逻辑推理基本公式范例6篇

前言:中文期刊网精心挑选了逻辑推理基本公式范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

逻辑推理基本公式

逻辑推理基本公式范文1

一、主要内容

本章内容包括电流、产生持续电流的条件、电阻、电压、电动势、内电阻、路端电压、电功、电功率等基本概念,以及电阻串并联的特点、欧姆定律、电阻定律、闭合电路的欧姆定律、焦耳定律、串联电路的分压作用、并联电路的分流作用等规律。

二、基本方法

本章涉及到的基本方法有运用电路分析法画出等效电路图,掌握电路在不同连接方式下结构特点,进而分析能量分配关系是最重要的方法;注意理想化模型与非理想化模型的区别与联系;熟练运用逻辑推理方法,分析局部电路与整体电路的关系

逻辑推理基本公式范文2

模糊逻辑控制(Fuzzy Logical Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的关键所在,系统动态的信息越详细,则越能达到精确控制的目的。然而,对于复杂的系统,由于变量太多,往往难以正确描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力。因此尝试以模糊数学来处理这些控制问题。

如人工控制反应釜的釜内温度经验可以表达为:若釜内温度过高,则开大冷水阀;若温度和要求的温度相差不太大,则把水阀关小;若温度快接近要求的温度,则把阀门关得很小。这些经验规则中,“较小”“不太大”“接近”“开大”“关小”“关得很小”等表示温度状态和控制阀门动作的概念都带有模糊性。这些规则的形式正是模糊条件语句的形式,可以用模糊数学的方法来描述过程变量和控制作用的这些模糊概念及它们之间的关系,又可以根据这种模糊关系及某时刻过程变量的检测值(需化成模糊语言值)用模糊逻辑推理的方法得出此刻的控制量。这正是模糊控制的基本思路。

模糊控制理论发展至今,模糊逻辑推理的方法大致可分为3种,第一种依据模糊关系的合成法则;第二种依据模糊逻辑的推论法简化而成;第三种和第一种相类似,只是其后件部分改由一般的线性式组成。

由于模糊控制器的模型不是由数学公式表达的数学模型,而是由一组模糊条件语句构成的语言形式,因此从这个角度上讲,模糊控制器又称模糊语言控制器。模糊控制器的模型是由带有模糊性的有关控制人员和专家的控制经验与知识组成的知识模型,是基于知识的控制,因此,模糊控制属于智能控制的范畴。

可以说,模糊控制是以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的数学工具,用计算机来实现的一种智能控制。

1 模糊控制系统的组成

模糊控制系统的基本原理图如图1所示。其中的核心部分为模糊控制器,由于模糊控制器的控制规则是根据操作人员的控制经验取得的,所以它的作用就是模仿人工控制。模糊控制器的控制规律由计算机的程序实现。其功能的实现是要先把计算机观测控制过程得到的精确量转化为模糊输入信息,按照总结人的控制经验及策略取得的语言控制规则进行模糊推理和模糊决策,再经去模糊化处理得到输出控制的精确量,求得输出控制量的模糊集作用于被控对象。因此,控制器的结构通常是由它的输入和输出变量的模糊化、模糊推理算法、模糊合成和模糊判决等部分组成。

2 模糊控制器的设计原理

模糊控制器结构如图2所示。模糊控制器主要由模糊化、模糊推理和模糊决策(反模糊化)3部分组成。模糊控制器的输入是实际量,经模糊化后转换成模糊输入。根据输入条件满足的程度和控制规则进行模糊推理得到模糊输出。该模糊输出经过模糊判决(反模糊化)转化成非模糊量用于过程的控制。

模糊控制器3部分的共同基础是知识库,它包含模糊化所用的隶属函数、模糊推理的控制规则及反模糊化所用的公式。和常规控制方法比较,模糊控制有其明显的优越性。由于模糊控制实质上是用计算机去执行操作人员的控制策略,因而可以避开复杂的数学模型。对于非线性、时变的大滞后及带有随机干扰的系统,由于数学模 型难以建立,因而常规控制方法也就失效;而对这样的系统,设计一个模糊控制器却没有多大困难。

