酸化土壤治理方法范例6篇

前言:中文期刊网精心挑选了酸化土壤治理方法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

酸化土壤治理方法

酸化土壤治理方法范文1

关键词保护地;设施土壤;环境调控

保护地栽培是一种高效集约化的农业生产方式,设施内部封闭环境高温、高蒸发、施肥量大,复种指数较高,以致造成设施内土壤结构破坏,盐渍化、酸化,出现明显土壤障碍。随着使用年限增加,还会出现病原菌积累,虫害加重等一系列问题。

1设施内土壤存在的问题

1.1土壤物理性状

保护地设施内部环境相对封闭,土壤结构优于大田土壤。空气高温干燥,土壤水分蒸发迅速,在深度20~25cm耕层的土壤中,水分运动方向由下至上沿着土壤毛管孔隙向地表运动。随着使用年限的增加,耕层土壤团粒结构逐渐破坏,非活性孔隙占比降低,土壤持水性增强,但透气透水性变差,物理性状恶化,土壤板结,成为阻碍作物高产的问题之一。

1.2土壤化学性质

作为衡量土壤化学环境质量的重要指标,土壤pH的变化直接影响作物长势,在耕层较浅的保护地更为明显。

1.2.1土壤pH作用分析

土壤pH会影响土壤胶体的性质和土壤微生物的活性,它们完成了土壤中各种成分的迁移与转化。氮元素在pH<6时,有效性降低是因为固氮菌活性受土壤pH抑制;当pH>8时,是硝化作用受抑制;磷元素在pH<6.5或>7.5时易被土壤胶体固定,降低有效性;pH高于8.5时,钙镁离子易被土壤胶体固定;一些微量元素在微酸性土壤中可溶性好而提高有效性。

1.2.2土壤酸化对作物的危害与表现

土壤酸化严重会导致养分有效性降低,不易被作物吸收;促使金属离子溶入土壤溶液,毒害作物;破坏土壤结构,加重土壤板结;一般土壤微生物在pH6.5~7.5时活性最高,超出这个范围会抑制微生物活性,从而降低氮的转化与利用。土壤酸化对于农作物有着较大的影响,很容易导致植物根系出现死亡或者是破坏根系中的生理功能,表现为作物根系发育困难形成小老苗,易感病、产量低。

1.2.3导致土壤酸化的主要原因

从目前的情况来看,设施内土壤酸化是一种较为普遍的现象。导致这种情况发生的主要原因就是氮肥使用过多而造成的。现如今,很多农作物还施有含氮量较高的鸡粪、肥饼等,这种肥料都含有较高的氮元素;在高温环境中有机质迅速转化为有机酸与腐植酸,加之无自然降水淋溶而不断积累,最终导致土壤出现酸化。

1.3土壤次生盐渍化

保护地土壤次生盐渍化主要表现为盐分表聚,很多时候在设施土壤的表层会有一层白霜或者是斑块状盐结皮。

1.3.1盐分对作物影响分析

土壤盐分含量对作物生长会产生影响,通过水分吸收、离子交换、养分与能量平衡等渠道表现出来。当土壤含盐量上升时,渗透势上升,使作物根系吸水困难,甚至根系脱水。尤其在设施内高温环境中表现明显;作物吸收微量元素失衡,过多吸收单一元素,而排斥其他元素,造成单盐毒害;微生物活性降低,酶的活性受抑制,酰胺与铵态氮肥中的氮素更易挥发;高盐分会降低氮元素有效性,不易被根系所吸收,降低作物体内能量的积累和转化,作物生长受抑制。

1.3.2保护地土壤盐渍化的危害

土壤含盐量过高时,一般都在作物的长势上得到体现。通过观察可以发现,作物受盐害,根系发育能力下降,植株矮小,发育迟缓,严重时作物倒伏、枯萎甚至绝收;盐渍土还会造成植株抗性下降,易发生病虫害;盐渍土具有更高的导电率,与一般的露地土壤相比,盐分较高的盐渍土导电率是一般土壤的8倍左右;亚硝酸盐数量设施内高于设施外;盐渍土会使土壤微生物活动受抑制,菌群数量减少。

1.3.3造成土壤积盐主要原因

据有关数据结果显示,造成保护地土壤盐渍化的是人为因素,其中主要的原因就是因为设施本身就是一个封闭的环境,受自然影响较小。土壤中的盐分在没有雨水冲刷的前提下会大量地沉积下来,而土壤内部的水会随着蒸汽的蒸发逐渐的散发到土壤的表层。因为盐随水走,所以土壤表层的盐分浓度往往较大.

