或否证它。经过最终分析,它们化归为约定或隐蔽的定义。因此,彭加勒得出结论说:在数学及其相关的学科中,“可以看出自由约定的特征”;他进而指出:“约定是我们的精神的自由活动的产品”,“我们在所有可能的约定中进行选择时,要受实验事实的引导;但它仍是自由的,只是为了避免一切矛盾起见,才有所限制。”

彭加勒在考察了物理学的理论后认为,物理学有两类陈述——原理和定律。定律是实验的概括,它们相对于孤立的系统而言可以近似地被证实,原理是约定而成的公设,它们是十分普遍的、严格真实的,超越了实验所及的范围。彭加勒还阐述了约定主义的方法论意义。他说,当一个定律被认为由实验充分证实时,我们可以采取两种态度。我们可以把这个定律提交讨论,于是,它依然要受到持续不断的修正,毋庸置疑,这将仅仅以证明它是近似的而终结。或者,我们也可以通过选择这样一个约定使命题为真,从而把定律提升为原理。在彭加勒看来,经典力学和经典物理学的六大基本原理(迈尔原理即能量守恒原理、卡诺原理即能量退降原理、牛顿原理即作用与反作用原理、相对性原理、拉瓦锡原理即质量守恒原理、最小作用原理)就是这样形成的。

彭加勒提出约定主义并不是无缘无故的。在近代科学发展的早期,弗兰西斯•培根提出了经验归纳的新方法,这种方法对促进近代科学的发展起了巨大的作用,但后来却助长了狭隘经验事义的盛行。到19世纪,以惠威尔、穆勒为代表的“全归纳派”和以孔德、斯宾塞为代表的实证主义广为流行,把经验和归纳视为唯一可能的认识方法。到19世纪末,第二代的实证主义的代表人物马赫更是扬言要把一切“形而上学的东西”从科学中“排除掉”。另一方面,康德不满意经验论的归纳主义的阶梯,他把梯子颠倒过来,不是从经验上升到理论,而是以先天的“感性直观的纯形式”(时间和空间)和先天的“知性的纯粹概念或纯粹范畴(因果关系、必然性、可能性等十二个范畴)去组织后天经验,以构成绝对可靠的“先验综合知识”。彭加勒看到,无论是经验论还是先验论,都不能圆满地说明科学理论体系的特征。为了强调在从事实过渡到原理时,科学家应充分有发挥能动性的自由,他于是提出了约定主义。约定主义既要求摆脱狭隘的经验论,又要求摆脱经验论,它顺应了科学发展的潮流,反映了当时科学界自由创造、大胆假设的要求,在科学和哲学上都有其积极意义。

《科学与假设》一书对爱因斯坦的印象极深,他和同伴们花了好几个星期紧张地读完了它。爱因斯坦坦率地承认彭加勒对他的直接影响。他赞同“敏锐的深刻的思想家”彭加勒的约定主义观点,认为概念和公理是思维的自由创造,是理智的自由发明。他这样说过:“一切概念,甚至那些最接近经验韵概念,从逻辑观点看来,……都是一些自由选择的约定,……([1],p.6)

一开始,爱因斯坦也对洛伦兹的电子论(是1895年的论文,而不是1904年的电子论的最终形式)发生过兴趣,这是一种构造性的理论。可是不久,他从普朗克的量子论中看到,辐射具有一种分子结构。这是同麦克斯韦理论相矛盾的,而且麦克斯韦理论也不能导致出正确的辐射压涨落。爱因斯坦在“自述”中谈到了他当时的转变:“早在1900年以后不久,即在普朗克的首创性工作以后不久,这类思考已使我清楚地看到:不论是力学还是热力学(除非在极限情况下)都不能要求严格有效。渐渐地我对那种根据已知事实用构造性的努力去发现真实定律的可能性感到绝望了。我努力得愈久,就愈加绝望,也就愈加确信,只有发现一个普遍的形式原理,才能使我们得到可靠的结果。”([1],p.23)从此时起,爱因斯坦就断然决定用探索性的演绎法来解决问题。

