前言:中文期刊网精心挑选了细胞的生物学特征范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
细胞的生物学特征范文1
关键词:微生物学习;细菌分类;方法
中图分类号:G642 文献标识码:B 文章编号:1002-7661(2015)16-006-02
简单地说,微生物就是我们人类用肉眼很难将其观测到的细微生物。细菌是微生物中的一类,属于原核生物,按照形态可以分为球菌、杆菌以及螺旋菌。细菌虽然微小,但是其分布极为广泛,在人体中,细菌的数量要远远超过人体细胞的总量,其重要性由此可见。
一、关于微生物学的学习
在生物专业学习中,微生物学是其重要分支之一,可以应用于工业生产(例如酿酒、酸奶制作等)、医药(例如医学中细菌病毒检测、药品中各种菌素片等)、生物工程以及细胞工程等等。由于微生物是我们肉眼看不见或者看不清的细微生物,所以如果没有显微镜,认识起微生物来就不够直观,这也导致了人类历史中很长一段时间虽然有很多利用微生物的事件被记载,但都没有意识到微生物的存在。所以在学习微生物学的过程中,要注重学生自己亲身观察实践,利用显微镜等仪器,将微生物直观地展示在学生眼前。
当然在现代社会,绝大部分学生对微生物已经不陌生,但是在没有学习微生物学之前真正对其了解并喜爱的可能不多,在微生物学习过程中,还要注重学生学习兴趣的培养,在学习之初,要通过微生物与人类息息相关的实例以及多媒体教学的视觉冲击吸引学生的注意力,然后通过提出与生活有关的问题引发学生的思考,让其对微生物学产生好奇,然后利用显微境等仪器引导学生解答问题,激起学生成就感,从而引发其兴趣。
二、微生物学习中细菌分类概述
在微生物学习中,《伯杰氏系统细菌学手册》以及《伯杰氏细菌鉴定手册》是细菌分类以及细菌鉴定的权威以及代表作品,由于生物技术在不断进步,所以这两部手册也在不断修订。
目前,对细菌种类的研究主要是在细菌分类基础上,对细菌菌株进行鉴定;以及构建系统发育树研究细菌进化关系;也有在同一属的细菌范畴内对细菌的种进行分群聚类研究。这些研究都是以细菌分类为基础,从中也可以看出在微生物学习中细菌分类的重要性。
在学习细菌分类的过程中,要注意细菌分类是不断进步不断更新的,这主要是由于生物技术不断推陈出新、研究细菌分类的方法就在不断进步。同时还要注意技术的更新换代是一个连续的过程,新技术是在原有技术的基础上不断探索发明的,所以要注意不要因为有了新技术,就将原有的完全抛弃,也许在研究过程中可以只使用新技术,但是在学习时,也应该对历史有所了解和认识。所以学习细菌分类时,应该全面、连贯。
三、微生物学习中细菌分类方法探讨
对细菌进行分类,方法非常重要。所以,在微生物学习中,细菌分类方法具有重要地位。目前,细菌分类的方法主要包括特征分类法、数值分类法、组分分类法、分子生物学分类法以及多相分类法等。
1、特征分类法
不同的细菌,其形态、代谢以及生存环境存在一定差异,在生物技术不发达的年代,人们依据形态、生理以及生存环境等基本特征对细菌进行分类。不过由于细菌体积微小,使得这些特征的观察较为笼统,所以这种分类方法比较粗犷,很难对细菌进行进一步区分。特征分类法是一种古老、相对较为宏观的分类方法。
2、数值分类法
随着计算机技术的发展,数值分类法开始大规模兴起。细菌的表性特征有很多,将这些特征全部进行检测,然后利用计算机技术对这些特征进行归纳分类,这就是数值分类法。相对特征分类法,数值分类法要精细一些,但是其需要测定的特征很多。由于数值分类法能够定量反应细菌特征,所以目前该方法应用依然较为广泛。
3、组分分类法
组分分类法主要利用质谱、光谱、气相色谱以及高效液相色谱等技术检测细菌的化学组分。需要检测的细菌化学组分主要来源于细胞壁、细胞膜脂肪酸、枝菌酸、磷脂、醌、以及蛋白质等。检测细胞壁主要是检测其氨基酸和糖分;脂肪酸和枝菌酸都是细胞膜的重要组成成分;磷脂是极性脂;醌是非极性脂,存在于线体膜以及细胞质膜;蛋白质组分检测是采用全细胞蛋白质凝胶电泳技术。
4、分子生物学分类法
分子生物学分类法主要包括16S rRNA基因等序列分析、GC含量分析、DNA指纹技术、ITS序列分析、DNA-RNA杂交技术以及DNA-DNA杂交技术。目前,该方法应用广泛,用于细菌分类、多样性分析的基因除了16S rRNA基因外,还有16S~23SrRNA基因、tuf基因、hsp60基因、pheS基因等。当然,16S rRNA基因在利用基因序列分析进行细菌分类研究中应用最为广泛。
5、多相分类法
多相分类法就是综合上述几种方法进行细菌分类,该方法是一种综合的方法,将几种单一方法结合起来,互相验证、补充,可以得到更为合理可信的结论。
四、结束语
微生物学习中,细菌分类是一项系统但又繁琐的工作,而且细菌分布广泛、变异快,新种不断被发现,将新种进行鉴定和分类应该采用多种方法,而不能简单的通过单一方法就下结论,多相分类法就是用多种单一方法进行分类鉴定,所以相对更为全面可靠。
参考文献
[1] 廖咏梅,张君成,王忠文. 植物病原细菌的分类地位及其在农科本科教学中的应用[J].广西农业生物科学,2007,S1:191-195.