1.4保护地土壤中病原菌积累病害加重

设施内土壤生态环境很容易出现病原菌聚集的情况。因为设施连作栽培往往存在种植次数多,土壤休息时间短的情况,这样就容易促进土壤中一些病原菌的繁殖和生长。即使在较为寒冷的环境下也可以给一些病原菌提供越冬的场所。

2保护地土壤环境的调控措施

2.1改善土壤物理性状

目前,效果较好的改良方法是向土壤中施入微生物菌肥,微生物能够转化土壤中的污染物,调节养分平衡,固氮、硝化,释放土壤胶体中固定的磷、钾以及微量元素,改良土壤的团粒结构。另外,可以增加施用有机肥的方式改善土壤透水透气性。有机肥可以缓慢的将肥效释放到土壤中,这样会有助于提升土壤中微生物的生长;能促进土壤固定营养元素的释放,进而增加土壤的营养成分。这样对农作物的生长具有十分重要的意义。同时,有机肥能明显提高土壤总孔隙度,降低土壤容重。

2.2改良酸化土壤

改良酸化土壤不能仅凭单一措施,需要综合治理。一般情况下应该选择使用碱性含钾肥料来调节土壤内部的pH值,如施用草木灰;合理施用有机肥,配合不同作物轮作,土壤中有机质对土壤pH变化有明显的缓冲效果[1],土壤不易酸化;施入生石灰直接干预土壤pH,pH<6说明土壤偏酸性,每667m2均匀施用生石灰30kg左右,黏土则需50kg左右,然后深翻旋耕,使生石灰与土壤充分混合。

2.3防治盐渍土

盐渍土对于植物有着较大的危害,为了保证植物能够正常的生长就需要控制土壤内部盐分的含量。一般情况下,控制土壤内部含量的主要方式有科学施肥、灌水洗盐、生物除盐及换土换盐等,其中运用较多的就是换土除盐,定期更换土壤可以保证耕层盐分处于一种平衡状态。此外,针对耕层表面因N03-积累造成的盐渍土使用碳调节剂[2],可以明显降低土壤溶液中的硝酸根浓度。

2.4消除土壤中病原菌

效果较好的土壤消毒方法主要有2种:药剂消毒和高温消毒。常用的高温闷棚消毒是一种高效消毒方法,在夏季倒茬期间封闭设施利用阳光照射使内部气温与土温迅速升高,利用高温进行杀毒,做法是先施入适量的有机肥,翻地整平做畦,灌水至饱和,土壤上覆盖塑料膜,封闭设施,在阳光充足的情况下闷棚10~15d。设施内温度可升至60~70℃,高温可杀灭多种病原菌。

参考文献

[1]邓玉龙,张乃明.设施土壤pH值与有机质特征演变研究[J].生态环境,2006,15(2):367-370.

酸化土壤治理方法范文2

土壤退化(Soildegradation)是指在各种自然,特别是人为因素影响下所发生的导致土壤的农业生产能力或土地利用和环境调控潜力,即土壤质量及其可持续性下降(包括暂时性的和永久性的)甚至完全丧失其物理的、化学的和生物学特征的过程,包括过去的、现在的和将来的退化过程,是土地退化的核心部分。土壤质量(Soilquality)则是指土壤的生产力状态或健康(Health)状况,特别是维持生态系统的生产力和持续土地利用及环境管理、促进动植物健康的能力[2]。土壤质量的核心是土壤生产力,其基础是土壤肥力。土壤肥力是土壤维持植物生长的自然能力,它一方面是五大自然成土因素,即成土母质、气候、生物、地形和时间因素长期相互作用的结果,带有明显的响应主导成土因素的物理、化学和生物学特性;另一方面,人类活动也深刻影响着自然成土过程,改变土壤肥力及土壤质量的变化方向。因此,土壤质量的下降或土壤退化往往是一个自然和人为因素综合作用的动态过程。根据土壤退化的表现形式,土壤退化可分为显型退化和隐型退化两大类型。前者是指退化过程(有些甚至是短暂的)可导致明显的退化结果,后者则是指有些退化过程虽然已经开始或已经进行较长时间,但尚未导致明显的退化结果。