四、爱因斯坦的探索性的演绎法的特色

作为科学推理的演绎法,可以说是源远流长了。早在古希腊时代,著名的哲学家、形式逻辑的创始人亚里士多德就提出了归纳和演绎这两种逻辑方法,并认为演绎推理的价值高于归纳推理。而古希腊名声最大的数学家欧几里得,在《几何原本》中把几何学系统化了,这部流传千古的名著就是逻辑演绎法的典范。牛顿在建立他的力学理论体系时虽然运用了归纳法,但其集大成著作《原理》的叙述方法却采用的是演绎法。爱因斯坦的探索性的演绎法绝不是这种古老的演绎法的简单照搬。他根据自己的科学研究实践,顺应当时理论科学发展的潮流,对演绎法作了重大发展,赋予了新的内容。也许是为了强调他的演绎法与传统的演绎法的不同,他在“演绎法”前面加上了限制性的定语——“探索性的”,这个定语也恰当地表明了他的演绎法的主要特征。与传统的演绎法相比,爱因斯坦的探索性的演绎法是颇有特色的。这主要表现在以下三个方面。

第一,明确地阐述了科学理论体系的结构,恰当地指明了思维同经验的联系问题,充分肯定了约定在建造理论体系时的重要作用。爱因斯坦把科学理论体系分为两大部分,其一是作为理论的基础的基本概念和基本原理,其二是由此推导出的具体结论。在爱因斯坦看来,那些不能在逻辑上进一步简化的基本概念和基本假设,是理论体系的根本部分,是整个理论体系的公理基础或逻辑前提。它们实际上“都是一些自由选择的约定”;它们“不能从经验中抽取出米,而必须自由地发明出来”([1],pp.6,315)。谈到思维同经验的联系问题时,爱因斯坦说:直接经验ε是已知的,A是假设或公理,由它们可以通过逻辑道路推导出各个个别的结论S;S然后可以同ε联系起来(用实验验明)。从心理状态方面来说,A是以ε为基础的。但是在A和ε之间不存在任何必然的逻辑联系,而只有通过非逻辑的方法——“思维的自由创造”(或约定)——才能找到理论体系的基础A。爱因斯坦明确指出:“物理学构成一种处在不断进化过程中的思想的逻辑体系。它的基础可以说是不能用归纳法从经验中提取出来的。而只能靠自由发明来得到。这种体系的根据(真理内容)在于导出的命题可由感觉经验来证实,而感觉经验对这基础的关系,只能直觉地去领悟。进化是循着不断增加逻辑基础简单性的方向前进的。为了要

进一步接近这个目标,我们必须听从这样的事实:逻辑基础愈来愈远离经验事实,而且我们从根本基础通向那些同感觉经验相联系的导出命题的思想路线,也不断地变得愈来愈艰难、愈来愈漫长了。”([1],p.372)

第二,大胆地提出了“概念是思维的自由创造”、“范畴是自由的约定”([1],pp.407,471)的命题,详细地阐述了从感觉经验到基本概念和基本原理的非逻辑途径。爱因斯坦指出,象马赫和奥斯特瓦尔德这样的具有勇敢精神和敏锐本能的学者,也因为哲学上的偏见而妨碍他们对事实做出正确的解释(指他们反对原子论)。这种偏见——至今还没有灭绝——就在于相信毋须自由的构造概念,事实本身能够而且应该为我们提供科学知识。这种误解之所以可能,是因为人们不容易认识到,经过验证和长期使用而显得似乎同经验材料直接相联系的那些概念,其实都是自由选择出来的。爱因斯坦认为,物理学家的最高使命就是要得到那些普遍的基本定律,由此世界体系就能用单纯的演绎法建立起来。要通向这些定律,并没有逻辑的道路,只有通过那种以对经验的共鸣的理解为依据的直觉,才能得到这些定律。”([1],p,102)

