前言:中文期刊网精心挑选了量子力学的理论范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
量子力学的理论范文1
图景。
一、量子力学突破了经典科学的机械决定论,遵循因果加统计的非机械决定论
经典力学是关于机械运动的科学,机械运动是自然界最简单也是最普遍的运动。说它最简单,因为机械运动比较容易认识,牛顿等人又采取高度简化的方法研究力学,获得了空前成功;说它最普遍,因为机械力学有广泛的用途,容易把它绝对化。[2]机械决定论是建立在经典力学的因果观之上,解释原因和结果的存在方式和联系方式的理论。机械决定论认为因和果之间的联系具有确定性,无论从因到果的轨迹多么复杂,沿着轨迹寻找总能确定出原因或结果;机械决定论的核心在于只要初始状态一定,则未来状态可以由因果法则进行准确预测。[3]其实,机械决定论仅仅适用于宏观物体,而对于微观领域以及客观世界中大量存在的偶然现象的研究就产生了统计决定论。[4]
量子力学是对经典物理学在微观领域的一次革命。量子力学所揭示的微观世界的运动规律以及以玻尔为代表的哥本哈根学派对量子力学的理解,同物理学机械决定论是根本相悖的。[5]按照量子理论,微观粒子运动遵守统计规律,我们不能说某个电子一定在什么地方出现,而只能说它在某处出现的几率有多大。
玻恩的统计解释指出,因果性是表示事件关系之中一种必然性观念,而机遇则恰恰相反地意味着完全不确定性,自然界同时受到因果律和机遇律的某种混合方式的支配。在量子力学中,几率性是基本概念,统计规律是基本规律。物理学原理的方向发生了质的改变:统计描述代替了严格的因果描述,非机械决定论代替了机械决定论的统治。
经典统计力学虽然也提出了几率的概念,但未能从根本上动摇严格决定论,量子力学的冲击则使机械决定论的大厦坍塌了。量子力学揭示并论证了人们对微观世界的认识具有不可避免的随机性,它不遵循严格的因果律。任何微观事件的测定都要受到测不准关系的限定,不可能确切地知道它们的位置和动量、时间和能量,只能描述和预言微观对象的可能的行为。因此,量子力学必须是几率的、统计的。而且,随着认识的发展,人们发现量子统计的随机性,不是由于我们知识和手段的不完备性造成的,而是由微观世界本身的必然性(主客体相互作用)所注定。
二、量子力学使得科学认识方法由还原论转化为整体论
还原论作为一种认识方法,是指把高级运动形式归结为低级运动形式,用研究低级运动形式所得出的结论代替对高级运动形式的本质认识的观点。它用已分析得出的客观世界中的主要的、稳定的观点和规律去解释、说明要研究的对象。其目的是简化、缩小客体的多样性。这种方法在人类认识处于初级水平上无疑是有效的。如牛顿将开普勒和伽利略的定律成功地还原为他的重力定律。但是还原论形而上学的本质,以及完全还原是不可能的,决定了还原论不能揭示世界的全貌。
量子力学认为整体与部分的划分只有相对意义,整体的特征绝非部分的叠加,而是部分包含着整体。部分作为一个单元,具有与整体同等甚至还要大的复杂性。部分不仅与周围环境发生一定的外在联系,同时还要表现出“主体性”,可将自身的内在联系传递到周边,并直接参与整体的变化。因而,部分与整体呈现了有机的自觉因果关系。在特定的临界状态,部分的少许变化将引起整体的突变。[6]
波粒二象性是微观世界的本质特征,也是量子论、量子力学理论思想的灵魂。用经典观点来看,也就是按照还原论的思想,粒子与波毫无共同之处,二者难以形成直观的统一图案,这是经典物理学通过部分还原认识整体的方法,是“向上的原因”。可是微观粒子在某些实验条件下,只表现波动性;而在另一些实验条件下,只表现粒子性。这两种实验结果不能同时在一次实验中出现。于是,玻尔的互补原理就在客观上揭示了微观世界的矛盾和我们关于微观世界认识的矛盾,并试图寻找一种解决矛盾的方法,这就是微观粒子既具有粒子性又具有波动性,即波粒二象性。这就是整体论观点强调的“向下的原因”,即从整体到部分。同样,海森伯的测不准原理说明不能同时测量微观粒子的动量和位置,这也说明绝不能把宏观物体的可观测量简单盲目地还原到微观。由此我们可以看出,造成经典科学观与现代科学观认识论和方法论不同的根本在于思考和观察问题的层面不同。经典科学一味地强调外在联系观,而量子力学则更强调关注事物内部的有机联系。所以,量子力学把内在联系作为原因从根本上动摇了还原论观点。