2全球土壤退化概况

当前,因各种不合理的人类活动所引起的土壤和土地退化问题,已严重威胁着世界农业发展的可持续性。据统计,全球土壤退化面积达1965万km2。就地区分布来看,地处热带亚热带地区的亚洲、非洲土壤退化尤为突出,约300万km2的严重退化土壤中有120万km2分布在非洲、110万km2分布于亚洲;就土壤退化类型来看,土壤侵蚀退化占总退化面积的84%,是造成土壤退化的最主要原因之一;就退化等级来看,土壤退化以中度、严重和极严重退化为主,轻度退化仅占总退化面积的

38%[3~6]。

全球土壤退化评价(GlobalAssessmentofSoilDegradation)研究结果[3~6]显示,土壤侵蚀是最重要的土壤退化形式,全球退化土壤中水蚀影响占56%,风蚀占28%;至于水蚀的动因,43%是由于森林的破坏、29%是由于过度放牧、24%是由于不合理的农业管理,而风蚀的动因,60%是由于过度放牧、16%是由于不合理的农业管理、16%是由于自然植被的过度开发、8%是由于森林破坏;全球受土壤化学退化(包括土壤养分衰减、盐碱化、酸化、污染等)影响的总面积达240万km2,其主要原因是农业的不合理利用(56%)和森林的破坏(28%);全球物理退化的土壤总面积约83万km2,主要集中于温带地区,可能绝大部分与农业机械的压实有关。

3我国土壤退化状况

首先,我国水土流失状况相当严重,在部分地区有进一步加重的趋势。据统计资料[7],1996年我国水土流失面积已达183万km2,占国土总面积的19%。仅南方红黄壤地区土壤侵蚀面积就达6153万km2,占该区土地总面积的1/4[8]。同时,对长江流域13个重点流失县水土流失面积调查结果表明,在过去的30年中,其土壤侵蚀面积以平均每年1.2%~2.5%的速率增加[9],水土流失形势不容乐观。

其次,从土壤肥力状况来看,我国耕地的有机质含量一般较低,水田土壤大多在1%~3%,而旱地土壤有机质含量较水田低,<1%的就占31.2%;我国大部分耕地土壤全氮都在0.2%以下,其中山东、河北、河南、山西、新疆等5省(区)严重缺氮面积占其耕地总面积的一半以上;缺磷土壤面积为67.3万km2,其中有20多个省(区)有一半以上耕地严重缺磷;缺钾土壤面积比例较小,约有18.5万km2,但在南方缺钾较为普遍,其中海南、广东、广西、江西等省(区)有75%以上的耕地缺钾,而且近年来,全国各地农田养分平衡中,钾素均亏缺,因而,无论在南方还是北方,农田土壤速效钾含量均有普遍下降的趋势;缺乏中量元素的耕地占63.3%[10]。对全国土壤综合肥力状况的评价尚未见报道,就东部红壤丘陵区而言,选择土壤有机质、全氮、全磷、速效磷、全钾、速效钾、pH值、CEC、物理性粘粒含量、粉/粘比、表层土壤厚度等11项土壤肥力指标进行土壤肥力综合评价的结果表明,其大部分土壤均不同程度遭受肥力退化的影响,处于中、下等水平,高、中、低肥力等级的土壤的面积分别占该区总面积的25.9%、40.8%和33.3%,在广东丘陵山区、广西百色地区、江西吉泰盆地以及福建南部等地区肥力退化已十分严重[11]。