为了从经验材料中得到基本原理。除了通过“以对经验的共鸣的理解为依据的直觉”外,爱因斯坦还指出可以通过“假设”、“猜测”、“大胆思辨”、“创造性的想像”、“灵感”、“幻想”、“思维的自由创造”、“理智的自由发明”、“自由选择的约定”等等。不管方法如何变化,它们都有—个共同点,即基本概念和基本原理只能通过非逻辑的途径自由创造出来。这样一来,基本概念和基本原理对于感觉经验而言在逻辑上是独立的。爱因斯坦认为二者的关系并不像肉汤同肉的关系,而倒有点像衣帽间牌子上的号码同大衣的关系。也正由于如此,从感觉经验得到基本概念和原理就是一项十分艰巨的工作,这也是探索性的演绎法的关键一步。因此,爱因斯坦要求人们“对于承担这种劳动的理论家,不应当吹毛求疵地说他是‘异想天开'''';相反,应当允许他有权去自由发挥他的幻想,因为除此以外就没有别的道路可以达到目的。他的幻想并不是无聊的白日做梦,而是为求得逻辑上最简单的可能性及其结论的探索。”([1],pp.262~263)

关于爱因斯坦所说的“概念是思维的自由创造”和“范畴是自由的约定”,其中的“自由”并非任意之谓,即不是随心所欲的杜撰.爱因斯坦认为,基本概念和基本原理的选择自由是一种特殊的自由。它完全不同作家写小说时的自由,它倒多少有点像一个人在猜一个设计得很巧妙的字谜时的那种自由。他固然可以猜想以无论什么字作为谜底,但是只有一个字才真正完全解决了这个字谜。显然,爱因斯坦所谓的“自由”,主要是指建立基本概念和基本原理时思维方式的自由、它们的表达方式的自由以及概括程度高低的自由,—般说来,它们包含的客观实在的内容则不能是任意的。这就是作为反映客观实在的人类理智结晶的科学之客观性和主观性的统一。诚如爱因斯坦所说:“科学作为一种现存的和完成的东西,是人们所知道的最客观的,同人无关的东西。但是,科学作为一种尚在制定中的东西,作为一种被迫求的目的,却同人类其他一切事业一样,是主观的,受心理状态制约的。”([1],p.298)

第三,明确地把“内在的完备”作为评判理论体系的合法性和正确性的标准之一。在爱因斯坦看来,探索性的演绎法就是在实验事实的引导下,通过思维的自由创造,发明出公理基础,然后以此为出发点,通过逻辑演绎导出各个具体结论,从而构成完整的理论体系。但是,评判这个理论体系的合法性和正确性的标准是什么呢?爱因斯坦晚年在“自述”中对这个问题作了纲领性的回答([1],pp.10~11)。他认为,第一个标准是“外部的证实”,也就是说,理论不应当同经验事实相矛盾。这个要求初看起来似乎十分明显,但应用起来却非常伤脑筋。因为人们常常,甚至总是可以用人为的补充假设来使理论同事实相适应,从而坚持一种普遍的理论基础。但是,无论如何,这种观点所涉及的是用现成的经验事实采证实理论基础。这个标准是众所周知的,也是经常运用的。有趣的是爱因斯坦提出的第二个标准——“内在的完备”。它涉及的不是理论同观察材料的关系问题,而是关于理论本身的前提,关于人们可以简单地、但比较含糊地称之为前提(基本概念和基本原理)的“自然性”或者“逻辑简单性”。也就是说,这些不能在逻辑上进一步简化的元素要尽可能简单,并且在数目上尽可能少,同时不至于放弃对任何经验内容的适当表示。这个观点从来都在选择和评价各种理论时起着重大的作用,但是确切地把它表达出来却有很大困难。这里的问题不单是一种列举逻辑上独立的前提问题(如果这种列举是毫不含糊地可能的话),而是一种在不可通约的质之间作相互权衡的问题。其次,在几种基础同样“简单”的理论中,那种对理论体系的可能性质限制最严格的理论(即含有最确定论点的理论)被认为是比较优越的。理论的“内在的完备”还表现在:从逻辑的观点来看,如果一种理论并不是从那些等价的和以类似方式构造起来的理论中任意选出的,那么我们就给予这种理论以较高的评价。