[2]何琳燕,盛下放. 细菌分类学课程改革的探索与实践[J]. 微生物学通报,2006,05:172-175.
[3]王秀平. 生物教学中思维导图教学策略构建与应用的研究[D].首都师范大学,2007.
[4]尤秋琴. 高师院校生物专业教育实习状况分析及对策研究[D].曲阜师范大学,2014.
[5]周兴文,张卓,郭晓华. 大学生物课程与中学教材知识结构的比较分析[J]. 沈阳大学学报(自然科学版),2012,03:18-21.
细胞的生物学特征范文2
关键词:细胞生物学 知识进化动力 知识进化机制 内容分析法 学科建设
中图分类号:G302 文献标志码:A 文章编号:1672-3791(2017)02(b)-0202-03
Abstract:By selecting references for the history of cellular biological development and adopting the methods of content analysis, driving forces for knowledge evolution at the level of cytological communities are handled, and model for knowledge evolution at the level of cellular biological communities are constructed, namely at the level of cellular biological communities, by use of the coordinated effects of such 5 driving forces as immigration of knowledge individuals, alterations of the recognitions in human brains, changes in internal environments, changes in external environments, and work of researchers, and through the alternative formation and development of such 4 periods as cellular period, period of classic cytology, period of experimental cytology and period of cellular biology, changes inside and outside the communities of cellular biology are timely handled, which propels knowledge evolution at the level of the communities of cellular biology and is prominently characterized by the progression of evolutionary paths. This model reveals the mechanism for knowledge evolution at the level of cellular biological communities, provides new theories for the solution of the issues concerning the first-rate disciplinary construction, and can be applied into the construction of original disciplines with middle-scale contents.
Key Words:Cellular Biology; Driving Forces of Knowledge Evolution; Knowledge evolution mechanism; Method of Content Analysis; Disciplinary Construction
胞生物学起源于细胞的原始发现,由细胞时期、古典细胞学时期、实验细胞学时期依次发展而成[1]。细胞生物学在全球具有重大的知识创新影响力,涌现出了众多的诺贝尔奖获得者,恩格斯曾把细胞学说誉为19世纪自然科学的三大发现之一[2]。因此,细胞生物学群落层面的知识进化是一种有代表性的典型类型,揭示其知识进化机制具有重大的应用价值与科学意义。目前,相关研究存在的问题是没有破解细胞生物学群落层面的知识进化动力是五类动力因素的协同作用,因而,细胞生物学群落层面的知识进化机制未被破解。基于以上分析,该文选择细胞生物学发展史文献[1-8],采用内容分析法即通过对文献内容所含信息量及其变化的分析达到透过现象看本质[9],提出了细胞生物学群落层面知识进化的动力与模型。该模型揭示了细胞生物学群落层面的知识进化机制,为解决一流学科建设问题提供了新理论,适用于中等内容尺度的原生学科建设。
1 细胞生物学群落层面的知识进化动力分析
首先,细胞时期形成与发展的动力包括5个方面。(1)知识个体的迁入。主要表现在1665年英国物理学家罗伯特・胡克首先引入并应用显微镜,观察了软木薄切片,发现了许多很小的、与蜂窝相似的小室,他将这种小室命名为细胞,开启了细胞时期。(2)人脑认识的改变。主要表现在首次认识到微观细胞的存在,打破了人类思想上的局限性,改变了人类几千年来的认识。(3)内部环境的变化。主要表现在研究人员具有了使用显微镜探索生物结构奥秘的兴趣与热情。(4)外部条件的变化。主要表现在细胞的发现轰动了当时的英国学术界,英国皇家学会与官方均认可。(5)研究人员的工作。主要表现在罗伯特・胡克、列文・虎克、格鲁、马尔比基、布朗等相关人员的研究工作。总之,以上5类动力因素的协同作用,推动着细胞时期的形成与发展。例如,列文・虎克用自制显微镜对多种活细胞进行了大量观察并首次描绘出骨细胞与横纹肌细胞图。该时期延续至1837年,称为先锋期。