三、量子力学使得科学思维方式由追求简单性发展到探索复杂性
从经典科学思维方式来看,世界在本质上是简单的。牛顿就说过,自然界喜欢简单化,而不喜欢用什么多余的原因以夸耀自己。追求简单性是经典科学奋斗的目标,也是推动它获取成功的动力。开普勒以三条简明的定律揭示了看似复杂的太阳系行星运动,牛顿更是用单一的万有引力说明了千变万化的天体行为。因而现代科学是用简单性解释复杂性,这就隐去了自然界的丰富多样性。
量子力学初步揭示了客观世界的复杂性。经典科学的简单性是与把物理世界理想化相联系的。经典物理学所研究的是理想的物质客体。它不但用理想化的“质点”、“刚体”、“理想气体”来描述物体,而且把研究对象的条件理想化,使研究的视野仅仅局限于人们自己制定的范围之内。而客观世界并不是如此,特别是进入微观领域,微观粒子运动的几率性、随机性;观测对象和观测主体不可分割性等都足以说明自然界本身并不是我们想象的那么简单。
在现代科学中,牛顿的经典力学成了相对论的低速现象的特例,成为非线性科学中交互作用近似为零的情况,在量子力学中是测不准关系可以忽略时的理论表述。复杂性的提出并不是要消灭简单性,而是为了打破简单性独占的一统地位。复杂性是把简单性作为一个特例包含其中,正如莫兰所说的,复杂性是简单性和复杂性的统一。复杂性比简单性更基本,可能性比现实性更基本,演化比存在更基本。[7]今天的科学思维方式,不是以现实来限制可能,而是从可能中选择现实;不是以既存的实体来确定演化,而是在演化中认识和把握实体。复杂性主张考察被研究对象的复杂性,在对其作出层次与类别上的区分之后再进行沟通,而不是仅仅限于孤立和分离,它强调的是一种整体的协同。
四、量子力学使科学活动中主客体分离迈向主客互动
经典科学思维方式的一个指导观念就是,认为科学应该客观地、不附加任何主观成分地获取“照本来样子的”世界知识。玻尔告诉人们,根本不存在所谓的“真实”,除非你首先描述测量物理量的方式,否则谈论任何物理量都是没有意义的!测量,这一不被经典物理学考虑的问题,在面对量子世界如此微小的测量对象时,成为一个难以把握的手段。因为研究者的介入对量子世界产生了致命的干扰,使得测量中充满了不确定性。在海森伯看来,在我们的研究工作由宏观领域进入微观领域时,我们就会遇到一个矛盾:我们的观测仪器是宏观的,可是研究对象却是微观的;宏观仪器必然要对微观粒子产生干扰,这种干扰本身又对我们的认识产生了干扰;人只能用反映宏观世界的经典概念来描述宏观仪器所观测到的结果,可是这种经典概念在描述微观客体时又不能不加以限制。这突破了经典科学完全可以在不影响客体自然存在的状态下进行观测的假定,从而建立了科学活动中主客体互动的关系。
例如,关于光到底是粒子还是波,辩论了三百多年。玻尔认为这完全取决于我们如何去观察它。一种实验安排,人们可以看到光的波现象;另一种实验安排,人们又可以看到光的粒子现象。但就光子这个整体概念而言,它却表现出波粒二象性。因此,海森伯就说,我们观测的不是自然本身,而是由我们用来探索问题的方法所揭示的自然。[8]
量子力学的发展表明,不存在一个客观的、绝对的世界。唯一存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够描述出自然“是什么”,而在于它能够明确,关于自然我们能够“说什么”。
[摘要]20世纪三次物理学革命之一的量子力学突破了经典科学的机械决定论,使之转化为非机械决定论;使得科学认识方法由还原论转化为整体论;使得科学思维方式由追求简单性到探索复杂性;确立了科学活动中主客体互动关系。
关键词:量子力学;经典科学世界图景;
参考文献:
[1]林德宏.科学思想史[M].第2版.南京:江苏科学技术出版社,2004:270-271.
[2]郭奕玲,沈慧君.物理学史[M].第2版.北京:清华大学出版社,1993:1-2.
[3]刘敏,董华.从经典科学到系统科学[J].科学管理研究,2006,24(2):44-47.
[4]宋伟.因果性、决定论与科学规律[J].自然辩证法研究,1995,11(9):25-30.
[5]彭桓武.量子力学80寿诞[J].大学物理,2006,25(8):1-2.
[6]疏礼兵,姜巍.近现代科学观的演进及其启示[J].科学管理研究,2004,22(5):56-58.
