前言:中文期刊网精心挑选了量子力学总结范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
量子力学总结范文1
关键词:量子力学;现代物理;地方应用型高校
笔者于1997年毕业于衡阳师范高等专科学校物理教育专业,那时用的是专科学校自编的量子力学教材,内容较简化,学习起来较吃力;2005年进入湖南师大读研后,又学习了高等量子力学,许多东西似懂非懂;2016年开始向本科生讲授量子力学课程,也只有在这时候,才懂得了困惑自己多年的一些问题。从这个历程中,可见学好量子力学这门课程是多么难。
一、教学指导思想
正因为这门课程很难学,所以不能期望太高,何况在生源较差的地方应用型高校。与此同时,教师要以人才市场需求和学术发展为双重依据,保持学科体系的完整性,把量子力学教好。对于若干个学生中的精英,要使其受到完整的课程体系训练,培养物理学科的领头雁;而对于其他学生,则通过教学方式和考核方式的多样性,让其顺利通过这些理论性较强的课程考核,培养物理文化的传播者。
笔者采用的教学方式以传统讲授法为主,PPT用得很少。因为这门课程必须经过数学演算和推导,才能对量子世界有所理解。不要求学生步步推导,但教师至少要去一步一步地算,给学生留下深刻的印象,让学生知道,做学问是老老实实地工作。每章结束后,设置一个小测试,题目来自上课时讲的一些重点概念、符号、规律以及一些简单的公式推导。这样可以保证学生能从书本里查找答案,掌握基本知识。
二、正确看待学生的学习状况
学生的学习状况也如所预料的一样,认真听的只有几个有考研意愿的人,其他人几乎是以玩手机来消磨时间。小测试的时候,总有十多人先不做,坐等别人的答案。笔者认为,教育不能指望人人都会成为精英,能成为“欲栽大树柱长天”的人只需几个即可。同一个专业里,也需要各种层次的人才,如理论计算、实验操作、知识传播、人际协调,等等。量子力学教师需要关注学生的听课状态,以人人能学会为原则(教育机会均等),随时调整自己的教学策略;同时也要牢记自己的使命,把量子力学的灵魂传播到位,把它的科学精神传播到位。
三、量子力学的魂与精神
量子力学的魂是:微观粒子的运动状态是不确定的,只能用概率波去描述;微观粒子的运动能量不是连续的,而是离散的;测量微观粒子的力学量时得不到确定值,只能得到系列的可能值及其出现的概率,但它们的统计值是确定的,即得到的宏观量;量子力学里的微观粒子不一定是电子质子等实物粒子,还可能是经过一次量子化和二次量子化后的某种运动单元,如电磁场光子、谐振子粒子。量子力学的精神是:科学研究是一件严肃的事情,必需老老实实地演算和推导,来不得半点投机取巧。
四、教学心得体会
1.量子力学的研究对象。量子力学是研究微观粒子的运动,但是课本开始介绍的黑体辐射却是能观察到的宏观现象,这该怎样理解?一是将空窖里的辐射场当成大量微观粒子组成的系统,它们服从Bose-Einstein分布l=ωl/(eβεl-1),只是它们不是有原子分子结构的实物粒子罢了。二是认为这些粒子的能量是量子化的εl=ω,不再是宏观的连续能量了。这样一来,物体的辐射就是发射和吸收微观粒子的过程了。
2.二次量子化。把辐射场处理成能量量子化的大量微观粒子,把原点附近做振动的原子或分子处理成能量量子化的线性谐振子等就是一次量子化。最简单的二次量子化就是体现在对线性谐振子的处理上。线性谐振子的能级是分立的,En=ω(n+1/2),τΦ谋菊魈为Ψn。由于相邻能级上的本征态具有递推关系,即由Ψn可以推出Ψn-1或Ψn+1这时又把态Ψn看成是由n个粒子组成的系统,每个粒子具有能量E=ω,这样一来,递推关系里的算符就可以看成产生算符和湮灭算符了。
3.不确定性。这点和统计力学有某种相似性。统计力学并不知道微观粒子确定的运动状态,所以只好假定每种微观运动状态出现的概率相等,即等概率原理。这样一来,就可以理解测量微观粒子的力学量时,得不出确定值的原因,只能得出一系列的可能值以及这些可能值出现的概率。同样,描述粒子的运动状态也只能用概率波来描述了。
量子力学总结范文2
[关键词] 地方院校;量子力学;精品课程建设
[中图分类号] G642.3 [文献标识码] A [文章编号] 1005-4634(2014)01-0057-04