其次,古典细胞学时期形成与发展的动力包括5个方面。(1)知识个体的迁入。主要表现在1838年施莱登与施旺首次引入并应用归纳法与解剖观察比较法,基于细胞时期的研究成果,提出了细胞学说,开启了古典细胞学时期。(2)人脑认识的改变。主要表现在首次认识到细胞的统一性和生物体的统一性,了分割动植物界的巨大屏障,对生物结构的认识由器官层次进入到细胞层次。(3)内部环境的变化。主要表现在研究人员完全从生命科学的角度解释生命的基本结构。(4)外部条件的变化。主要表现在恩格斯对细胞学说的高度评价、诺贝尔奖金的设立、以及胚胎学、遗传学、生理学和其他学科的技术与方法都发生了较大变化。(5)研究人员的工作。主要表现在施莱登、施旺、魏尔肖、施特拉斯布格尔等相关人员的研究工作。总之,以上5类动力因素的协同作用,推动着古典细胞学时期的形成与发展。例如,魏尔肖提出了“一切细胞来自细胞”的著名论断,完善了细胞学说;施特拉斯布格尔连续在两种植物中发现了物种染色体数目恒定的规律。该时期延续至1875年,称为发展期Ⅰ。
第三,实验细胞学时期形成与发展的动力包括5个方面。(1)知识个体的迁入。主要表现在1876年赫特维吉首次引入并采用实验方法,基于古典细胞学时期的研究成果,研究了海胆和蛔虫卵发育中的核质关系,发现了受精后两个亲本细胞核合并的现象,开启了实验细胞学时期。(2)人脑认识的改变。主要表现在首次认识到生物学的基础在于研究细胞的特性、结构和机能,扭转了古典细胞学时期忽视细胞质研究的状况。(3)内部环境的变化。主要表现在研究人员广泛应用实验手段、生物化学分析方法以及电子显微镜,研究细胞学的一些根本问题,开辟了一些新方向与领域,形成了一些重要分支。(4)外部条件的变化。主要表现在离心技术的建立和发展,以及电子显微镜的诞生与进步。(5)研究人员的工作。主要表现在赫特维吉、J. von Suchs、高尔基等相关人员的研究工作。总之,以上5类动力因素的协同作用,推动着实验细胞学时期的形成与发展。例如,科学家们相继发现了线粒体、内质网、高尔基体和溶酶体等细胞器的精细结构和功能,以及细胞内的大分子结构体制是细胞内各种代谢功能的基础。该时期延续至1964年,称为发展期Ⅱ。
第四,细胞生物学时期形成与发展的动力包括5个方面。(1)知识个体的迁入。主要表现在1965年布洛贝尔等一批细胞学科学家们引入并应用分子遗传学技术,基于实验细胞学时期的研究成果,确立了细胞生物学,开启了细胞生物学时期。(2)人脑认识的改变。主要表现在首次认识到细胞表达的机理来自分子层面,分子与生物个体之间存在联系。(3)内部环境的变化。主要表现在研究人员在显微水平、亚显微水平和分子水平3个层次上研究细胞的结构、功能和各种生命规律。(4)外部条件的变化。主要表现在设备、技术与思想都发生了巨大变化。(5)研究人员的工作。主要表现在布洛贝尔、De Robertis、 S. B. Prusiner等相关人员的研究工作。总之,以上5类动力因素的协同作用,推动着细胞生物学时期的形成与发展。例如,洛克菲勒大学细胞生物学系的专家们连续发现了细胞的亚显微结构、内质网蛋白质通道等。该时期延续至今,称为顶极期。目前,细胞生物学仍处于自我发展与完善的顶极期。
2 研究结论
综上所述,细胞生物学群落层面的知识进化动力是知识个体迁入、人脑认识改变、内部环境变化、外部条件改变、研究人员工作五类动力因素的协同作用。据此,该文创建了细胞生物学群落层面的知识进化模型,即细胞生物学群落层面,借助知识个体迁入、人脑认识改变、内部环境变化、外部条件改变、研究人员工作五类动力因素的协同作用,通过细胞时期、古典细胞学时期、实验细胞学时期、细胞生物学时期等四个时期的依次形成与发展,及时处理着细胞生物学群落内部与外部的变化,推动着细胞生物学群落层面的知识进化,M化路径递进是其突出特征(如图1)。结果是内容格局逐期增大,其中,细胞时期是观察不同类型的细胞、古典细胞学时期是观察细胞内部的形态结构、实验细胞学时期是分析细胞内部结构与功能的关系、细胞生物学时期是从细胞的角度研究生物学。该模型揭示了细胞生物学群落层面的知识进化机制,为解决一流学科建设问题提供了新理论,适用于中等内容尺度的原生学科建设。又由于,学科尺度层次的知识系统(如细胞生物学)是知识群落[10],知识群落是科学学研究的前沿问题[11]。因此,细胞生物学群落层面的知识进化模型,在学科方面为建构知识群落层面的促进型进化机制提供了检验案例,意义重大。
参考文献
[1] 王亚辉.细胞生物学的发展历史和现况[J].细胞生物学杂志,1986,8(1):7-11.
[2] 王宝娟,张盛周,朱国萍.诺贝尔奖在细胞生物学教学中的应用[J].中国细胞生物学学报,2010,32(3):497-500.
[3] 庄孝德.从胡克到细胞生物学[J].细胞生物学杂志,1986,8(1):1-6.
[4] 刘学礼.探索细胞世界[J].生物学通报,2004,39(11):59-62.
[5] 潘承湘.发现细胞的人――罗伯特・胡克[J].植物杂志,1982(4):38-41.
[6] 汪子春,田铭,易华.世界生物学史[M].长春:吉林教育出版社,1997:162.
[7] 翟中和.细胞生物学[M].北京:高等教育出版社,1995:7.
[8] 鲁白.培养诺贝尔奖获得者的摇篮――从诺贝尔奖得主布洛贝尔教授看洛克菲勒大学[J].生理科学进展,2001,32(2):185-186.
[9] 邱均平,邹菲.关于内容分析法的研究[J].中国图书馆学报,2004,30(2):12-17.