量子力学的理论范文2
关键词 椭圆标准方程;相位差;弱相互作用轨道图;红外线轨道方程
中图分类号 04 文献标识码A 文章编号2095―6363(2017)03―0022―02
1概述
本文继续对参考文献中所列笔者之系列文章进行深入研究,给出了三合一量子轨道方程的解题步骤和说明。另外,对原子光谱轨道化,做了初步探讨,同时,概述了三合一量子轨道方程和偏微分方程的规范统一性,为量子力学的研究发展,又提供了较为坚实有力的线索。
2三合一量子轨道方程的解题步骤及说明
这里F1、F2中的(tlx/uw±),确定为(90°x/2w±),x=0-π。见参考文献[3],而2π≈6.28。考虑2π/能级7,相似于2π/h,而此处的缺口正是动量矩与其倒数h/2 n之差。因此,x=λ/2,y=A(振幅)是一致的。故x/y=低能级/高能级。又两个x及两个y是一致的,统一的。所以,分两个步骤计算,是方便可行的。另外,电子或其他粒子的频率v=1/T,即它在一秒之内振动多少周期,与它的轨道在一秒之内转多少圈是一致的。故,上述解题步骤是正确的。
以下几点说明:
1)这是以y轴为焦点的椭圆标准方程,这是和λ-T图相一致的。可以看出,如果受到电离作用,产生圆形轨道,那么,二者叠加起来就是螺蛳形的轨道。参见泡利不相容原理模型。
2)轨道上半周,方向指向90°,高能级。而低能级的动量矩用了倒数,即n2π/h(见参考文献)。这样符合降频的实际,由于升频方程和降频方程存在速度差,因此,低能级落后高能级90°相位。
3)笔者在设计三合一升、降频波动方程,和三合一量子轨道方程,及泡利不相容原理模型时,即考虑到F1和F2都是半波,相互之间存在着此消彼涨,此涨彼消的情况。即二者相差90°的相位差。因此,看此椭圆轨道图时,要规定,x从小到大时,代表负半周,低能级,即-y。此即代表外系统的能量在增长,轨道趋圆。±y靠近x轴。+y向下构成倒金字塔,-y向上构成正金字塔。这一点,用直角三角形就可构出。相反地,当x从大到小时,代表正半周,高能级,即+y。此即代表核的作用力在增长,轨道狭长。这一点,我们从轨道图形就可看出。这樱就与实际情况相一致了。还有,因为x与y相差90°相位差,所以,当x增加,y减少时,y的指向是与x轴的指向相一致的,指向右方。这就是电子电离的方向。另外,必须强调一点,即,三合一量子轨道方程形式不可颠倒,不等式的方向不能颠倒,F1始终大于F2,如果情况发生改变,那要重新确定F1和F2。即,一般情况下,x≤y。
4)以上是微观领域。如果在宏观领域,即经典力学范畴,由于各向同性的原因,因此,除了作相应的
2.2基因工程在医学方面的应用
现今,基因工程在医学方面的应用最为活跃,其在新药物研制、疾病诊断以及治疗方面都有着不可忽视的作用。以基因工程药物为主导的基因工程的应用产业在全球发展迅速、前景良好开阔,目前利用基因工程生产的药物主要包括疫苗、抗体、激素、寡核苷酸药物等,已经被用来治疗和预防各种疾病。例如基因工程乙型肝炎疫苗。基因工程药物能改善传统化学药物供应不足、副作用较大、缺乏安全性等问题。其次基因工程在疾病诊断应用领域也不断拓宽。基因诊断技术是20世纪70年代简悦威在贫血临床治疗中取得的研究成果,基因诊断常用的方法有DNA分子杂交、检测基因的缺失等。例如一些遗传病症通常就与基因的突变有关,在临床上,就可以通过基因诊断技术对遗传病症或者癌症等进行检测。并且随着多聚酶链式反应技术发明,基因诊断方法也越来越简单方便,不采用DNA分子杂交方法,直接从扩增的DNA分子做酶切分析,甚至有些不需要做酶切分析而直接根据扩增的长度来达到疾病诊断的目的。
2.3基因工程在环保方面的应用
随着工业经济的发展,我国国内环境状况严峻,石油污染、水污染、农药污染、气候变暖等问题已经成为了社会日益关注的焦点。例如美国通过采取DNA重组技术将降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因有效链接起来,并转移到某一种菌体中从而产生同时降解这4种有机物的超级细菌从而达到清楚油污染的作用。基因工程技术同样可以用于降解农药,转基因作物的出现有利于减少农药对环境的不利影响,并根据中科院研究所研制出为了降解农药并带有自杀控制功能的一种细菌即“环境安全型基因工程菌”,其在完成降解农药的目的任务后能够“自杀”,从而消除基因工程菌本身对环境的影响。总之,基因工程由于其自身高技术、基本不污染环境或少污染环境的特点,对于建设生态环境以及消除环境污染有着积极重大意义。
量子力学的理论范文3
关键词 量子力学 量子教育学 主观性
中图分类号:O413.1 文献标识码:A