0 引言
我国本科高校按隶属对象不同,分为部委属和省属两大类别,省属高校又分为省属国家“211”重点高校、省部共建高校、地方性直属高校三类,本文“地方院校”指省属高校中的地方性直属本科高校,这些院校大多采取省市共建、以市为主的管理体制,多数建校时间短或由专科升格。
随着我国高等教育大众化进程的不断深入,生源质量降低,教学资源日趋紧张,高等院校的教学压力逐渐加大,引发了社会对高等教育质量的担忧。2003年4月《教育部关于启动高等学校教学质量与教学改革工程精品课程建设工作的通知》(教高[2003]1号),引起了全国范围内建设国家、省、校三级精品课程的热潮。量子力学精品课程也同其他课程一样,经历了精品课程建设的热潮,截至2013年9月,共有四校建成国家精品课程,分别是兰州大学(2004年)、复旦大学(2004年)、清华大学(2007年)、北京大学(2008年);两校建成湖北省精品课程,分别是华中师范大学(2003年)和湖北大学(2003年);两校建成湖北省地方院校校级精品课程,分别是黄冈师范学院(2007年)、湖北师范学院(2011年)。可见,量子力学国家精品课程全部由985重点大学建设,湖北省精品课程也由211重点大学和省属重点大学建设,地方院校只有两校建成校级精品课程,只占湖北省27所地方院校的7.4%,大多数地方院校并未开展量子力学精品课程建设,这与量子力学课程的重要地位极不相称。量子力学是近代物理学的两大支柱之一,也是现代工业技术的重要理论基础,其教学质量的重要性不言而喻,但量子力学又是一门高度抽象的理论物理课程,远离日常经验,教与学都有一定的难度。地方院校由于师资力量薄弱,学术资源匮乏,生源素质不理想,教学与科研脱节,导致这些院校的量子力学精品课程大多处于有心无力、举步维艰的状态。
地方院校占我国高校总数的90%左右,担负着服务地方社会经济建设、培养千百万专门人才的重任。地方院校是我国高等教育金字塔的塔基,塔基不稳,必然影响我国高等教育的健康发展,因此研究地方院校量子力学精品课程建设,提高人才培养质量是迫在眉睫的重要问题,令人惋惜的是这方面的研究成果太少,难以指导地方院校量子力学精品课程的建设。
1 地方院校视角下量子力学精品课程建设 的内涵
精品课程的评价标准是“五个一流”,即一流教师队伍、一流教学内容、一流教学方法、一流教材、一流教学管理。精品课程建设研究大多围绕“五个一流”展开,但精品课程建设应该是分层次的,不同类型的高校应有不同的标准。每个学校都是在自己的层次上、自己的类型上来办出最高水平的课程,各个学校是不一样的,精品课定位不一样,寻找精品课群体也不一样[1]。地方高校应从自己的办学定位、培养规格和生源情况来考虑量子力学精品课程建设,基于地方院校视角来理解“五个一流”,扬长避短,不盲目攀比,也不妄自菲薄。
1.1 一流教师队伍
地方院校普遍存在教师整体水平不高的问题,教师的学历、职称、学术水平和重点大学相比有较大差距,教学任务重,技术应用能力不强。重点大学承担培养拔尖人才的任务,必然要求教师具有较高的学术水平和科研能力,地方院校承担培养千百万专门人才,即应用型技能型人才的任务,对教师的学术水平要求不是太高,但要求教师具有较强的技术应用能力。地方院校教师不宜与重点大学的教师比学术水平,但要关注学科前沿,尽快掌握与本学科相关的最新技术,提高重点大学教师并不擅长的技术应用能力,体现地方院校“双师”型师资的鲜明特色。
地方院校量子力学精品课程的一流教师队伍,就是要建设一支与应用型人才培养相适应的,具有一定的学术水平、较高的教学水平、较强的技术应用能力的“双师型”教师队伍。
1.2 一流教学内容
应用型人才培养的定位,决定了量子力学精品课程的教学内容有别于重点大学,教学内容的核心是量子力学的基本理论、基本知识、基本技能,不求教学内容的高度完整性,适当降低内容的深度和应用数学解题的难度,保持教学内容的前沿性和时代性,满足学生了解学科发展前沿及其技术应用的强烈愿望。前沿知识不仅可以开阔学生的眼界,而且能够潜移默化地影响学生未来的发展。