细胞的生物学特征范文3
关键词:高中生物教学;模型;方法应用
在多年的高中生物教学中,经常会遇到学生提出这样的问题:“生物学应该怎样学,那么多的概念如何记?”“为什么生物学知识总是显得那么琐碎、零乱,不像数学、物理等科目那样有规律可循?”“我将概念和原理背得滚瓜烂熟,为什么到做题时还不会用?”
笔者认为,产生这些问题的原因之一是我们在教学的过程中忽略了生物学模型的存在,忽视了教给学生运用模型方法去理解生物学的概念,运用生物学原理,培养生物学能力。
一、问题的提出
在现代生物科学研究中,模型方法被广泛运用,DNA双螺旋结构模型的成功就是一个范例。在生物科学学习中,模型提供观念和印象。认知心理学认为,人的知识经验既包括概念系统,又包括表象。前者有概念、原理、规律、理论,后者的成分包含观念和印象。当代不少学者都主张把表象看做一种符号要素,与语言等其他符号要素一样具有抽象、概括、组合和再组合的功能,因而能构成思维的操作。因此,中学生物学教学的教学应努力将模型方法应用于课堂教学之中,以提高学生的科学素养和科学探究能力。笔者多年的生物学教学实践证明,构建生物学模型有助于学生系统地、完整地学习和理解新知识,同时有助于学生运用生物学模型去解决生物学问题。
二.模型和模型方法在教学中应用的实践
1.新授课中,应尽可能运用实物、标本、图片、模式图等实物模型或具象模型。
“形象大于思维”,新授课中,学生刚接触生物学某一方面知识,就会面临尽快记住大量概念,理解概念间的内在关系等诸多困难。出示模型既体现生物学学科特点,同时可以帮助学生认识事物原貌,有助于学生记忆、整理、理解和运用所学知识。高中生物教材中可向学生展示的模型大约有100个左右。比如有关细胞方面的模型就有:
围绕模型组织教学更有利于学生掌握核心概念,理解重点知识,建立知识联系。如图1是单抗制备模型,通过对模型的讲解,学生不但轻松了解骨髓瘤细胞、效应B淋巴细胞、杂交瘤细胞、细胞培养等概念,而且很快领会了单克隆抗体的制备过程。总之,以模型形式教学能更好地阐明生命活动规律,符合学生的认知规律,也有助于学生的记忆与理解,避免琐碎感和杂乱感。
2.复习课中,根据事物的本质特征及内在联系,构建一些抽象模型有助于理解生物知识间的联系,做到融会贯通、牵一发而动全身的效果。
生命运动是自然界中最复杂的运动形式,模型有助于学生真正理解组成模型的各元素之间既是普遍联系的,又是对立统一的矛盾复合体。如图2:以“细胞”为核心概念以辐射的方式将“细胞的化学组成”、“细胞的结构和功能”、“细胞的分化、癌变和衰老”、“细胞的增殖”及“细胞工程”等内容有机地组织在一起,以一个抽象模型的形式开展教学,可以帮助学生认识细胞这一概念的实质,将相关知识点有机地联系起来,实现对细胞相关知识全方位、多角度的认识。
学生对高二教材中有关高等动植物的有性生殖过程、个体发育过程感觉头疼,因为课本中对这些知识是分散在几节内容中讲的,因为概念多,过程复杂,学生很难构建一个完整、连续的印象。很多概念间有些相似,稍不注意,就会张冠李戴,如:“极体”与“极核”,“胚柄”与“胚根”,“囊胚”与“胚囊”等。如图3和图4采用了过程抽象模型分别显示高等植物和高等动物的一生。遵循事物发展的顺序,以一条主线将一系列知识点象珠子一样贯穿起来。使学生从总体上把握住这些知识。有效地掌握了知识点之间的联系与区别。收到了很好的效果。3.习题课中,应帮助学生学会运用熟悉的模型去解题,或根据题干所提供的条件主动构建模型解题。例如,“设计并制作生态瓶”制作的是一个活体实物模型,运用这个模型进行的是对生态系统运行的模拟实验。在科学研究中,有时受客观条件的限制,不能对某些自然现象进行直接实验,这时就要人为地创造一定的条件和因素,就本题来说,一方面需要对生态瓶的组成成分、结构、环境、性能等做分析,另一方面需要对系统的能量转换和物质流动状态及其调控做分析。这对学生深入理解生态系统的结构、生态系统中的物质循环和能量流动的基本规律及其应用、生态系统中的信息传递、生态系统的稳定性等,无疑具有重要的教育价值。模型方法解题,有助于学生展开思维,迅速把握题目的已知和未知条件。有助于学生看清题目所要考的核心知识,对题目进行归类,能举一反三,而不致于陷入题海之中产生无助感。如:(2003高考题)小麦品种是纯合体,生产上用种子繁殖,现要选育矮杆(aa)、抗病(BB)的小麦新品种;马铃薯品种是杂合体(有一对基因杂合即可称为杂合体),生产上通常用块茎繁殖,现要选育黄肉(Yy)、抗病(Rr)的马铃薯新品种。请分别设计小麦品种间杂交育种程序,以及马铃薯品种间杂交育种程序。要求用遗传图解表示并加以说明(写出包括亲本在内的前三代即可)。此题难点就在要求学生自己去构建符合解题要求的亲本杂交组合模型上!只要读懂题意,是不难写出亲本组合类型的。小麦:第一代(P):AABB×aabb马钤薯:yyRr×Yyrr亲本杂交。