逻辑推理基本公式范文3

一、重视对定理的教学,增强学生推理的能力

立体几何教学的核心就是定理的教学,逻辑推理离不开定理。有很多教师把定理教学当成“结论”来教,认为反正高考也不会考定理的证明,这恰恰违背了新课标的“重思维活动过程”的要求。定理教学中,要求学生一会背,二会推导,三会灵活运用。

(一)重视定理的推理论证。定理的推理论证是数学思维过程的一种重要表现形式,这个过程揭示了数学知识之间的因果关系,它将对学生学习立体几何知识、学习立体几何的思维方法和技巧提供明确的思路。定理的证明具有示范性与典型性,也为学生提供了一道最好的例题,给学生一次练习或“实习”的机会。在定理证明的过程中,寻求多种证明方法(常用的方法有由因到果的综合法和执果索因的分析法,还是从命题的反面考虑的反证法),提高其逻辑推理的能力。对于定理的证明应视其难易程度,采取由教师重点讲解,师生共同讨论的方式还是由学生独立证明的方式。

(二)重视定理的灵活运用。“所谓灵活运用就是通过变换图形的位置和形状,让学生从不同的角度去理解和掌握定理”,认清其实质。

例1:由正方体的8个顶点、12条棱上的12个中点与一个底面的中心,画出线面垂直的关系(如下图)

(三)重视定理的记忆。只有熟练记住了概念、公式、定理等基础知识,才有可能会做题。在掌握了定理的推导证明与应用后,加深了对定理的理解,这时记忆效果会更好,提倡理解加记忆的方法。

二、重视立体几何证明的教学,增强学生的逻辑推理能力

立体几何证明是学习立体几何必不可少的内容之一,它对逻辑思维的训练和发展有着相当重要的作用。但是有很多学生有“证明恐惧症”,存在没证明思路或者有清晰的思路无法用数学语言表达等问题。通过调查了解,学生对利用综合法证明有关“垂直”的问题有障碍。所以教师在教学中加强有关“垂直”问题的证明和解题规范性的训练,增强学生的逻辑推理能力。

(一)加强有关“垂直”问题的证明。

第一,让学生明确证明线线垂直、线面垂直与面面垂直的判定方法。

第二,垂直证明问题的思维模式。立体几何的证明重在分析,首先分析图形与条件,把已知线段的长度、垂直或者相等关系在图形中标注出来;再结合结论分析证明方法。学生时刻要思考三个问题:证什么?需要什么条件?如何转化条件?

对于这种证明的思维模式当然也适用于空间中平行关系的证明,学生应勤加练习进行强化,养成良好的解题习惯,增强学生的逻辑推理能力。

三、加强解题规范化的训练,

对于立体几何的证明题,分析完证明思路后,就要求学生会写出规范化的证明步骤,需要教师在平时的教学中多加引导与强化。

第一,榜样作用。这里所说的榜样作用主要指教材的榜样、教师的榜样和学生的榜样。教材的榜样主要是通过定理的证明与例题的证明实现的;教师的榜样是通过教师讲解证明题时的示范实现的;学生的榜样是通过展示某位同学书写规范的立体几何证明实现的;

第二,三种数学语言规范使用。所谓的三种数学语言就是指文字语言、图形语言与符号语言。在立体几何证明中需要添加辅助线或者辅助平面,要求学生分清虚实。文字语言的表述要规范,对题目中未出现的点、线与字母要加以说明。例:在…上取中点为…,经过…点作…的垂线,垂足为…,延长…交…于…点,连接…交…于…点等等。证明的过程尽量简练,不用或少用文字,这就需要学生会用符号语言表述,前提是应该对定理的符号语言要非常熟练,详略得当;

逻辑推理基本公式范文4

关键词:逻辑 演绎 推理 掌握 应用

发展学生初步的逻辑思维能力是小学数学教学的主要任务之一。结合教学内容科学地、有意识地将逻辑规律引进教学,在教学过程中加以渗透,既有利于小学生掌握数学基础知识和基本技能,又能培养他们的初步逻辑思维能力。