量子力学所涵盖的一些思想,在哲学的研究中体现比较广泛,也对教学理论方面起了重要的作用,可以说量子力学对哲学思想的发展有着重要的促进作用。量子力学着重利用图景等表象来认识周围的世界,强调因果关系的认识,对后期形成的教育学理论具有参考性。但是,借助量子力学所形成的“量子教育学”则有很大的不同,这一教育学对原来的量子理论认识存在较大的偏差,充分强调自然科学。
1量子力学的缘起
1900年,量子假说出现在众人的认知里,现在的量子力学仍在不断完善,为后期的科学发展提供了重要的理论基础,可以说量子力学是量子理论的中心,它促进了原子能等一些先进技术的发展,为社会的重大发明打下基础,使人们更加清晰地认识到微观世界,并利用微观运动来更好地服务社会,是人类的重要发现,也是社会的伟大进步。
2量子力学的宇宙观
在宇宙世界中,对量子理论有较多的探讨,从已经存在的氢原子中,找到了量子级别的状态。对于电子而言,比原子更为复杂,这就要求必须要满足求解该原子的特定的方程来解出,并且要求其 场刚好环绕原子核产生驻波而求得。此外,量子态与别的驻波不一样,都有自己特定的频率,并与所蕴含的能量有关,每种量子状态都有所表征的能量。这就是说,预期任何一个态的能量都是一个具体量子所确定的,并不是模棱两可的,只要是有理论依据,就可以科学地估测态的能量多少。由于质子与电子之间存在着相互吸引的力,要想移动一个电子就必须要克服引力做功。
3量子的思维方式
人类思想总是处于不断发展中,当两种思想发生交集时,就会形成一个比较完整的、令人惊叹的思想成果,正如牛顿的世界观与量子理论产生彼此弥合的交集,才会让思想发展得如此迅速,才会让社会发展如此的快。量子思维方式给人类一个重要的启示,要求以人为中心,以人为主体。随着时代的进步和经济发展,信息技术逐渐融入了人的智慧和思想,他们彼此都是看不见的,没有确定的形状,但彼此交汇起来以后,就成了一种可以量化的物质,这是由于物质性比较弱。其实,量子物理学所产生相关的科学智慧,是人类社会发展的重要因素,也是文明进步的重要保障,可以说,量子物理学是计算机重要的组成部分,所形成的计算机芯片是重要的思维体现,量子物理学不仅是科学进步的前提,更是信息发展的重要保障,量子思维更是现代社会发展的必要方式。
4“量子教育学”的唯心主义
从产生量子力学后,“量子教育学”也随之不断发展,虽然也涉及到一些教育学方面的观点,但这些观点都是被众人早就接受了。如:学习是一个整体的过程,在这个过程中各知识点是相互联系、彼此交错的,以及还谈到了关键词:服务、个性化、互补等,但是,这些所谓的观点及结论不是原汁原味的,也不是从量子力学中演变而来,而是与它的原理相悖,从本质上讲,“量子教育学”就是一种唯心主义的表现。
贝克莱比较重视经验,认为所学的知识来源于经验,但是他却犯了一个致命的错误,认为感觉是世界真正存在的东西,其他的都是看不见的。他认为,知识是一切力量之源,但感觉是我们去探索未知世界,追求至高真理的唯一手段,只有能感觉到,才能被发现。也就是说:我们的主观性决定了我们所看见的世界,这也是量子教育学诠释的观点。他认为,只要消除了事物与观念的差异,认同事物等同于所谓的观念,并且观念可以感知任何世界上存在的事物,这样才会让我们的知识更加具有生命力。
5“量子教育学”的曲解
正所周知,量子力学不可能槲ㄐ闹饕搴筒豢芍论创造理论基础,而“量子教育学”却是唯心主义的重要思想来源,这是“量子教育学”对量子力学核心思维的歪曲,或者说对量子力学没有正确的认识,造成思想上出现截然不同的主张,另外,“量子教育学”过分强调感觉和经验,导致偏向于不可知论,与量子力学的思想相悖而驰。
“量子教育学”对量子力学概念和方法认识的偏差表现有。为了进一步认识光的本质特性,提出了波粒二象性的观念。此后,玻尔提出了“气补原理”,再一次诠释了波粒二象性的本质。“测不准”原理而是在某一个方面有较大的缺陷,不是粒子在宏观世界的不适用,只是说明不能单一地应用某一个方面,只有同时应用时才能为物理现象提高全面的解释。玻尔认为,波粒二象性在整个量子力学中的地位较高,它是一种可以很好地描述一种物理现象的原理,也可以说是解释因果关系的一种原理,它可以相互促进、相互排斥,这种互斥的关系不可或缺,这种互补关系后来被广大学者所接受。
6结语
近年来,量子力学逐渐被广大研究者重视起来,探讨量子力学的基本原理以及与量子教育学的重要关系,在量子理论的发展过程中,这已经留下了较多的论争。可以肯定的是量子力学对于科学的进步贡献了一份力量,把微观世界与宏观世界联系起来,而量子教育学并不是量子力学的正确认识,就本身的发展情况来看,量子教育学认同了后现代主义,成为了唯心主义的重要依据。
参考文献
[1] 贺天平.量子力学多世界解释的哲学审视[J].中国社会科学,2012(01):48-61,207.