爱因斯坦看到了“内在的完备”这一标准不容忽视、不可替代的特殊作用。他指出,当基本概念和基本原理距离直接可观察的东西愈来愈远,以致用事实来验证理论的含义就变得愈来愈困难和更费时日的时候,“内在的完备”标准对于理论的选择和评价就一定会起更大的作用。他还指出,只要数学上暂时还存在着难以克服的困难,而不能确立这个理论的经验内涵:逻辑的简单性就是衡量这个理论的价值的唯一准则,即使是一个当然还不充分的准则([1],pp.12、501)。爱因斯坦的“内在完备”标准在某种程度上是不可言传的,但是它在像爱因斯坦这样的具有“以对经验的共鸣的理解为依据的直觉”的人的手中,却能够有效地加以运用,而且预言家们在判断理论的内在完备时,它们之间的意见往往是一致的。

在爱因斯坦创立狭义相对论和广义相对论的过程中,充分地体现了探索性的演绎法的这三个特色。前面我们已简单地涉及到这一点,这里我们只谈谈爱因斯坦从“内在的完备”这一标准的角度是如何对自己理论进行评价的。1906年,当德国实验物理学家宣称,他在1905年完成的关于高速电子(β射线)质量和速度关系的数据支持亚伯拉罕和布赫尔的“刚性球”电子论,而同洛伦兹-爱因斯坦的理论(电子在运动方向的直径会随速度的增加而收缩)不相容,彭加勒立即发生了动摇,认为相对性原理不再具有我们先前赋予它的那种重要的价值。洛伦兹表现得更是十分悲观,他在1906年3月8日致彭加勒的信中说:“不幸的是,我的电子扁缩假设同考夫曼的新结果发生了矛盾,因此我必须放弃它,我已到了山穷水尽的地步。在我看来,似乎不可能建立起一种要求平移对电学和光学现象完全不产生影响的理论。”([2],p.334)爱因斯坦的态度则截然相反,他对自己的理论的“内在的完备”抱有信心。他在1907年发表的长篇论文中指出:考大曼的实验结果同狭义相对论的“这种系统的偏离,究竟是由于没有考虑到的误差,还是由于相对论的基础不符合事实,这个问题只有在有了多方面的观测资料以后,才能足够可靠地解决。”他认为“刚性球”电子论在“颇大程度上是由于偶然碰巧与实验结果相符,因为它们关于运动电子质量的基本假设不是从总结了大量现象的理论体系得出来的。”正由于狭义相对论的理论前提的简单性大,它涉及的事物的种类多,它的应用范围广,它给人的印象深,所以爱因斯坦才对自己的理论坚信不疑,要知道当时还没有确凿的实验事实证实这种具有思辨性的理论。谈到广义相对论的“内在的完备”,爱因斯坦说:“这理论主要吸引人的地方在于逻辑上的完整性。从它推出的许多结论中,只要有一个被证明是错误的,它就必须被抛弃,要对它进行修改而不摧毁其整个结构,那似乎是不可能的。”([1],p.113)他甚至说过这样的话:当1919年的日蚀观测证明了他关于光线弯曲的推论时,他一点也不惊奇。要是这件事没有发生,他倒会是非常惊讶的。

探索性的演绎法是爱因斯坦的主导哲学思想——唯物论的唯理论——的一个重要组成部分。可贵的是,爱因斯坦在这里并没有排斥或漠视经验归纳法在科学中的地位。一方面,他认为纯粹思维可以把握实在;另一方面,又认为从来也没有一种理论是靠纯粹思辨发现的,他对构造性的理论也给予了较高的评价。爱因斯坦敢于正视矛盾的两极,在唯理论和经验论之间保持了一种微妙的、恰如其分的平衡,这正是他的高明之处。他提出的探索性的演绎法,只是强调“要大胆思辨,不要经验堆积”罢了,这是理论科学在20世纪发展的必然趋势,爱因斯坦则是率先表达了这一时代要求。

参考文献

《爱因斯坦文集》第一卷,许良英等编译,商务印书馆,1978年第1版,第75~76页。

ArthurI.Miller,AlbertEinstein''''sSpecislTheoryofRelativity:Emergence(1905)andEarlyInterpretation,(1905~1911),Adison-WesleyPubiishingCompany,Inc.,1981,p.196.

H.S.塞耶编:《牛顿自然哲学著作选》,上海人民出版社,1971年第1版,第6页。

H.Poincaré,TheFoundationsofScience,TranslationbyG.B.Halsted,TheScience,YorkandGarrison,N.Y.1913,pp.28,65.