地方院校量子力学精品课程的一流教学内容可以理解为,量子力学基本理论、基本知识、基本技能等学科有效知识与专业发展密切相关的前沿知识及其技术应用的有机整合。有效知识,就是今后能对在该领域继续学习、继续研究、开辟新的领域、学习新的知识发挥作用的、最关键、最基础性的东西[1]。
1.3 一流教学方法
重点大学普遍重视讨论式、研究式教学方法,基于量子力学学科特点和地方院校学生水平,讨论式和研究式的教学方法要慎重使用,如果准备不充分,极有可能出现学生讨论时言之无物和研究时无从着手的难堪局面,反而挫伤学生的学习积极性。采用讨论式和研究式教学方法,一要内容难度适宜,二要前期准备充分,三要教师循循善诱。量子力学内容高度抽象,学生自学困难较大,因此对教学方法和手段的要求较高。无论选择什么样的教学方法,采用什么样的教学手段,都是为了学生能够更好地理解和掌握知识,都要适合学生的实际认知水平,不能为了讨论而讨论,为了研究而研究,应以实际教学效果来评价教学方法的优劣。
地方院校量子力学精品课程的一流教学方法,即以启发式讲授为主,结合课程内容适当采取讨论式和研究式教学,传统教学手段与多媒体技术手段有机结合,集多种方法与手段于一体的教学方法体系。
1.4 一流教材
量子力学教材的选用,国内一般主要选用曾谨言版(重点大学)和周世勋版(地方院校),另有苏汝铿版、张永德版、钱伯初版、关洪版等多种教材,也有多种国外优秀教材。鉴于量子力学的某些基本问题至今仍有争议,甚至国内权威教材中的部分内容仍受质疑,地方院校不宜盲目自编教材,避免对某些问题的不当阐述误导学生,宜选用国内经典的简明教材,辅以优秀教材作为参考书,以满足不同学生的学习要求,通过立体化、一体化教材建设,补充量子力学的最新进展和实际应用,更好地为地方院校培养应用型人才服务。
地方院校量子力学精品课程的一流教材,即在选用国内经典简明教材的基础上,选择国内外优秀教材作参考书,着力打造包括电子教案、PPT、习题答案、试题库、仿真实验、网络课堂等资源在内的立体化、一体化教材。
1.5 一流教学管理
精品课程需要通过科学的管理为其提供制度保证。科学的教学管理和规范的管理机制,是精品课程的重要条件。精品课程的教学管理既包括对课堂教学的组织、实践教学的安排、学习成绩的评定等教学环节的管理,还包括师资队伍的配备、课程建设过程的管理、教学保证条件的建设等[2]。
地方院校作为教学型大学,科研上处于劣势,教学管理上更应加强,应将一流教学管理作为量子力学精品课程的重要特色来建设。
地方院校量子力学精品课程的一流教学管理,即建立健全与应用型人才培养目标相适应的教学管理制度,包括编、备、教、辅、改、考各教学环节的管理制度,以及经费投入、师资配备、用人机制和激励机制、课程评价等教学质量保障制度,认真落实各项教学管理制度并切实做好教学质量监控,保证课程建设的可持续发展。
2 地方院校视角下量子力学精品课程建设 的对策
2.1 建设一支与应用型人才培养适应的师资队伍
地方院校培养应用型人才的定位,客观上要求教师应具有教师和工程师(或技能师)的双重身份。量子力学精品课程的师资队伍建设,除引进高层次人才、抓好现有教师的转型提升、开展与课程相关的教研和科研等常规措施之外,尤其要重视师资队伍的技术水平和能力的培养,通过产学研用结合切实提高教师的技术操作能力、应用能力和转化能力。加强学校与科研机构、企业的合作,聘请经验丰富的科研人员和工程师作为兼职教师,提高教师队伍整体的科研水平和技术实力。
2.2 精选课程有效知识构建学科基础,实现理论 与应用、基础与前沿的完美结合
夯实基础、关注前沿、了解应用、激发兴趣是一流教学内容的必然要求。在教学内容的选择和安排上,要注意与知识的实际应用相联系,找准最佳结合点,融入学科前沿的理论知识和学科发展的最新成果。
量子力学的有效知识包括量子力学的发展历史、量子力学的五大公设、定态问题求解、表象变换理论、微扰理论、电子自旋等,有效知识构成课程的核心知识;学科前沿知识、量子力学在现代科技和其它学科中的应用等内容构成课程的补充知识;散射等相对困难的内容构成课程的知识。核心知识具有相对稳定性,要求熟练掌握;补充知识具有时代性,要求学生了解而不求掌握;知识具有可选性,建议有能力的学生选学。核心知识和补充知识属于第一层次的教学内容,面向全体学生;知识属第二层次的教学内容,面向部分学生。教学内容的分类既有利于实现教学的层次化,又有利于实现理论与应用、基础与前沿的有机结合。