[2] 乌云高娃.量子力学发展综述[J].信息技术,2006(06):154-157.
[3] 母小勇.量子力学与“量子教育学”[J].教育理论与实践,2006(07):1-5.
量子力学的理论范文4
现如今,我国大部分理工科以及师范院校都设置了物理学专业,非物理专业的也都把大学物理课当作一门必修课来开设。但许多人都说物理难学,那么,如何才能学好大学物理课程?本文从以下几个方面加以论述:
一、掌握足够的数学工具
想学好物理学,扎实的数学功底是必须的。高等数学、复变函数、数理方程和线性代数,这四门数学课都是相当基础的课程,对于学好物理的重要性不必多说。但仅仅满足于教材的内容是不够的,想学物理的人应当学一些更高深的课程。
高等数学由于教学时间所限,对很多“古典分析”中的问题没有涉及。建议大家看看北京大学张筑生写的《数学分析新讲》,内容充实。配套的还有北京大学的《数学分析习题集》,里面的题数量、质量俱佳,可以花一年左右的时间好好研读。
复变函数课程应着重于它的应用,这当中有许多定理在数学分析中有对应,学习起来并不困难。此时,建议去学复变函数中“古典分析”之外的理论,作为进一步学习的基础。
关于线性代数,在学习中可以参看王萼芳和丁石孙的《高等代数》。这是清华高等代数课程的教材,以古典的方法讲授了“古典代数”的全部内容,习题也很丰富,仔细学下来很有好处。
数学物理方程,可看希尔伯特和柯朗的《数学物理方法》。这套书写得很精粹,很全面。对于掌握了“古典分析”和“古典代数”的同学,可借此来复习已经学到的几乎全部内容,更重要的是这本书中的许多内容已经涉及了现代数学的内容。
二、各个物理分支课程的学习
学物理应当从普通物理学入手,通过普通物理,可以感受到什么是物理,从而真正入门。力学可以选物理系的教材,那套绿色封皮的《力学与热学》的上册。热学选择《力学与热学》的下册,这套书浅显易懂,内容全面,是初学物理的好书。同时,北京师范大学出版的漆安慎、杜婵英编著的《力学》也可作为学习参考。
至于四大力学,虽然是物理的一个核心,但对于初学物理的人,可以说是高深莫测,很难在四年之内学完它们,就算勉强学完了也不会精通。对于物理学学士而言,能精通经典力学和电动力学之一已经很不容易了。经典力学可以选朗道的《经典力学》,从朗道对拉氏量的讨论中可以发现,理论物理完全不是我们以前所认识的理论物理。电动力学选择郭硕鸿的《电动力学》就可以了,电动力学学好了,再去学习电子工程类的电磁场理论就不会感到困难;经典力学学好了,学习机械类的振动理论会很轻松,这些内容对于一个本科生已经足够了。
如果打算继续学习物理,那么就得学习物理学中最困难的量子力学和统计力学了。量子力学实际上是一种量子理论,它所包含的内容极广,从本科三年级学生学的一维无限深势阱,到超弦可以说都是量子理论。量子力学大致分两个层次——非相对论的量子力学以及量子场论和量子规范场论。对于前者,狄拉克在1937年写过著名的《量子力学的原理》。这本书会告诉你,量子力学不仅仅是薛定锷方程,而是一组原理。从原理出发,而不是从具体问题出发。但是狄拉克的书练习太少,学习者不妨参考曾谨言的《量子力学Ⅰ》《量子力学Ⅱ》和《量子力学习题集》,多做些习题,打打基础。但是,我们所学的量子力学,从数学角度讲是“形式的”和“未经证明的”,并不可以与经典力学和电动力学相提并论,但是有一本
《Quantum Physics》对此进行了详细的讨论。书里面的内容是量子力学的数学基础。搞理论物理的人应当学一学。
量子力学的理论范文5
关键词 量子力学 教学内容 教学方法
中图分类号:G420 文献标识码:A
Teaching Methods and Practice of Quantum Mechanics of
Materials Physics Professional
FU Ping
(College of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073)
Abstract For the difficulties faced by students in Materials professional to learn quantum mechanics physics course, by a summary of teaching practice in recent years, from the teaching content, teaching methods and means of exploration and practice, students mobilize the enthusiasm and initiative, and achieved good teaching results.