细胞的生物学特征范文4
一、信息技术与生物课程的整合,实现了生物学教学由微观向宏观的转换
运用信息技术与生物课程的整合,教师从网络中可以得到有关课件和资料,通过改造、重组和整合,运用于探究式课堂教学。例如,运用网络多媒体课件进行“细胞质的结构和功能”这节课的教学时,可先演示色彩逼真的细胞亚显微结构全形,给学生一个整体的印象,然后通过图形中细胞质基质部分的闪动和色彩显示,让学生能正确地区分出细胞质基质和细胞器。接着逐一演示和局部特写放大各个细胞器,让学生通过观察、感知和主体探究的过程,掌握各个细胞器的结构和功能。以线粒体为例,教学时可将细胞中的线粒体进行闪动、放大并由外到内将其各个部分,分别进行定格特写和重复演示等技术处理,同时提出探究问题,让学生通过积极探究、自主发现,理解并真正掌握线粒体的结构和功能。
信息技术与生物课程的整合,实现了生物学教学由微观向宏观的转换,一方面突破了微观的限制,帮助学生充分感知微观结构,降低了学习的难度;另一方面也有利于学生观察能力、思维能力、探究能力的培养和创新素质的提升,其教学效果为传统教具所无法取代。
二、信息技术与生物课程的整合,实现了生物学教学由抽象向直观的转换
抽象性是生物学的另一个重要特征,《生物》教材中有许多抽象性较强的内容,以第三章生物的新陈代谢为例,光合作用、生物的呼吸作用等都是抽象性很强的内容,看不见摸不着。传统教学中对这些内容的处理,只能通过“语言+板书”的方式进行教学,教师通过条理清楚的讲述和层次清晰的板书,让学生记住这些复杂生理过程进行的顺序,想象在生物体内不断地发生着这些生理过程,这种“灌输式”的教学方法,使生物体的生理过程既抽象难懂又无真实感,使学生的学习成为囫囵吞枣和死记硬背的过程。严重影响了学生学习兴趣的提高和思维能力的发展。
信息技术与生物课程的整合,实现了生物学教学由抽象向直观的转换,为学生提供了逼真的感性认识和丰富的替代经验。戴尔的“经验之塔”理论指出,位于塔中部的替代经验,能冲破时空的限制,弥补学生直接经验的不足,易于培养学生的观察能力。网络多媒体课件作为替代的经验,其形象性、直观性和再现性等特点,能使学生的认识沿着“从生动的直观到抽象的思维”的路线前进,在潜移默化中培养了学生的思维能力和创新意识。
三、信息技术与生物课程的整合,实现了生物学教学由静态向动态的转换
生命性是生物学的又一个重要特征,生物体内时刻在进行着新陈代谢的各项生命活动。生物体内动态的生命活动过程往往是教学过程中的重点和难点。在传统教学中,一般是以“语言+板书+板画(或挂图)”的方式来处理。将复杂的动态生成的生命活动过程分解成若干张静态的图片,再通过教师仔细的讲述和系统的板书,让学生了解生物体内生命活动的动态变化过程。运用这种方式,教师教得辛苦,学生学得困难,经常造成许多学生对这些内容望而却步,虽然经过教师反复的“冷饭重炒”,但学生仍然觉得无法理解和接受,使教学的重点难以实现,难点难以突破,影响了学生对这些重点知识的掌握和迁移运用,同时也影响了学生思维习惯的培养和智力潜能的开发。
运用信息技术与生物课程的整合,从网络中可以得到有关这些生命活动过程的课件,教师通过个性化处理进行再加工,运用于探究式课堂教学。让学生通过观察思考、主体探究和协作讨论,在平等和谐、充满生机和活力的课堂氛围中,进行积极主动的知识建构与内化。这样既突出了重点,突破了难点,又培养了学生的协作精神、探究能力和创新能力。
信息技术与生物课程的整合,实现了生物学教学由静态向动态的转换,将生物体的生命活动以宏观动画形式进行展示,突破了时空的限制,使学生通过真切的感受,轻松地实现了由感性认识到理性认识的飞跃。使课堂教学成为一个在教师引导下的学生自主发现、积极参与、协作探究和不断创新的过程。
“以学生为中心”,是让学生积极主动地参与教学过程,学生的学习方式由原来的“被动接受、模仿再现、封闭读书”而变为“主动参与、探究发现、合作交流”。
在信息技术与生物课程的整合过程中,一方面学生在上网查找、处理信息的过程中,学生必定是人人参与,学生的学习是带着课堂知识的主目标进行的,并且是自觉地、自主地和探索性地开展学习;另一方面,在课堂教学中,信息技术还可以作为交流工具,在局域网或互联网的硬环境下,通过构建“开放式、以资源为中心、以学生为中心”的课堂教学模式,充分发挥了现代信息技术对生物课堂教学的作用,它为生物教学创造了一个有利于学生学习的信息技术课堂教学新环境,转变了师生的角色,改变了教学过程,充实和完善了教学内容,成为一个让学生真正成为学习主人的素质教育的课堂教学模式。
细胞的生物学特征范文5