2.3 构建教学理念先进、与学生水平相适应的教 学方法体系
以教师为主导,以学生为主体。变单一教学方式为多样化教学方式构成的有机体系,变以教为主为以学为主或学教并重,变传统课堂教学为传统课堂教学和网络课堂教学相结合。基于量子力学的抽象性,讲授仍是主要的教学方法,但应注重启发学生积极思考,采取课内、课外、网络等多种形式增强师生互动,结合适当的内容开展讨论和研究。
可以组织学生讨论如量子力学相关实验的解释、量子力学基本原理的各种理解、一维定态问题的求解方法等;也可讨论量子力学的某些新进展和新的技术应用,要求学生就“量子纠缠”、“EPR佯谬”、“量子计算机原理”等内容展开调研,撰写文献综述报告,将讨论和初步的研究结合起来,培养学生从事科学研究的基本素质;也可建议能力较强的学生对“密度矩阵表示量子态”、“路径积分量子化”、“自由粒子的狄拉克方程”等较新的内容进行一些初级的理论探讨,通过写小论文的方式总结研究结果等。
讨论和探究的关键在于培养学生的参与意识、问题意识和批判意识,不奢望毕其功于一役,长期坚持一定会有收获。
2.4 选择适宜的教材和教学参考书,建设立体化、 一体化教材
选择周世勋版《量子力学教程》作为教材,因为它比较简明,适合初学者和地方院校生源的实际水平;选择曾谨言版《量子力学教程》作为主要参考书,因为它是全国大多数高校指定的考研参考用书,要照顾部分考研学生的需要;还可选择其他国内外优秀教材作为参考书,以兼收并蓄、博采众长。
教材是教学内容的载体,一流教材必然要展现一流教学内容。立体化、一体化教材不是简单的教材和教参搬家,应将学科最新的研究成果、成功的教改经验和教师自己的教科研成果及时地反映出来。一流教材除电子教案、PPT、全程教学录像、习题解答、试题库、网络互动答疑、在线测试等内容外,还要自编学习辅导用书,内容大致可包括学习内容辅导、考研辅导、阅读材料三大部分。学习内容辅导应梳理各章知识点及联系、重点难点的学习经验,补充典型习题;考研辅导可提供各类院校近年来的量子力学考研试卷,分析考试内容涵盖的知识点和相关的考核要求;阅读材料可介绍量子力学的最新进展、与量子力学有关的各交叉学科、量子力学的发展历史以及逸闻趣事等。
2.5 抓紧抓实全方位全过程的教学管理
精品课程建设是一个综合系统工程,只有扎扎实实、认认真真、持之以恒地努力工作,才能把事情做好[3]。一流教学管理是精品课程建设的重要方面,建章立制是基础,教学各环节的过程管理是纵线,教学保障条件建设管理是横线,教学质量监控、反馈和改进是保障。教学管理不必标新立异,抓紧、抓实、抓细、抓出成效,就是教学管理的最大特色。
教学各环节的管理制度中,重点要改变学业成绩评价标准,变结果评价为过程评价,正确把握考试导向,降低期末考试比重,加大平时考核比重,将考勤、作业、提问、小论文、课程设计纳入平时考核。
教学质量保障制度的建设和落实要抓好以下几个方面:学校要加大对精品课程建设的经费投入;选择学术水平较高、教学效果得到师生公认的优秀教师担任课程负责人,组建由课程负责人负总责、主讲教师分工与合作的教学队伍;对参与精品课程建设的教师,在评优评先、晋升职称等方面优先考虑;抓实教学过程的质量监控,完善同行评教、学生评教、毕业生评教和评教意见的及时反馈及改进制度;抓住一切校内外的交流机会,博采众长,不断更新充实网上资源,确保精品课程建设的可持续发展。
3 地方院校视角下量子力学精品课程建设 的初步成果
2011年起,荆楚理工学院应用物理学专业开设量子力学课程。三年来,量子力学教学团队坚持以建设校级精品课程为目标,始终追求精品境界,目前量子力学精品课程的基本资料已准备就绪,拟申报校级精品课程,并计划在校级精品课程基础上,力争申报省级及以上精品课程,最终转型升级成为精品资源共享课。