Key words quantum mechanics; teaching content; teaching methods
0 引言
量子力学是研究微观粒子(如原子、分子、原子核和基本粒子等)运动规律的物理学分支学科,它和相对论是矗立在20世纪之初的两座科学丰碑,一起构成了现代物理学的两块理论基石。相对论和量子力学彻底改变了经典物理学的世界观,并且深化了人类对自然界的认识,改造了人类的宇宙观和思想方法,它使人们对物质存在的方式及其运动形态等的认识产生了一个质的飞跃。
量子力学是材料物理专业一门承前启后的专业基础必修课:量子力学的教学必须以数学为基础,包括线性代数、概率论、高等数学、数理方法等,其又是后续课程材料科学基础、固体物理、材料物理、纳米材料等的理论基础。可见,量子力学课程在材料物理专业的课程体系中占有非常重要的地位,学生掌握的程度直接影响后续专业课程的学习。作者近年来一直从事量子力学的教学工作,针对量子力学课程教学过程中存在的现象和问题,进行了较深入细致的思考与探讨,在实际教学过程中对本课程的教学方法进行了探索与实践,收到了较好的教学效果。
1 量子力学教学面临的难点
量子力学研究的是微观粒子的运动规律,微观粒子同宏观粒子不同,看不见,摸不着,只有借助于探测器才能察觉它的存在和属性。材料物理专业学生之前学习的基本上是经典物理,而量子力学理论无法用经典理论进行解释,学生对此感到难于理解。因此,经典物理的传统观念对学生思想的束缚,构成了学生学习量子力学的思想障碍;量子力学可以说无处不“数学”, 由于材料物理专业学生在数学基础方面与物理专业学生相比较为薄弱,在学习过程中普遍感到数学计算繁难,对大段的数学推导表现出畏难情绪。可见,量子力学对数学的精彩诠释却构成了学生学习量子力学的心理障碍。这两大障碍势必会影响量子力学和后续课程的学习。在这种情况下,我们应当怎样开展量子力学教学从而使学生重视并努力学好该课程就成了一个严峻的挑战。
2 明确教学重点和难点、有的放矢
要讲授一门课程,首先应该对课程内容有一个清晰的认识。量子力学的内容可以包括三个方面:一是介绍产生新概念的历史背景及一些重要实验;二是提出一系列不同于经典物理学的基本概念与原理,如波函数、算符等概念和相关原理,是该课程的核心;三是给出解决具体实际问题的方法。三部分内容相互联系,层层推进,形成完整的知识体系。作为引导者,教师应在这三部分内容的教学过程中帮助学生成功地突破两大束缚。第一部分内容教师应考虑如何引导学生入门,从习惯古典概念转而接受量子概念。在讲授这部分内容时要将重点放在“经典”向“量子”的过渡上,引出量子力学与经典力学在研究方法上的显著不同:经典力学是将其研究对象作为连续的不间断的整体对待,而量子力学将其研究对象看成的间断的、不连续的。学生在学习这部分时应仔细“品尝”其中的“滋味”,以便启发自己的思维自然地产生一个飞跃,完成思想的突破。第二、三部分是量子力学学习的重点与难点,并且涉及大量的数学推导,教师应采取适当的教学手段,突出重点,强调难点。在物理学研究中,数学只是用来表达物理思想并在此基础上进行逻辑演算的工具,不能将物理内容淹没在复杂的数学形式当中。通过数学推导才能得到的结论,只需告诉学生,从数学上可以得到这样的结果就可以了,无需将重点放在繁难的数学推导上,否则会使学生本末倒置,忽略了对量子力学思想的理解。这样的教学可以帮助学生突破心理障碍,不会一提量子力学就想到复杂的数学推导,从而产生抵触情绪。成功地突破这两大障碍,是学习量子力学的关键。
3 教学方法的改革
3.1 利用现代技术改进教学手段
传统的板书教学能够形成系统性的知识框架,教师在板书推导的过程中,学生有时间反应和思考,紧跟教师的思路,从而可以详细、循序渐进地吸收所学知识,并培养了良好的思维习惯。但全程板书会导致上课节奏慢,授课内容有限。目前随着高校教学改革的推进,授课学时相继减少,对于传统教学方式来讲,要完成教学任务比较困难。这就要借助现代科技手段进行教学改革,包括多媒体课件的使用和网络教学。但是在量子力学教学中,一些繁杂公式的推导,如果使用多媒体课件,节奏会较快,导致学生目不暇接,来不及做笔记,更来不及思考,不利于讲授内容的消化吸收。鉴于此,对于量子力学课程,教学过程应采用板书和多媒体技术相结合的方式,充分发挥二者的优势,调动学生的学习积极性。