一、知识结构、逻辑推理及相互间的关系。

在小学数学教学中,构建良好的数学知识结构是培养发展学生逻辑思维能力的一个重要途径。而知识体系因为其内在的逻辑结构而获得逻辑意义。数学中基本的概念、性质、法则、公式等都是遵循科学的逻辑性构成的。

“数学作为一种演绎系统,它的重要特点是,除了它的基本概念以外,其余一切概念都是通过定义引入的 。”这种演绎系统一方面使得数学内容以逻辑意义相关联。另一方面从知识结构所蕴含的逻辑思维形式中得到的研究方法(如逻辑推理等),再去获取更多的知识。如学习“能同时被2、5整除的数的特征”时,我是通过演绎推理得到的:

所有能被2整除的数的末尾是0、2、4、6、8;

所有能被5整除的数的末尾是0、5;

因此,能同时被2、5整除的数的末尾是0。

数学中的这种推理形式一经被学生所掌握,他们又会运用它在原有知识的基础上做出新的推理和判断。学生知识的习得和构建,主要依赖认知结构中原有的适当观念,去影响和促进新的理解、掌握,沟通新旧知识的互相联系,形成新的认知结构系统,这是数学知识学习过程中的同化现象。它包含三方面的内容:一是 新旧知识建立下位联系;二是新旧知识建立上位联系;三是新旧知识建立联合意义。这三方面与逻辑结构中的 三类推理恰好建立相应的联系。推理,是从一个或几个已知的判断得出新的判断的过程。通常有:演绎推理( 从一般性的前提推出特殊性结论的推理);归纳推理(从特殊的前提推出一般结论的推理);类比推理(从特 殊的前提推出特殊结论的推理或从一般前提推出一般结论的推理)。

在教学的过程中,教师结合教学内容,有意识地把逻辑规律引入教学,注意示范、点拨,显然是有利于发 展学生的逻辑思维能力。

二、逻辑推理在教与学过程中的应用。

1、如果原有的认知结构观念极其抽象,概括性和包容性高于新知识,新旧知识建立下位联系、新知识从属 于旧知识时,那么宜适当运用演绎推理的规则,由一般性的前提推出特殊性的结论。

“演绎的实质就是认为每一特殊(具体)情况应当看作一般情况的特例”。为了得以关于某一对象的具体 知识,先要找出这一对象的类(最近的类概念),再将这一对象的类的属性应用于哪个对象。如:运用乘法分 配律简便运算时,学生必须以清晰、稳固的乘法分配律知识为基础,才能得出:

89×89+89=89×(89+1)=8010

这里89×89+89=89×(89+1)是根据一般性判断a×c+b×c=(a+b)×c推出的。当学生理解这种推理的顺 序,且懂得要使演绎推理正确,首先要前提正确,并学会使用这样的语言:

公约数只有两个约数1的两个数是质数;

因为,11、13这两个数只有公约数1;

所以,11、13是互质数。

那么,符合形式逻辑的演绎法则就初步被学生所掌握。

2、如果原有认识结构已形成几个观念,要在原有的观念上学习一个抽象、概括和包容性高于旧知识的新知 识,即新旧知识建立上位联系时,那么适当运用归纳推理的规则,可由特殊的前提推出一般性的结论。当需要 研究某一对象集时,先要研究各个对象(情况),从中找出整个对象集所具有的性质,这就是归纳推理。归纳 推理的基础是观察和试验,是从具体的、特殊的情况过渡到一般情况(结论、推论)。

教材中关于概念的形成,运算法则和运算定律、性质得出,一般是通过归纳推理得到的。如分数的初步认 识。在学习前,学生认知结构中已有了分数的某些具体经验,加上教材提供的和教师列举的生活实例和图形。 如:把一张纸平均分成五份,每份是它的1/5,把一截电线平均截成七段,每段是它的1/7,把一块饼干平均分成6份,每份是这块饼干的1/6……所有这些操作和演示都让学生认识到几分之一这个概念。随后,再认识几分之几。这种 不完全的归纳推理,是在考察了问题的若干个具体特例后,从中找出的规律。(严格地说,由不完全归纳法推 理得到的结论还需要论证,才能判定它的正确性。)