此外,其它形式的土壤退化问题也十分严重。以南方红壤区为例,约20万km2的土壤由于酸化问题而影响其生产潜力的发挥;化肥、农药施用量逐年上升,地下水污染不断加剧,在部分沿海地区其地下水硝态氮含量已远远高于WHO建议的最高允许浓度10mg/l;同时,在一些矿区附近和复垦地及沿海地区土壤重金属污染也相当严重[8]。

4土壤退化研究进展

自1971年FAO提出土壤退化问题并出版“土壤退化"专著以来,土壤退化问题日益受到人们的关注。第一次与土地退化有关的全球性会议——联合国土地荒漠化(desertification)会议于1977在肯尼亚内罗毕召开。联合国环境署(UNEP)又分别于1990年和1992年资助了Oldeman等开展全球土壤退化评价(GLASOD)、编制全球土壤退化图和干旱土地的土地退化(即荒漠化)评估的项目计划。1993年FAO等又召开国际土壤退化会议,决定开展热带亚热带地区国家级土壤退化和SOTER(土壤和地体数字化数据库)试点研究。在1994年墨西哥第15届国际土壤学大会上,土壤退化,尤其是热带亚热带的土壤退化问题倍受与会者的重视,不少科学家指出,今后20年热带亚热带将有1/3耕地沦为荒地,117个国家粮食将大幅度减产,呼吁加强土壤退化及土地退化恢复重建研究,并在土壤退化的概念、退化动态数据库、退化指标及评价模型与地理信息系统、退化的遥感与定位动态监测和模拟建模及预测、土壤复退性能研究、退化系统恢复重建的专家决策系统等研究方面有了新的发展。国际水土保持学会也于1997在加拿大多伦多组织召开了以流域为基础的生态系统管理的全球挑战国际研讨会,从生态系统、流域的角度探讨土壤侵蚀等土壤退化等问题。而且,国际土壤联合会于1996年和1999年分别在土耳其和泰国举行了直接以土地退化为主题的第一届和第二届国际土地退化会议,并在第一届会议上决定成立了土壤退化研究工作组专门研究土壤退化,在第二届会议上则对土壤退化问题更为重视,并有学者倡议将土壤退化研究提高到退化科学的高度来认识,并决定于2001年在巴西召开第三届国际土壤退化会议[12]。同时,在亚洲,由UNDP和FAO支持的“亚洲湿润热带土壤保持网(ASOCON)”和“亚洲问题土壤网”也在亚太土地退化评估与控制方面开展了大量的卓有成效的研究工作。总的说来,国际上土壤退化研究在以下方面取得了重要进展:①从土壤退化的内在动因和外部影响因子(包括自然和社会经济因素)的综合角度,研究土壤退化的评价指标及分级标准与评价方法体系;②从土壤的物理、化学和生物学过程及其相互作用入手,研究土壤退化的过程与本质及机理;③从历史的角度出发,结合定位动态监测,研究各类土壤退化的演变过程及发展趋向和速率,并对其进行模拟和预测;④侧重人类活动(特别是土地利用方式和土壤经营管理措施)对土壤退化和土壤质量影响的研究,并将土壤退化的理论研究与退化土壤的治理和开发相结合,进行土地更新技术和土壤生态功能保护的试验示范和推广;⑤注重传统技术(野外调查、田间试验、盆栽试验、实验室分析测试、定位观测试验等)与高新技术(遥感、地理信息系统、地面定位系统、模拟仿真、专家系统等)的结合;⑥从社会经济学角度研究土壤退化对土壤质量及其生产力的影响。