【摘 要】 生物学是研究生命现象及其生命活动规律的科学,其基本原理都是建立在生物学概念的基础上。因此,生物学概念是初中生物学科知识的重要组成部分,它是对生物的形态结构、生理特征乃至生命现象、原理及规律的精确而本质的阐述;笔者通过分析当前初中生物学概念教学现状,就初中阶段如何有效提高学生对生物学概念的理解及概念教学实效性进行探究。本文也是福建省教育科学规划课题“运用探究性的学习方式理解初中生物学的核心概念+立项编号FJCGJJ12-010”的一个小结。
关键词 概念教学;生物学概念;生物学教学
一、概念教学存在的普遍问题
在目前的初中生物教学中,教师为了保证教学进度,往往削平思维梯度,缩短学生的认知过程。概念教学中,教师仍习惯采用讲述的方式直接给出定义,直接进入抽象概括阶段,对概念的形成与发展过程轻描淡写、甚至一笔带过。学生对学习概念最常采用的方式就是背诵,对概念缺乏深层次的理解,对生物学的学习停留在一个较肤浅的层面,思维得不到真正意义上的发展,能力培养也受到局限,阻碍了学科教学的实效性。
1.传统的教学方法制约了概念教学的发展
在概念教学中,教师过于关注概念的结果,而忽略对概念形成的介绍。教师引入新概念的过程过于简单,忽视对定义表述的诠释就匆忙转入练习。
2.学生对概念的机械记忆,使概念学习停留于表面
学生对概念的学习缺乏真正的理解与思考,习惯采取死记硬背的方式。随着时间的推移,记忆将出现遗忘或是自然衰退,对概念似是而非的理解严重影响了学生的学习效果。如对植物细胞的学习,植物细胞具有特殊的细胞结构,像叶绿体和细胞壁等。由于学生多采用背诵等机械的记忆方式,并未对植物细胞的结构有真正的理解,不能区分动植物细胞结构的不同,有部分学生产生混淆,教师在检测时发现学生会将植物有别于动物细胞的结构错记成“线粒体”,或者“叶绿素”等。
3.前科学概念在一定程度上干扰了学生对概念的正确建构
由于认知水平所限,或者日常生活经验的局限,学生对一些生物学概念存在着混淆或是错误的认识,对生物学概念的形成产生干扰。学生不容易通过内部的、本质的具有普遍性意义的属性来理解科学概念。因此,在生物概念教学中,教师必须以学生为主体,发挥教师的引导作用,教给学生概念学习的基本方法,帮助学生自己建构概念,从而提高其学习能力。如果学习之前,教师没有进行足够的调查和了解,再加上目前普遍存在的大班教学模式,学生对概念理解上的偏颇,未必能立即反馈给教师,会导致一部分学生在概念的理解上产生偏差,如对“光合作用”与“呼吸作用”,部分学生错误地认为“光合作用”只发生于白天,因为需要阳光,而“呼吸作用”只有晚上才产生。
二、浅析如何改进概念教学的研究
要切实有效地解决问题,教师必须站在课程标准的高度,对认知学习理论、教材、学习目标确定、学习方法指导等方面展开研究。
1.概念教学应该建立在对话与交流的基础上
真正的对话应该是双方的一种探讨与共同建构,而不是教师对学生的单向传授。信息获取能力、交流的能力、质疑和批判的能力、独立思考与解决问题能力的培养与发展,都可以在师生的对话过程中得到提升。学生对概念的理解可以通过对话与交流达到一个更高的思维层次。存在于生活认识和科学认识之间的偏差和错误,也可以在师生的对话中得到及时的澄清与解决。教师对于话题的引导至关重要,在教学中应该精心设置真正有思维含金量的问题,促使学生调动思维,对概念本质特征进行讨论与交流。
2.在概念之间构建起网络体系
教师围绕概念的学习开展各种教学活动,以深化对概念的理解与对知识的迁移。把学生对知识的学习置于“前置知识”的铺垫下,可以最大程度地帮助学生越过学习障碍点。而这些铺垫工作对学困生尤为重要。
在理解科学概念时,教师要将零散的概念系统化,帮助学生理清各种关系,进行比较与区别,明晰其从属关系,找到新知识与旧知识的附着点,才可能实现有效学习。如为了帮助学习真正理解基因、dna、染色体之间的关系,通常会用到一个数学上常用的从属关系图(图1)来说明三者间的关系:染色体由蛋白质和dna组成,基因是dna上有遗传信息的一个片断。这个方法还适用于学习生物体结构层次及分类学各等级概念的学习。
3.概念的形成必须通过感知活动、观察实验、经验事实等一系列准备
初中阶段学生还未进行系统的生物思维训练,其生物学知识、经验还有很大的局限性。他们较多地凭借事物的直观形象来理解事物。生物学教学强调实验探究,从观察出发,从实验出发,通过学生自主探究获取信息、处理信息、提出假设、验证假设、总结归纳,加深对概念本质特征的理解。
教师要介绍科学家通过哪些经典实验的反复研究,逐步归纳、概括出事物共同本质特征,了解概念的形成发展过程,能激发学生的学习兴趣,增进学生对科学本质的认识,增进他们对科学探究的理解,使学生充分感受到学科概念的形成。如笔者对光合作用发现史中一些重要实验的学习,指导学生重复前人的探究实验,让学生更好地理解光合作用的本质,真正地理解:光合作用是绿色植物能利用太阳能(光能),把二氧化碳和水合成贮存了能量的有机物,同时释放氧气的一个生理过程。