运用归纳推理传授知识时,要根据学生的实际经验,选取典型的特例,并能够通过典型特例的推理得出一 般性的结论。又要用这个“一般结论”,去解决具体特例。在教与学的进程中,归纳和演绎不是孤立地出现的 ,它们紧密交织在一起。

3、如果新旧知识间既不产生从属关系,又不能产生上位关系,但是新知识同原有知识有某种吻合关系或类 比关系,则新旧知识间可产生并列关系。那么可以运用类比推理。

教材中,商不变性质和分数基本性质,乘数是整数的乘法和乘数是分数的乘法等,学习这类与旧知识处于 并列结合关系的新知识时,既不能以上位演绎推理到下位,又不能以下位归纳推理到上位,只能采用类比推理 。如五年级学习“一辆小车平均每小时行80千米,0.5小时行了多少千米?”时,学生还无法根据小数乘法的意 义列出此题的解答等式。所以,教学中一般用整数乘法中的数量关系相类推。

原有的认知结构中,整数乘法与小数乘法只是一般的非特殊的并列结合关系。新知识的学习,只能利用原 有知识中的一般的和非特殊的有关内容进行同化。

由于学生们对事物间“相同程度”判断不明确,有时因为错误的类比,即“有害的”类比,而造成结论性 的错误。如学了“30朵蓝花比14朵白花多16朵”,也可以说成“14朵白花比蓝花少16朵”,就把:“甲数比乙数 多40%”就可以说成“乙数比甲数少40%”。教师应当及时指出这些类比错误,同时让学生懂得,由类比得出的 结论必须加以验证,同时,经常作一些类比上的选择或判断性的练习,帮助他们不要做错误的类比。

逻辑推理基本公式范文5

X对象具有属性,a、b、c,另有属性d,

X’对象具有属性a、b、c

推理:X’对象可能也有属性d。

类比推理得到的结论(或引出的假说)都带有“或然性”的缺陷,必须受实践、实验、检验(或论证)而后才能成真理(或学说、理论)。但是科学史上很多重大发现往往发端于类比。例如,17世纪中叶,英国物理学家胡克(R,Hooke 1635-1703)通过将天体之间相互作用的引力与地球上的受重力的类比提出了“引力的平方反比”猜想(假说),后来经牛顿(Isaac Newton,1642~1727)发展为万有引力理论。再如19世纪末,英国物理学家卢瑟福(E,Rutherford,1871~1937)提出原子结构模型与太阳系结构类比,后经丹麦科学家玻尔(N,Bohr,1885~1962)等人的研究发展成为原子结构理论。科学技术的发明创造,多缘于类比。如在20世纪初美国莱特(O,&W,Wright,1971~1948;1867-1912)兄弟俩,观察鸟的起飞、升降、盘旋等各种动作,类比推理解决了飞行器在空间适度平衡的关键问题,发明创造了世界上第一架飞机在蓝天翱翔……

在物理学中常见的类比方法有:(1)简单共存类比――以简单共存关系作为推理中介的一种类比,这种简单共存关系,就是类比对象的各个属性(对象属性之间逻辑联系较薄弱,例见后)。(2)因果类比――依据两个研究对象各自属性之间。可能存在的类似的因果关系而进行的一种逻辑推理。例如,借助“重力场”中某些特性之间的因果关系的类比,根据“静电场”与“重力场”的相似性,可以用因果类比推导出静电场的一些性质。按类比图式可表示为:

(3)模型类比――根据模型和“原型客体”之间具有相同或相似的关系而进行的一种类比推理。例如用弹簧小球模型(图2)类比分子力(原型客体)随距离的关系,这个类比关系可表示为:

(4)数学类比――如库仑定律的数学表达式(F=Kq1q2/r2――由实验得出)与牛顿万有引力定律的数学表达式

十分相似。因此如果把库仑力(电荷间相互作用的电力)类比于万有引力,这样就可把引力的知识内容、研究方法移植到相对电场的研究中,得到相应的结论(即从一个数学式推导出另一数学式)。这种类比推理方法称为数学类比。

在中学物理课学习中,类比方法有多方面的应用:

(1)“发现”(或“寻找”)新旧知识间的联系:(见前面例)如,将物理基本概念速度、压强、密度、功率等的定义进行类比,可“发现”它们的定义方法:

再将密度、功率的定义及公式,如上方式类比,就可“发现”它们的定义方法:是(主)变量与(因)变量之比。

(2)借助类比,“触类旁通”或“以熟比生”,迁移知识,如,将水流与电流进行类比,可联想(迁移)导体中电流形成的原因(图3)。

(3)运用类比,进行比较,发现差异。在物理学习中,对一些相似或相近的而本质上迥然有别的概念、公式、定律等可加以比较对照发现其差异,例如“二力平衡”与“作用力和反作用力”的比较:

(4)运用类比进行物理模拟,启示以形象化解决抽象问题的思路方法。例如:运动的水滴落下的途径轨迹是垂直线,还是平抛线?[(见本刊2006年第12期(中)]。又如前面“模型类比”。

逻辑推理基本公式范文6

关键词 高考数学;福建卷;全国课标卷;比较;对策

为确保高考的公平性、科学性和权威性,2016年福建省普通高校招生统一考试数学试卷将由国家教育中心组织专家命制.这对已经习惯自行命题达12年之久的福建省高中数学教育而言,无疑是一个具有挑战性的变化.比较高考数学福建卷与全国课标卷的异同点,进而思考相应的教学对策,是迎接挑战所必须的准备工作.

一、高考数学福建卷与全国课标卷的共同特点

近年来,高考数学福建卷与全国课标卷的命制都能严格地遵循“纲领文件”(《考试大纲》或《考试说明》)的相关规定,试卷在题型设置、分值安排、内容分布、难易预设、考试时间等方面都保持稳定.试题稳中有新,追求能力立意,选材源于教材又高于教材,主要考查学生对基础知识的理解、掌握及运用的水平,具有很强的科学性、规范性、基础性、公平性和选拔性.

1.注重考查数学基础知识理解水平与逻辑推理能力

数学基础知识是数学思维的根基,数学思维中的逻辑推理方法与分析问题解决问题的能力,是学生未来生活所需要的,高考数学福建卷与全国卷都能紧紧抓住数学的这些学科特点,重点考查数学基础知识理解水平与数学逻辑推理能力.

在近年高考数学福建卷与全国课标卷中,高中数学基础知识和核心概念是试题的主要载体,试卷重点考查高中数学学科主干知识(如函数与导数、立体几何、解析几何、三角函数与数列等),同时将考查运用逻辑推理分析解决问题的能力作为重要目标,某些年份的数学试卷还出现单纯的逻辑题,使问题不单纯依赖于教材的数学知识,更能体现能力立意,更有利于科学选拔人才和学生的健康成长.

2.增强试题综合性,注重考查通性通法的运用水平

近年高考数学福建卷与全国课标卷在注重考查数学基础知识和基本技能的基础上,越来越多地将试题内容设计在一些重要的知识交汇点处,使试题的知识综合性逐年增强.同时,也越加重视考查数学通性通法的运用水平,刻意淡化解题的特殊技巧.

数学思想方法是数学知识在更高层次上的抽象和概括,数学思想既是数学知识的精髓,又是知识转化为能力的催化剂,引导学生掌握数学思想方法学会以思想方法解题,是高考数学福建卷与全国课标卷命制中不断追求的目标.深入考查学生数学思维的灵活性,考查学生对数学解题通性通法的运用水平,也是为了引导学生掌握数学思想方法,学会以思想方法解题.

3.关注生活实际注重考查创新应用意识

数学问题源于生活源于实践,数学基础知识是解决实际工作问题的重要工具,数学思维方式是每一个公民必备的素养.因而,近年来的高考数学福建卷与全国课标卷也考查考生基于日常生活和其它学科知识以发现并提出数学问题的能力,以及应用所学数学知识、数学思想方法进行思考探究的能力.

命题有时也会关注现实社会热点问题,以考查学生应用数学方法解决实际问题的能力,体现数学在解决实际问题中的作用和价值.不断拓宽试题素材来源,联系社会生活实际,使试题更接地气,对提高学生数学应用意识与对数学文化价值的认识,促进学生理性思维习惯的养成,以及未来人生规划所必备的数学基础都有积极作用.