教学团队坚持教学和科研相结合,重视研究解决教学过程中存在的突出问题,以教科研水平的提高带动教学水平的提高。三年共主持完成湖北省教育科学“十一五”规划课题“理工类本科生物理学习障碍归因及对策研究”一项,此课题于2013年5月被湖北省教科规划办批准结题,鉴定结论为:课题研究整体设计规范,研究路线科学,课题组成员分工合理,研究成果丰富且有实效;正主持湖北省教育科学“十二五”规划课题一项:“地方院校应用物理学专业人才培养模式研究”。在学术研究方面,教学团队围绕量子纠缠态、量子点、反应微分截面等方向进行了比较深入地研究,取得了一些成果,近几年在国外英文期刊和国际学术会议上发表了6篇英文学术论文,其中4篇被EI收录,2篇被INSPECT收录,并在原子与分子物理学报、重庆大学学报、量子光学学报等中文核心期刊上发表了8篇学术论文。
科学研究提高了教师的学术水平,加深了对量子力学课程内容的深刻理解,促进了教学的深入浅出,实现了理论与应用、基础与前沿的有机结合,量子力学课程教学质量逐年稳步提高:三年来师生评教均分都在95分以上,教学效果得到师生认可;学生学习量子力学的积极性明显提高,学业成绩的统计结果表明,大部分学生较好地掌握了量子力学的基本理论、基本知识和基本技能,并对量子力学知识的有关应用和学科发展前沿产生了浓厚兴趣,越来越多的学生开始选择以量子力学的有关研究作为毕业论文选题,其中2009级两名学生的毕业论文荣获学校优秀毕业论文;不少学生考研时量子力学科目也取得了135分以上的较好成绩。荆楚理工学院量子力学精品课程建设取得的初步成效,从理论和实践两方面证明了建设具有地方院校特色的量子力学精品课程是可行的。
4 结束语
精品课程不应千课一面,不同类型的院校应该有不同类型的精品课程,量子力学精品课程建设也不应该成为重点大学的专利,地方院校完全可以根据自己的培养目标、培养规格、生源状况,正确地理解“一流教师队伍、一流教学内容、一流教学方法、一流教材、一流教学管理”,建设具有应用型人才培养特色的量子力学精品课程,在精品课程建设上实现与重点大学的错位发展。
参考文献
[1]袁德宁.精品课建设及课程支撑理念的转变[J].清华大学教育研究,2004,25(3):53-57.
量子力学总结范文3
关键词:动态投入产出模型 经济控制论 计算机控制系统
一、引言
量子力学是现代物理学的基石之一,其最重要的特点是量子力学认为世界都是不确定的。经济系统与此类似,一个国家的经济系统是由成千上万的公司、企业、组织以及数亿的个人组成的庞大体系,对于其中的任何一个个体,不可能对其行为做出准确的预测,此外个人的经济行为还容易受到他人影响,因此个人的行为与微观粒子在不确定性这一方面具有相通性。基于这一相通性,本文量子力学的路径积分理论引入宏观经济学领域,研究经济系统的投入产出模型问题。
二、经济模型的建立
量子投入产出模型如下所示:
五、总结
研究广义投入产出系统通常是首先将广义系统转换为一般线性系统,然后利用线性系统的理论进行研究。然而这种方法需要引入新的变量进行变量代换,而新的变量则没有经济意义,从而增加了研究的难度。本文利用新的数学方法,对广义动态投入产出模型进行了直接研究而并不需要把广义系统转化为一般线性系统。首先证明了模型趋于稳定状态的条件,进而设计了相应的计算机控制系统。本文的作者非常感谢所有给文章提出意见和建议的专家学者。
参考文献:
[1]O. Lang, Introduction to Economic Cybernetics. Pergaman Press, Oxford, 1970: 89-92.
[2]Zhu Zhisu, Dang Chuangyin, Ye Yinyu, A FPTAS for computing a symmetric Leontief competitive economy equilibrium, Mathematical Programming, 2012, 131(1-2): 113-129.
[3]Suvarov Paul, Vande Wouwer Alain, Kienle Achim, A Simple Robust Control for Simulated Moving Bed Chromatographic Separation Advanced Control of Chemical Processes, Proceeding of the 8th IFAC International Symposium on Advanced Control of Chemical Processes, 2012:137-142.