3.2 建设习题库
量子力学课程理论抽象,要深入理解这些理论,在熟练掌握教材基本知识的基础上,需要通过大量习题的演练,循序渐近,才能检验自己理解的程度,真正学好这门课程。因此在教学过程中,强调做习题的重要性。有针对性地根据材料物理专业量子力学的教学大纲和教学内容,参考多本量子力学教材和习题集,利用计算机技术建设量子力学习题库,题型包括选择、填空、证明、简答和计算题等,内容涵盖各知识点,从简到繁、由浅至深。题库操作方便,学生可自行操作,并对所做结果进行实时检查,从而清楚自己掌握本课程的程度。这一方式在近几年的教学中取得了良好的教学效果。
3.3 加强与学生互动,调动学生的学习积极性
教学是一个师生互动的过程,应让学生始终处于主动学习的位置而不是被动的接受。量子力学课程的学习更应积极调动学生的积极性,因此教师应在教学过程中加强与学生的互动。增设课前提问、课后讨论环节,认真批改作业,积极发现学生学习过程中存在的问题,并及时对问题进行深入讲解,解决问题。另外,由于量子力学是建立在一系列基本假定基础之上的,抽象难懂,鉴于学生难接受的情况,在授课时注意理论联系实际,尽可能进行知识的渗透和迁移,将量子力学在实际中的应用穿插于教学之中,丰富教学内容,开拓学生视野,从而调动学生的学习兴趣和积极性。
4 结语
通过近年来教学经验的总结和探索,形成了一套适合材料物理专业量子力学课程教学的方法,该方法教学效果良好。在近几年的研究生入学考试中,学生量子力学课程的成绩优秀,说明采用这样的教学方法是成功的。
资助项目:武汉工程大学2010年校级教学研究项目(X201037)
量子力学的理论范文6
关键词:类比教学法;量子力学;应用探究
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2014)24-0100-02
量子力学作为描写微观物质结构、运动与变化规律的学科,是现代物理学的基础之一,而且在化学和很多近代技术中也有广泛应用。量子力学是在旧量子论的基础上发展起来的,对于量子数大到一定的极限的量子系统,可以用经典理论精确描述。量子力学、经典力学既有区别也有联系,从这些区别和联系入手可以使学生更加容易理解量子力学的新知识。基于此,本文在分析量子力学和经典力学的相似点的基础上,探究并实践了如何让学生加深理解的问题。将类比教学法应用于量子力学的实践教学当中,这样既可以丰富教学内容,提高学生积极性,又可以培养学生创造性思维,同时还可以巩固学生以前学过的经典物理学的相关知识,进而能提升量子力学课教学质量。
一、类比教学法
类比方法是根据两类物理现象在某些性质的相同或相似处,推断出这两类物理现象的另一些性质也相同或相似的一种逻辑推理方法。类比法是专业术语,指由一类事物所具有的某种属性,可以推测与其类似的事物也应具有这种属性的推理方法。在我们学习一些十分抽象地看不见、摸不着的物理量时,由于不易理解,我们就拿出一个大家能看见的且与之很相似的事物来进行对照学习。类比方法强调在分析、发现不同事物的共同性质的基础上,把一个事物的属性转移到另一类事物上。类比的过程具有创造性,是科学家常用的思维方法。
二、量子力学与经典力学的相似点及类比教学法的应用
物理学研究的目的是总结、概括各种不同物质在时空中的运动规律,并且把这些规律用数学公式表示出来。量子力学和经典力学的研究对象不同,而宏观和微观物质自身性质的巨大差异,造成了学习量子力学相比于学习经典力学的困难。而另一方面,把量子力学和经典力学类比,找到它们之间的共同点,再进一步推理,可以更加容易理解量子力学理论。在处理物体直线运动或是自由落体运动时,我们自然会想到在(x,y,z)所组成的空间坐标系中,根据牛顿运动学定律,分析物体的状态随时间的变化情况。每一时刻,物体的位置可以用三维空间里的任何一个点的坐标表示出来。