二、高考数学福建卷与全国课标卷内容比较

近年高考数学福建卷与全国课标卷在题型结构与赋分方面都十分稳定.

全国课标卷试题分必答题和选做题两类,选做题三选一.其题型结构与赋分情况是:选择题12道,每道5分;填空题4道,每道5分;解答题6道,每道10或12分.

福建文科卷的题型结构与赋分情况是:选择题12道,每道5分;填空题4道,每道5分;解答题6道,每道12或14分.

福建理科试卷分必答题和选做题两类,选做题三选二.其题型结构与赋分情况是:选择题10道,每道5分;填空题5道,每道4分;解答题6道,每道13或14分.

在选择题方面,近年高考数学福建卷与全国课标卷每年都有与集合、函数、命题、几何、算法初步与框图、复数的计算等知识点相关的试题,也都有一些综合题型,考查学生对多个知识点的掌握情况以及综合能力.大部分选择题对于学习基础扎实解题思维细致的考生而言都比较容易,一般地,两类试卷的最后两道选择题都有一定难度,且涉及的知识点在不断变化,都需要灵活、综合地思考.

在填空题方面,近年高考数学福建卷与全国课标卷中每年必有一道与函数相关的试题,其它问题涉及的知识点多是立体几何、不等式、概率统计、数列等.从整体上看,填空题考察的知识内容也都比较基础,但在形式上较为灵活,常常需要进行数形转化,解答时要勤于画图,认真计算,以避免出错.

在解答题方面,福建理科卷与全国课标卷的试题内容大都与函数、几何、数列、概率统计、解析几何、选学等知识有关.福建文科卷与全国卷II一般都必考数列问题,且大都是在第17题位置,属容易题,主要考查学生的计算与公式记忆能力,解答时要运用转化策略,将计算归结为以基本量为未知数的方程问题.

概率统计是所有试卷必考问题,试题常与随机这一核心概念紧密相关,既有概率计算问题,也有统计分析如直方图等问题,一般都较为简单.

在历年的福建卷中,对函数问题的考查分值较多,大都有两道,一道是三角函数问题,另一道是导数在函数中的应用问题.而在全国课标卷中,函数的考查内容与福建卷相似,但分值相对较少,且较少对三角函数进行独立命题;导数在函数问题中的应用大都是综合问题,对考生而言是比较困难的,结合图形进行思考往往是解题要诀.立体几何问题都是各卷必考内容,大部分是容易问题.

全国课标卷的选考内容为《4-1几何证明选讲》《4-4坐标系与参数方程》和《4-5不等式选讲》,不同于福建卷的《4-2矩阵与变换》《4-4坐标系与参数方程》和《4-5不等式选讲》.全国课标卷的《几何证明选讲》试题涉及的图形一般是由圆与三角形(或四边形)构成的.

福建理科卷考查的知识点主要有:1.共轭复数的概念及复数的运算;2.三视图的概念,常见几何体的三视图;3.等差数列的通项公式和前n项和公式;4.幂函数、指数函数、对数函数的图象与性质;5.循环结构程序框图;6.直线与圆的位置关系,充分必要条件的判定;7.基本初等函数的图象和性质;8.平面向量的基本定理及坐标表示;9.圆与椭圆的位置关系的相关知识及待定系数法;10.排列组合的两个基本原理与穷举法;11.可行域的画法及最优解的控求;12.利用正弦定理解三角形,求三角形的面积;13.基本不等式及函数的实际应用;14.利用定积分求面积及几何概型概率的求解;15.排列组合中的分类列举和集合中元素的特性;16.同角三角函数的基本关系式、二倍角公式、辅助角公式以及三角函数的图象与性质;17.空间直线与直线、直线与平面、平面与平面的位置关系以及求空间角的方法;18.古典概型、离散型随机变量的分布列、数学期望与方差等基础知识;19.双曲线的方程与性质、直线与圆锥曲线的位置关系等基础知识;20基本初等函数的导数、导数的运算及导数应用、全称量词与存在量词的基础知识;21.(1)逆矩阵、矩阵的特征值与特征向量等基础知识;(2)直线与圆的参数方程等基础知识;(3)绝对值不等式、柯西不等式等基础知识.