4.关注学生对科学概念的主动建构
在概念教学过程中,教师应该根据学生知识基础,以及生物学概念的特点,运用认知心理学理论和新课程理念去设计生物学概念教学的过程,有针对性地解决学生学习过程中存在的问题。
5.注重概念的正确规范表述
概念的引入要生动有趣,概念的形成要注重科学性,概念的表述与巩固要注重规范严谨。无论是师生的共同交流,还是教师的讲述,在日常教学中一定要特别强调概念表述的准确与规范。笔者在检测时发现部分学生将“相对性状”表述成“相反性状”,将“贫血”表述成“缺血症”等。生物专有名词表述的巩固强化,对于学困生尤为必要。
细胞的生物学特征范文6
关键词:生物信息学 交叉学科 学生培养
一、生物信息学的产生
生物学是一门古老的学科,在人类历史发展的长河中,人类从未停止过对生命奥秘的探索。人们逐渐认识到,虽然生物种类多种多样,但是它们的最基本分子却是相同的。DNA、RNA和蛋白质等分子构成了生命的基本单位,再由细胞到组织、器官,最后器官系统组成完整的生物体。
传统的生物学研究中,由于受到技术水平的限制,生物学家多采用低通量的生物实验方法,其研究对象通常是一个基因或者几个基因组成的通路。在这种情况下,实验后的简单观察就可以满足研究需要。随着生物研究的不断深入,积累了大量实验数据,人们不禁想到,如何把不同的实验结果整合起来?另一方面,随着生物技术的发展,大量新兴技术出现,产生了海量的数据。例如90年代兴起的基因芯片技术,单张芯片就可以测定成千上万个基因在某一状态下的表达情况。1990年启动的人类基因组计划更为生命科学的研究提供了海量的序列数据。面对如此多的数据,以前依靠生物实验研究单个或几个基因的方法很难再适用,生命科学、统计学、计算机科学和信息科学等若干学科的交叉学科――生物信息学应运而生。生物信息学以计算机、统计、模式识别等方法为手段,以生物数据为研究对象,通过对大量生物数据的储存、处理和分析,提取其中有意义的生物知识[1],从而最终揭示蕴藏在核酸序列和蛋白质序列中的信息,对了解生命活动的基本规律出贡献。
二、生物信息学在生命科学研究中的作用
作为一门新兴的学科,大家对生物信息的作用并不十分明确。很多人认为生物信息学只是为实验科学服务。从广义上讲,这种说法也不无道理,但是生物信息学并不是实验科学的附属品,与生物实验一样,它也是解决生物问题的一种手段。为了解决生物问题,生物学家依靠的是实验台,生物信息学家依靠的是计算机。
在生命科学的发展过程中,以分子生物学的产生为界,可以分为传统生物学和现代生物学。传统生物学和现代生物学取得的成就为生命科学的发展做出了巨大贡献。人类基因组计划启动以来,人们一度认为只要把各种生物基因组的全部碱基排列顺序测定清楚,生命的遗传奥秘就会显露无余,但是真实的情况远不像想象的那样简单。人类的个体发育开始于一个单细胞受精卵,受精卵经过一系列的细胞分裂和分化,产生具有不同形态和功能的细胞,不同细胞之间相互作用构成各种组织和器官。虽然人类基因组中有两万多个基因,但是在单个细胞当中,同时起作用的基因往往是很少的。有些基因只在特定阶段起作用,有些基因只在特定组织起作用。只关心某个基因或蛋白的功能是不够的,因为在不同时空条件下,同一个基因或蛋白的功能可能不同。生物是一个复杂的系统,其表型和功能不仅体现于基因数量和序列的不同,更体现在基因、蛋白以及其他生物分子之间的相互作用之中。因此,把研究对象当成一个整体,系统地分析内部的相互关系尤其重要。但是无论是传统生物学还是现代生物学,都是一门实验学科,生物学的发展中缺乏一种系统思想。生物信息学可以从大量生物数据中提取有意义的生物知识,通过对已有数据的总结,进一步推测生物体的某些性质和变化趋势,生物信息学为大量生物数据的整合提供了可能,与生物实验一样,是生物研究中的一种重要途径。
三、生物信息学学生的培养
生物信息学是一门交叉学科,要求学生具有较好的分子生物学、计算机科学、数学和统计学素养,目前国内只有少数几个学校设立了生物信息学本科专业,大部分的学生都是进入研究生阶段才开始生物信息学的培养。在进入生物信息学专业前,本科阶段可能接受过计算机、统计学、信息学、生物学等某一方面的教育,但要进行生物信息学的研究,大多需要补充其他方面的知识。