量子力学总结范文4
2000多年前的物理学,中国、古希腊都有研究,但是真正意义上的精确科学,也就是说用数学、微积分这样的精确科学,实际上是在中世纪即在15世纪16世纪的时候,也就是牛顿、伽利略的时代,开创了物理学精确科学的先河,此后物理学得到了很大发展,后来的热学、电磁学、声学、连续介质动力学等问题也在十七、十八、十九三个世纪取得了很大发展。现在就从牛顿、伽利略时代起谈谈物理学的发展与人类的文明进步的关系。
一、工业革命前的人类文明
工业革命前的物理学虽然在漫长的历史进程中不断发展,但是并没有给人类带来生产力上的巨大改变,人类还处于刀耕火种的农业时代,那是的生产力很低下,人们的生活水平上千年来没有真正的突破。
二、人类的机械化时代
牛顿力学的建立和热力学的发展导致了第一次工业革命
1665年夏,年仅23的牛顿因英国爆发瘟疫而避居乡下,他一生最重要的成果,几乎所有的重要数学物理思想多诞生与不这个时期。在他45岁时,划时代的伟大巨著《自然哲学之数学原理》出版,奠定了整个经典物理学的基础,并对其他自然科学的发展产生了不可磨灭的推动和影响。
三、人类的电气化时代
经典电磁学是研究宏观电磁现象和客观物体的电磁性质。人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。法拉第用过的线圈
电和磁之间的联系被发现后,人们认识到电磁力的性质在一些方面同万有引力相似。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
19世纪下半叶,麦克斯韦总结宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。该理论实现了物理学的第三次综合,即电、磁、光的综合。
四、人类的高科技时代
人类社会发展到今天,已进入信息时代、核能时代、新材料时代和太空时代,也就是说进入了高科技时代。而这一切的基础是20世纪物理学革命的产物――相对论和量子力学。
19世纪,经典物理学的成就到达了顶峰。可是,世纪末的迈克尔逊-莫雷实验和黑体辐射实验形成了物理学万里晴空中的“两朵乌云”;而电子、X射线和放射性等新发现,使经典物理学遇到了极大的困难。有的物理学家呼唤:“我们仍然在期待着第二个牛顿。”需要巨人的时代造就了巨人。这第二个牛顿便是爱因斯坦。
1905年,爱因斯坦以“同时”的相对性为突破口,提出了“光速不变原理”和物理规律在惯性系中不变的“相对性原理”,导出了洛仑兹变换,从而驱散了第一朵“乌云”。这就是狭义相对论。在此基础上,他又得到的质能相当的推论E=mc2,预示了原子能利用的可能。
1913~1916年,爱因斯坦从引力场中一切物体具有相同的加速度得到启发,提出了“加速参照系与引力场等效”和物理规律在非惯性系中不变的“相对性原理”,从而得到了引力场方程。这就是广义相对论。他预言,光线从太阳旁边通边时会发生弯曲。1919年,英国天文学家爱丁顿以全日蚀观测证实了这一预言,从而开创了现代天文学的新纪元。爱因斯坦也因此名噪全球。
1900年,普朗克为驱散第二朵“乌云”,提出了“能量子”假设,量子论诞生了。1905年,爱因斯坦在此基础上提出“光量子”假说,用光的波粒二象性成功地解释了“光电效变”。同年,他把量子概念用点阵振动来解释固体比热。1912年,爱因斯坦又由量子概念提出了光化学当量定律。1916年,他由玻尔的原子理论提出了自发发射和受激发射的概念,孕育了激光技术。此后,对量子力学的建立作出重要贡献的著名物理学家还有:1923年提出实物粒子也具有波粒二象性的德布罗意,1925年建立量子力学的矩阵力学体系的玻恩和海森伯等,1926年建立量子力学的波动方程的薛定谔。同年,玻恩给出了波函数的统计诠释,海森伯提出反映微观世界特性的“不确定度关系”。量子力学揭示了微观世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学的发展奠定了理论基础。它是20世纪物理学革命的。
量子力学总结范文5
1导出麦克斯韦方程组的拉格朗日量