我国土壤学研究工作在过去几十年主要集中在土壤发生、分类和制图(特别是土壤资源清查);土壤基本物理、化学和生物学性质(特别是土壤肥力性状);土壤资源开发利用与改良(特别是土壤培肥,盐渍土和红壤的改良等)等方面。这些工作虽然在广义上与土壤退化科学密切相关,但直接以土壤退化为主题的研究工作主要集中在最近10多年,其中又以热带亚热带土壤退化研究工作较为系统和深入,并在80年代参与了热带亚热带土壤退化图的编制,完成了海南岛1∶100万SOTER图的编制工作。90年代以来,中国科学院南京土壤研究所结合承担国家“八五”科技攻关专题“南方红壤退化机制及防治措施研究”和国家自然科学基金重点项目“我国东部红壤地区土壤退化的时空变化、机理及调控对策的研究”任务,将宏观调研与田间定位动态观测和实验室模拟试验相结合,将遥感、地理信息系统等高新技术与传统技术相结合,将自然与社会经济因素相结合,将时间演变与空间分布研究相结合,将退化机理与调控对策研究相结合,对南方红壤丘陵区土壤退化的基本过程、作用机理及调控对策进行了有益的探索,并在以下方面取得了重要进展[8、13]:①初步定义了土壤退化的概念,阐明了红壤退化的基本过程、机制、特点。②在土壤侵蚀方面,利用遥感资料和地理信息系统技术编制了东部红壤区1∶400万90年代土壤侵蚀图与叠加类型图及典型地区70、80、90年代叠加土壤侵蚀图,并在土壤侵蚀图、土地利用图、土壤母质图等基础上,编制了1∶400万土壤侵蚀退化分区概图;对南方主要类型土壤可蚀性K值进行了田间测定,并利用全国第二次土壤普查数据和校正的Wischmeier方程,计算我国南方主要类型土壤可蚀性K,编制了相关图件。③在肥力退化机理方面,建立了南方红壤区土壤肥力数据库,初步提出了肥力退化评价指标体系,进行了土壤肥力退化评价的尝试,并绘制了红壤退化评价有关图件;将养分平衡与土壤养分退化研究相结合总结了我国南方农田养分平衡10年变化规律及其与土壤肥力退化的关系,认为土壤侵蚀、酸化养分淋失等造成的养分赤字循环及养分的不平衡是土壤养分退化的根本原因;应用遥感手段及历史资料,编制了0~20cm及0~100cm土层的土壤有机碳密度图,探讨了红壤有机碳库的消长与转化及腐殖质组成性质的变化规律;提出了磷素固定是红壤磷素退化的主要原因,磷素有效性衰减的实质是磷素的双核化和向固相的扩散,解决了红壤磷素退化的实质问题。④在土壤酸化方面,研究了红壤的酸化特点,根据土壤的酸缓冲性能,建立了土壤酸敏感性分级标准,进行了红壤酸敏感性分级和分区,首次绘制了有关地区土壤酸敏感性分区概图;采用MAGIC模型,并进行校正对我国红壤酸化进行预测,揭示红壤酸度的时空变化规律;并在作物耐铝快速评估方面取得了重要进展。⑤在土壤污染方面,利用多参数对重金属的土壤污染进行了综合评估,建立了综合污染指数(CPI)值的计算方法,对不同地区的污染状况进行了评估,绘制了重金属污染概图;应用农药在土壤中的吸附系数(Kd)和半衰期(t1/2)及基质迁移模式,阐明了土壤农药污染的机理;在重金属污染对土壤肥力的影响方面的研究结果表明,重金属污染可降低土壤对钾的保持能力,促进钾的淋失;而对氮和磷而言,主要是降低与其催化降解和循环相关的酶的活性。⑥红壤退化防治方面,提出了区域治理调控对策,“顶林—腰果—谷农—塘鱼”等立体种养模式等,并对一些开发模式进行示范和评价。

然而,我国幅员辽阔,自然和社会经济条件复杂多样,地区间差异明显。各类型区在农业和农村发展过程中均不同程度地面临着各种资源环境退化问题,有些问题是全区共存的,有些则是特定类型区所特有的。过去的工作仅集中于江南红壤丘陵区,而对其它地区触及较少。而且,在研究工作中,也往往偏重于单项指标及单个过程的研究。土壤退化综合评价指标体系的研究基本处于空白,对退化过程的相互作用研究不够。同时,在合理选择碱性物质改良剂种类、提高经济效益以及长期施用改良剂对土壤物理、化学,特别是生物学性质的影响等方面还有许多问题有待进一步研究,对耐酸(铝)作物品种的选择研究也亟待加强。此外,对其它土壤退化问题,如集约化农业和乡镇企业及矿产开发引起的土壤及水体污染、土壤生物多样性衰减等问题,尚未开展系统研究。