生物信息学研究可以分为两类:第一,在深刻理解生物问题的基础上,利用计算技术解决生物问题,第二,为生物学家提供性能更好的方法(算法)。理工科背景学生的生物知识较少,但是对于各种计算方法的原理和使用非常熟悉,对于这类学生的培养,第二类问题比较适合他们入门。在生物信息领域,有很多经典的分类问题。这些问题已经明确了分类目标,并且大都有通用的数据集。但是这类工作也受到了生物学家的质疑,因为大部分工作都是把已有的经典算法用在生物数据上,由于对生物问题不够了解,最后成为只有做生物信息的人才看的方法。这也在一定程度上导致了部分生物学家对生物信息存在偏见,认为生物信息就是提出新算法,做一些数据库。要想真正让生物学家认识到生物信息学的重要性,就要以解决生物问题为根本出发点,即使是做预测方法,也要建立在解决生物问题的基础上。做出更好预测方法的关键是深入理解生物问题并抓住关键特征。举个例子,要把男生和女生分开,我们可以根据很多特征,比如身高、体重、头发长短,虽然大多数情况下来说,男生比女生高、比女生重、比女生头发短。但是只基于这些特征还是会造成很多的分类错误,因为这些特征不是男生女生差别的最根本因素。如果我们是根据性染色体来分,那正确率的提高就非常显著了。在预测问题中,利用五花八门的方法并不是关键,如何能够对生物问题深入了解并找到关键特征,才是最主要的。
作为一门新兴的学科,大家对生物信息的了解还很少,很多人对它的定位也不同。但既然是生物信息,就是先生物后信息,可见生物的重要性。所以,在生物信息的研究过程中,对生物问题只限于表面地理解,势必不能做出好的工作。只有对生物问题有了深入了解,才能发现其中的问题。能够找到值得做的问题,可以说工作已经成功了一大半。当然,解决问题过程中也会有很多困难,比如发现了值得研究的课题,但在解决的过程当中发现某些数据无法获得,或者某些技术超出了自己的能力范围。在这种情况下,可以首先想想有没有其它变通的办法可以解决问题,如果经过慎重的考虑都无法找到,就要果断的放弃。这里要强调一定要慎重考虑,不能遇到一点困难就放弃。
相比理工科背景的学生,生物背景的学生有着扎实的生物学知识基础。但是如果是从本科阶段直接进入生物信息学,由于还没有进行过实验操作,他们对生物问题的理解也很难非常深入。不管是理工科背景还是生物背景的学生,丰富的生物学知识都是进行好的生物信息学研究的前提。在培养学生时不可忽视对其基础生物学知识的传授和教育,并适当引导其对生物学问题的思考。生物学问题可以很大也可以很小。大的生物学问题任何一个懂得基础生物学知识的人都可以提出,但也是最难解决的,比如到底是什么改变使细胞恶变,自身免疫病是如何形成的,心血管病糖尿病等复杂疾病是如何发生的,为何有人容易生某种病而其他人不易感。小的生物学问题就是各自领域的具体研究课题,比如表观遗传学领域的DNA去甲基化酶是否存在,基因表达调控领域的转录起始频率是如何决定的,RNA领域的大量非编码RNA的作用,蛋白修饰领域新发现的修饰如何调控蛋白的功能等等。在脑中提出并试图思考一系列大大小小的生物学问题是对学生培养目标的第一步。这些问题的产生的前提是对生物学知识的熟悉掌握。然而在对学生培养的过程中没必要也不可能告诉他们所有的知识,生物学知识教育的原则是为他们打开门,当他们思考问题的时候知道去哪里找到相关的知识。
另一方面,只有生物学基础知识和问题是不够的。很多问题在生物信息学产生之前就存在了,传统的方法无法带给人们问题的答案。人们一直期待新的方法去理解和解决这些问题。生物信息学的产生无疑提供给人们另一种思考生物问题的方式,为一些经典问题的解决提供了可能。例如最近的大规模的肿瘤基因组测序和分析使我们发现了很多新的肿瘤相关基因[2]。对于生物背景的学生,在教学中要把这样的例子介绍给学生,生物背景的学生在理解信息学理论方面会存在困难。最初很难要求他们理解所有具体过程。但是至少要让他们知道这些方法的基本原理,还有在什么情况下使用。这样在以后的研究中遇到类似问题才能想到应该选择什么样的信息学工具去解决,在具体应用过程中加深对整个过程的理解。生物背景的学生如果想成为生物信息学专家,只会应用是不够的,补充一些计算机、统计、信息方面的基础知识是必不可少的。
生物信息学是一门仍处在快速发展之中的学科。还没有一本教材能够满足生物信息学教学的需要,生物信息学立足于分子生物学、模式识别、计算机科学与技术、数学和统计学等学科,所以学生要先对这些学科的基本概念和系统有一个较为全面和直观的认识,为日后的科研打下坚实的基础。另外,培养过程中要包括大量的实例介绍,对一些重要的应用还加以详细解剖,使得同学们不再仅掌握理论,而是能够学会如何在实际工作中灵活应用这些理论。在此基础之上,向同学们推荐一些最新的论文、期刊、参考读物和相关的学术报告,让同学们能够切身感受到学科发展的前沿,培养学生的创新能力。21世纪是生命科学的时代,也是信息科学的时代。生物信息学在这样的历史条件下产生并壮大,它作为多个领域的交叉新兴学科,对生命科学研究有着巨大的推动力。生物信息学是一门应用性非常强的学科,也是一门非常活跃的前沿学科,良好的教学效果必须以先进的内容体系为基础,我们应时刻注意以科研促进教学,教学科研相长,使教学研究达到更高的水平。
[参考文献]
[1]蒋彦等.基础生物信息学及应用[M].北京:清华大学出版社,2003