无论是在爱因斯坦场还是阿贝尔规范场中,比安基恒等式都有很重要的应用。从阿贝尔规范场的比安基恒等式出发,我们可以得到麦克斯韦方程组中的两个基本方程。在这个过程中,我们需要慎重考虑指标的升降问题,因为在电动力学中,我们一般都将指标写成下指标,而在场论中,我们需要考虑指标的收缩问题。对于麦克斯韦方程组中的另外两个方程,我们可以通过把比安基恒等式作为约束补充到自由电磁场的拉氏量中,并求解该拉格朗日量的运动方程得到。在这里的运算中,我们要保持运算的自洽性,也就是要由与前面得出两个方程的定义相一致的条件得出麦克斯韦方程组的后两个方程。对自由电磁场的拉氏量进行补充后,我们得到了一个新的二阶一般拉氏量。通过计算它的Hess矩阵,我们可以知道它的Hess矩阵是退化的,也就是说这个拉格朗日量是奇异的。它所描述的动力学系统是一个存在固有约束的正则哈密顿系统。我们还可以将这一部分加入到旋量电动力学的拉氏量中,得到的也是一个奇异拉氏量。旋量电动力学拉格朗日量描述的是自旋1/2的粒子与电磁场相互作用的系统,它本身的拉氏量也是奇异的。含有奇异拉格朗日量的系统在自然界中很常见,引力场、电磁场、超对称、超引力和超弦理论等都属于这类系统[2][3],所有规范不变的的系统也都是用奇异拉格朗日量来描述的。因此对于这样一个系统的研究可以有广泛的应用。
2 拉格朗日量的特点
对于这种系统的量子化和正则对称性质的分析,目前已经有了比较完整的阐述[4]。从狄拉克对动力学齐次变量的分析开始,Bergmann等人阐述了约束和不变性关系。他们的研究为约束系统的量子化奠定了基础。Shanmugadhasan和Kamimura分别探究了奇异性对拉格朗日方程的影响和拉格朗日约束与哈密顿约束的关系。而Sudarshan和Mukunda等人,也曾经从数学的角度出发,分析了狄拉克括号的结构。现代物理学中的约束正则系统在现代量子场论中起到了很重要的作用。
3对拉格朗日量的分析
对于我们前面得到两个的拉氏量,我们不能采取传统或者简单的高阶微商拉氏量的量子化方法。因为这个拉氏量中含有矢势的一次项和二次项,是一个一般的二阶拉氏量。传统的正则量子化方法中,需要通过线性组合获得最大数目的第一类约束,这种方法在这里不能使用。因为通过这个方法获得的第一类约束形式可变,数目不能确定,会干扰我们在量子化中得到的结果。而一般的高阶微商场论的量子化方法是针对时间的高阶项进行的,与我们的拉格朗日量中含有的对矢势的二阶项有很大不同。通过正则动量的定义,我们可以得到系统的初级约束,然后我们根据初级约束的自洽性条件,可以得到与一般约束系统不同的次级约束。
根据系统的初级约束、次级约束和正则Hamilton量,我们可以写出系统的总Hamilton量。只有在得到系统的所有初级约束和次级约束后,我们才可以判断系统的约束属于第一类约束还是第二类约束。通过分析,可以发现将比安基恒等式补充到电磁场的拉格朗日量中后得到的二阶拉格朗日量在量子化过程中会得到三个初级约束中,两个次级约束。初级约束中有一个第一类约束,两个第二类约束。加上次级约束中一个第一类约束,我们就得到了两个第一类约束。要完成该系统的量子化,确定系统的演化,针对两个第一类约束,我们需要选择两个合适的规范固定条件进行量子化。而在将比安基恒等式补充到旋量场的拉格朗日量中后,我们得到的二阶拉氏量所描述的系统只有一个第一类约束。同样,我们通过选取的规范固定条件可以将第一类约束转变为第二类约束,消除变量的规范自由度。
量子力学总结范文6
我们对物理这门学科并不陌生,早在17世纪,伟大的物理学家伽利略就曾想出用理想斜面来研究力和运动的关系。他开创了“观察实验、科学思维、与数学相结合的研究方法”,发现了惯性定律、自由落体规律、力学相对性原理,从此奠定了动力学的基础。而天才的物理学家牛顿将研究方法发挥到极至他在前人研究的基础上,采用归纳演绎、综合分析的方法,总结出牛顿运动定律和万有引力定律,建立了完整的经典力学。同时也确立了他在物理学界至高无上的地位,并被称为经典力学之父。但是人创造了历史必然也会受到历史的制约,因此经典力学有其巨大的成就性,但其也存在着局限性。
一、经典力学的成就
经典力学理论体系的完美和实用威力的强大使物理学家相信,天地四方,古往今来发生的一切现象都能够用力学来描述.许多科学家宣称物理学的大厦已基本建成,留给后人的只是补充与完善。经过三次革命,第一次,是一位年轻的物理学家几乎仅靠单枪匹马之力引发的。他就是伟大的理论物理学家,阿尔伯特•爱因斯坦。19世纪末科学家们发现,当研究有关光的问题时,用经典物理的理论解释一些相关现象,就会产生尖锐的矛盾.为了解决这一矛盾,爱因斯坦于1905年提出了狭义相对论;第的导火索是物理学史上的三大发现:伦琴发现X射线、汤姆生发现电子、贝克勒耳发现天然放射线 ,使物理学的研究从宏观领域进入了微观世界,人们发现,微观粒子所表现出的现象用经典物理理论根本无法解释,为了克服这一困难,德国物理学家普朗克大胆提出了量子的观点,爱因斯坦等物理学家又将量子论进一步丰富、发展,形成了现代量子力学理论.因此对其做出阐述是:经典物理对物理学思想和科学方法作了重点总结,它只适用于宏观低速的物体,相对论和量子论则适用于微观高速粒子的运动。因此,相对论和量子力学的建立,并不是对经典力学的否定。