5土壤退化的研究方向

土壤退化是一个非常综合和复杂的、具有时间上的动态性和空间上的各异性以及高度非线性特征的过程。土壤退化科学涉及很多研究领域,不仅涉及到土壤学、农学、生态学及环境科学,而且也与社会科学和经济学及相关方针政策密切相关。然而,迄今为止,国内外的大多数研究工作偏重于对特定区域或特定土壤类型的某些土壤性状在空间上的变化或退化的评价,而很少涉及不同退化类型在时间序列上的变化。而且,在土壤退化评价方法论及评价指标体系定量化、动态化、综合性和实用性以及尺度转换等方面的研究工作大多处于探索阶段。

我国土壤退化研究虽然在某些方面取得了一定的、有特色的进展,但整体上还处于起步阶段。为此,作者认为,今后我国土壤退化的研究工作应从更广和更深的层次上系统综合地开展土壤退化的综合评价与主要退化类型农业生态系统的重建和恢复研究,并逐步向土地退化或环境退化方向拓展。具体来说,应加强以下几个方面的研究工作:

(1)土壤与土地退化指标评价体系研究。主要包括用于评价不同土壤及土地退化类型的单项和综合评价指标、分级标准、阈值和弹性,定量化的和综合的评价方法与评价模型等;

(2)土壤退化的监测与预警系统研究。主要包括建立土壤退化监测研究网络,对重点区域和国家在不同尺度水平上的土壤及土地退化的类型、范围及退化程度进行监测和评价,并进行分类区划,为退化土地整治提供依据;

(3)土壤与土地退化过程、机理及影响因素研究。重点研究几种主要退化形式(如土壤侵蚀、土壤肥力衰减、土壤酸化、土壤污染及土壤盐渍化等)的发生条件、过程、影响因子(包括自然的和社会经济的)及其相互作用机理;

(4)土壤与土地退化动态监测与动态数据库及其管理信息系统的研究。主要包括土壤退化监测网点或基准点(Benchmarksites)的选建、3S(GIS、GPS、RS)技术和信息网络及尺度转换等现代技术和手段的应用与发展、土壤退化属性数据库和GIS图件及其动态更新、土壤退化趋向的模拟预测与预警等方面的工作;

(5)土壤退化与全球变化关系研究。主要包括土壤退化与水体富营养化、地下水污染、温室气体释放等;

(6)退化土壤生态系统的恢复与重建研究。主要包括运用生态经济学原理及专家系统等技术,研究和开发适用于不同土壤退化类型区的、以持续农业为目标的土壤和环境综合整治决策支持系统与优化模式,主要退化生态系统类型土壤质量恢复重建的关键技术及其集成运用的试验示范研究等方面的工作,为土壤退化防治提供决策咨询和示范样板;

(7)加强土壤退化对生产力的影响及其经济分析研究,协助政府制定有利于持续土地利用,防治土壤退化的政策。

参考文献

1RLal.Soilqualityandsustainability[A].In:

RLal,WHBlum,CValentine,etal.Methodsfor

AssessmentofSoilDegradation[C].USA:CRCPress

LLC,1998,17~30.

2赵其国,孙波,张桃林.土壤质量与持续环境I.土壤质量的定义及评价方法[J].土壤,1997,(3):113~120.

3GLASOD.Globalassessmentofsoildegradation[Z].Worldmaps.

Wageningen(Netherlands):ISRICandPUNE,

1990.

4OldemanLR,Engelen,VWPVan,etal.Theextent

ofhuman-inducedsoildegradation[Z].Annex5“World

Mapofthestatusofhumaninducedsoildegradation,Anexplanatory

note.”Wageningen,Netherlands:ISRIC.

1990.

5OldemanLR,HakkelingRTA,SombroekWG.

Worldmapofthestatusofhuman-inducedsoil

degradation[Z].Anexplanatorynote,Wageningen,Netherlands:ISRIC

andPUNE,1991.

6OldemanLR.Theglobalextentofsoil

degradation[A].In:DJGreenland,ISzabolcs.