全国课标卷考查的知识点主要有:1.集合的含义及表示、集合的运算;2.复数的四则运算;3.函数奇偶性的判断;4.双曲线的标准方程及几何性质、点到直线的距离公式;5.古典概型的求法;6.单位圆与三角函数的定义;7.循环结构程序框图的基础知识;8.诱导公式及倍角公式等的灵活应用;9.线性规划的最优解;10.抛物线的定义,向量的共线;11.利用导数研究函数的图象、特殊值法解题;12.三视图还原为几何体,三棱锥中棱长的计算;13.二项式定理及二项展开式的通项公式;14.对实际问题的逻辑推理;15.向量加法的几何意义;16.正、余弦定理及三角形的面积公式、基本不等式;17.等差数列的定义,递推关系的应用;18.用样本的数字特征估计总体的数字特征,正态分布,数学期望等;19.线面垂直的判定与性质,二面角在小的计算及空间向量的坐标运算;20.椭圆的标准方程及离心率,直线与椭圆的位置关系,点到直线的距离公式,面积问题,直线方程的求解;21.导数的几何意义,利用导数求函数的最值,不等式的证明;22.圆内接四边形的性质等几何基础知识;23.参数方程、普通方程的相互转化,点到直线的距离公式;24.重要不等式、均值不等式的应用.

此外,全国课标卷更加注重体现选拔性,试题从易到难的梯度明显;福建卷则更加关注试卷的区分度与知识覆盖面,容易题偏多,但押轴试题较为困难.

三、教学与复习对策

高考数学福建卷与全国课标卷虽有一定差异,但从根本上看,二者都以《考试大纲》为指南,顺应高考改革大方向,对高中数学的基础知识、基本技能、基本思想方法和应用进行系统、全面、科学地考查.试卷都注重对数学本质理解的考查,都注重对空间想象、数据处理、应用创新、逻辑推理和方法迁移能力的考查,力图实现高考为高校招生提供区分与选拔的功能.

因而,在教学与复习中,以下的对策对于从福建卷到全国课标卷的教学对接是有一定益处的.

1.立足基础突出主干,系统构建知识网络

高考数学福建卷与全国课标卷中,函数、数列、三角、立体几何、解析几何和概率统计都是考查的主体内容,在这些基础知识的网络交汇点处设计试题,有利于考查学生数学思维的灵活性与综合处理数学问题的能力.因而,在高中数学日常教学与复习课中,要立足基础突出主干,帮助学生构建知识网络,促成知识系统化.在高一、二学习阶段,受学生的知识与能力范围限制,许多知识的获得是零散的,缺少深度与高度,在高三复习阶段,学生的知识视野已变得更加广阔,复习时根据知识间的纵横联系,对所学的知识与方法进行系统复习,可以进一步优化学生的数学认知结构,让学生对已知知识有新的理解、新的发现和新的感悟.

特别地,在高三第二轮复习阶段,需要适应回归教材,引导学生学会站在知识系统的高度审视所学内容,画出知识导图,以在解题中能快速调用所学知识拟定解题思路.

2.注重思维能力培养,深入挖掘例习题的潜在价值

高考数学福建卷与全国课标卷常以基础知识为载体,以方法为依托,以考查思维能力为目的.因而,教学与复习过程中,在立足基础突出主干努力帮助学生构建知识网络的同时,还要十分重视学生数学思维能力培养.数学思维能力的培养,要重在引导学生学会从具体的知识与方法中概括数学基本思想,领悟转化的策略智慧,掌握解题的通性通法.

由于高考数学重在考查通性通法,因而在解题教学中,要刻意淡化特殊的解题技巧,不钻研偏题怪题,不解过于烦琐的运算量很大的数学问题.精心筛选解题教学所用的例习题,解题方法以通性通法为主,让学生学会举一反三.教材例习题具有代表性与迁移性,是渗透数学方法体现数学思想的重要素材,所以要充分认识例习题的潜在价值,适当地对其进行改编与延伸,让学生通过归纳总结,掌握解题的基本转化策略,逐步感悟数学的思想方法.

3.重视阅读理解能力的培养,发展学生探究意识与创新思维能力