二、经典力学的局限性
(一)绝对时间、绝对空间等基本概念引入。按照伟大的物理学家牛顿所阐述的是,绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而均匀地、与任何其他外界事物无关地流逝着。绝对空间就其本性而言,是与任何外界事物无关而永远是相同的和不动的。绝对运动是一个物体从某一绝对的处所向另一绝对的处所的移动。但是莱布尼兹、贝克莱、马赫等先后都对绝对空间、时间观念提出过有价值的异议,指出过,没有证据能表明牛顿绝对空间的存在。爱因斯坦推广了上述的相对性原理,提出狭义相对论。在狭义相对论中,长度和时间间隔也变成相对量,运动的尺相对于静止的尺变短,运动的钟相对于静止的钟变慢。在广义相对论中,时空的性质不是与物体运动无关的:一方面,物体运动的性质要决定于用怎样的空间时间参照系来描写它另一方面时空的性质也决定于物体及其运动本身。另一方面量子论的发展,对时间概念提出了更根本的问题。量子论的结论之一就是:对于一个体系在过去可能存在于什么状态的判断结果,要决定于在现今的测量中做怎样的选择。这种现在与过去之间的相互关系,是与因果顺序概念十分不同的,暗含于时间概念中的因果序列要求过去的存在应是不依赖现在的。因此,用时间来描述事件发生的顺序,可能并不总是合用的。空间与时间是事物之间的一种次序,但并不一定是最基本的次序,它可能是更基本的次序的一种近似。
(二)牛顿虽然对引力作了抽象的、纯粹数学形式的概括,把它实际看作是一种直接的、即时传递的超距作用力。爱因斯坦的广义相对论对万有引力做出一种解释,就是时空本身是有弹性的,可以弯曲、伸展。当一个有质量的物体置于某一空间时,空间就会弯曲变形,质量越大,空间弯曲变形就越严重。那么,空间为什么会在有质量的物体周围弯曲呢?爱因斯坦也没能给出答案。所以,爱因斯坦的弯曲空间理论也没有说明引力的本质是什么。量子力学关于电荷间的电磁力和强子间的强相互作用力的传递原理的解释也没有说明引力的本质是什么。认为引力是通过引力场或引力子来传递的观点也未得到肯定,因而至今科学家也没有找到传递万有引力作用的引力子。
(三)在经典力学中物体的质量是恒定不变的,它与物体的速度或能量无关。在相对论中质量这一概念的外延就被大大地扩展了。.爱因斯坦著名的质能方程E=mc2使到原来在经典力学中彼此独立的质量守恒和能量守恒定律结合起来,成了统一的“质能守恒定律”,它充分反映了物质和运动的统一性。质能方程说明,质量和能量是不可分割而联系着的.一方面,任何物质系统既可用质量m来标志它的数量,也可用能量E来标志它的数量;另一方面,一个系统的能量减少时,其质量也相应减少,另一个系统接受而增加了能量时,其质量也相应地增加。爱因斯坦从力学的观点出发,考虑两个球体的弹性碰撞,利用动量守恒定理和相对论速度相加定理能够导出著名的质速度公式 ,该式说明,物体的质量不再是与其运动状态无关的量,它依赖于物体的运动速度。当物体的速度趋于光速时,物体的质量趋于无穷大。
(四)经典力学定律只适用于宏观低速世界,对于可与光速相比的高速情况和微观世界的适用问题,当时没有涉及也不可能涉及。
(五)在经典物理学中,最难使人满意之处恐怕莫过于对光的描述了。如果微粒说是正确的,那么人们不禁要问,当光被吸收的时候,组成光的粒子变成了什么呢?而且为了既表示可称量物质又表示光,必须在讨论中引入不同的实体,这无论如何也不能使人心安理得。
同样,纳入力学框架中的光的波动论也难以自圆其说。按照波动论,光被解释为充满宇宙空间的以太的振动。由于光是横波,因此以太必须具有承受切应力而不承受压应力的能力,又由于以太对可称量物质并不产生可观察到的阻力,它又必须具有极小的密度。为此,人们绞尽脑汁,臆想出种种以太模型。这种无所不能、无奇不有的以太反倒使人如堕五里雾中。在1865年,克劳修斯确立了热力学第二定律,该定律揭示出与热现象有关的物理过程具有不可逆性。在经典力学中,从来也未发现类似的情况,力学过程的可逆性是由普遍的力学原理作保证的。可是热力学第二定律也是普遍成立的,因此,这个矛盾是无法用力学的基本观念予以解释的。