为了方便地处理不同物理问题,空间直角坐标系可以变换成柱坐标系、球坐标系。处理物体的碰撞时,把实验室坐标系换成质心坐标系,利用动量守恒原理,也可以使表达式更加简单,易于求解。因此,选择最佳的坐标系,可以让复杂的问题变的简单。在微观世界中,量子力学仍然需要在恰当的坐标系中讨论物理问题。在经典力学中,物体处在某个状态的位置和角动量可以被精确的计算。但是,对于微观体系,比如一个电子在原子中的环绕原子核运动,它的位置、动量不能同时精确确定。当该电子处于定态时,它的能量不会随时间变化,即它的能量守恒。这时,我们可以把电子放在能量坐标系中讨论。在数学中,希尔伯特空间是欧几里得空间的一个推广,它不再局限于有限维的情形。在量子力学中,能量坐标系被称为能量表象。量子力学中常见的表象包括:动量表象,能量表象,粒子数表象等。在矩阵力学中,把状态Ψ看成是一个列向量。选择一个特定的Q表象,就相当于选取一个特定的坐标系。■的本征函数u1(x1),u2(x2),u3(x3)…un(xn)就是这个表象的基矢,相当于笛卡尔坐标系的单位矢量i,j,k;波函数a1(t),a2(t)…an(t),是态矢量Ψ在Q表象中沿基矢方向的“分量”,正如A沿i,j,k三个方向的分量是(Ax,Ay,Az)一样;■本征函数的归一性,类似于几何坐标系的i・ij・jk・k1;而本征函数的正交性,类似于几何坐标系中i・ji・kj・k0[5]。在量子力学中,■的本征函数有无限多,称态矢量所在空间是无限维的希尔伯特空间。由此看来,几何坐标和力学表象是同一个概念,只是处理不同的问题时,选择不同的坐标系可以减小复杂程度。在量子力学中如果知道了状态的波函数,那么粒子处于空间某点的几率,以及力学量的平均值均可求得,因此说波函数完全描述粒子体系的运动状态。而对于同一个状态,在不同的表象中,有不同的波函数形式。量子力学的一种基本假设是波函数满足态叠加原理:
ψc1ψ1+c2ψ2+K+cnψn (1)
此式的物理意义是量子体系的一般状态是所有本征态的线性叠加。Ψn是体系的可能态,相应的概率分别为|ck|2,而且满足归一化■c■■1。在经典力学中,伽利略变换可以变换不同的惯性系。量子力学则借助幺正矩阵来实现不同表象之间的变换。那什么是幺正矩阵呢?简单来说就是满足S+S-1的矩阵称为幺正矩阵,而由幺正矩阵所表示的变化称为幺正变换。所以由一个表象到另一个表象的变换是幺正变换。如果以F'表示算符■在B表象中的矩阵,F表示■在A表象中的矩阵,则通过幺正变换可得:F'S-1FS (2) 也就是说力学量F在A表象中的矩阵左右分别乘幺正矩阵的逆矩阵和原矩阵就可以把力学量F转换到B表象中去。量子力学和经典力学间的相似点还有很多。量子力学类比教学法的核心是,注意强调量子力学与经典力学的必然联系,引导学生积极思考、探索量子力学新知识的本质,把新知识与已经掌握的量子力学知识类比,深入透彻的理解量子力学的假设、定义和公式。
综上所述,把量子力学与经典力学做类比,就是要发掘出、并重点讲解它们之间的相似点,让学生在这些相似点的基础上,主动的思考分辨量子力学和经典力学的相同和不同。本文以表象为例,把表象变换与数学上几何坐标进行了类比,讲述了对表象及其变换的理解。总之,在讲授抽象的量子力学时,把它和经典物理进行类比可以帮助学生更好的理解、掌握新知识,能起到很好的教学效果,也有助于培养学生的创新精神。但类比法不是万能的,要灵活、恰当地应用到位,才能最大程度地发挥它的积极作用。
参考文献:
[1]吕增建.从量子力学的建立看类比思维的创新作用[J].力学与实践,2009,(31):90-92.
[2]蔡晓烽.物理教学中的类比教学[J].宁德师专学报(自然科学版),2010,22(3):323-325.
[3]周世勋.量子力学教程(第二版)[M].北京:高等教育出版社,2009.
[4]曾谨言.量子力学教程(第二版)[M].北京:科学出版社,2008.
[5]赵凤娇.对量子力学中表象及变换的理解[J].硅谷,2011,(23):17.
[6]郭华.用类比方法讨论量子力学问题[J].中央民族大学学报(自然科学版),2013,2(2):45-50.