SoilResilienceandSustainableLandUse[C].CABInternational,

Wallingford,UK,1994,99~118.

7中国农业年鉴编辑委员会.中国农业年鉴[Z].北京:中国农业出版社,1997.

8张桃林.中国红壤退化机制与防治[M].北京:中国农业出版社,1999.

9红黄壤地区农业持续发展战略研究专题协作组.红黄壤地区农业持续发展研究(第一集)[C].北京:中国农业科技出版社,1993.

10鲁如坤.土壤—植物营养学[M].北京:化学工业出版社,1998.

11孙波,张桃林,赵其国.我国东南丘陵区土壤肥力的综合评价[J].土壤学报,1995,32(4):362~369.

12CAnecksamphant,CCharoenchamratcheep,T

Vearasilp,etal.ConferenceReportof2nd

InternationalConferenceonLandDegradation[R].

Bangkok:DLD,1999.15~33.

13赵其国,张桃林,鲁如坤,等.我国东部红壤地区土壤退化的时空变化、机理及调控对策的研究[R].南京:中国科学院南京土壤研究所,2000.

酸化土壤治理方法范文3

关键词:土壤污染现状危害治理措施

一、土壤污染的定义

土壤污染是指进入土壤中的有害、有毒物质超出土壤的自净能力,导致土壤的物理、化学和生物学性质发生改变,降低农作物的产量和质量,并危害人体健康的现象。土壤污染源主要可分为:生活性污染源,生产性污染源和放射性污染源:工业、科研和医疗机构排放的液体或固体放射性废弃物。

二、土壤污染的特点

1、土壤污染具有隐蔽性和滞后性。土壤污染不同于大气、水和废弃物污染等污染比较直观,它要通过对土壤样品进行分析化验和农作物的残留检测来确定。土壤污染从产生污染到出现问题通常会滞后较长的时间,所以土壤污染问题不太容易受到重视。

2、土壤污染具有不可逆转性。受到重金属污染的土壤基本上得需要较长的时间才能降解恢复。

3、土壤污染的累积性。土壤污染不同于被污染的大气和水,不容易扩散和稀释,土壤污染是由于不断的积累而导致超标,土壤污染同时具有很强的地域性。

4、土壤污染难治理性。治理污染土壤通常成本较高,治理周期也很长。土壤污染仅依靠切断污染源的方法是行不通的,需要靠换土、淋洗土壤等方法才能解决问题。

三、当前我国土壤污染的现状与危害

目前,我国部分地区土壤污染非常严重,土壤污染类型呈现多样化,土壤污染途径多,原因复杂,控制难度大。每年由于土壤污染导致的农产品质量安全问题层出不求,严重影响了百姓的身体健康和社会稳定。土壤污染产生的危害主要表现为以下几种:

1、土壤污染导致的直接经济损失严重。当前相当一部分农产品的农药残留超标率高达16%-20%;每年有超过1000万t粮食因土壤污染而减产,造成了巨大的经济损失。

2、土壤污染对人体健康造成危害。土壤污染会使植物在体内积累污染物,并通过食物链富集到人体和动物体中,危害人体健康,引发癌症和其他疾病。

3、土壤受到污染后,含有较高重金属浓度的污染土容易在风力和水力作用下分别进入到大气和水体中,导致大气污染、地表水和地下水污染以及生态系统退化等多种生态环境问题。

四、导致土壤污染的原因

1、过量施用化肥和农药

化肥及农药的使用能大大提高粮食作物的产量,但是氮、磷等化学肥料的长期大量使用却能破坏土壤结构,造成土壤板结、耕地土壤退化、致使耕层变浅、耕性变差、保水肥能力下降、增加了农业生产成本,影响了农作物的产量和质量。

2、污水灌溉对土壤的污染

使用生活污水和工业废水灌溉农田是导致土壤污染的直接原因之一。重金属、酚、氰化物等许多有毒有害的物质来自于未经处理或未达到排放标准的工业污水,它们会将污水中有毒有害的物质带至农田,在灌溉渠中形成污染带。

3、大气污染对土壤的污染

大气中的氮氧化物、二氧化硫和颗粒物等有害物质,可以在大气中发生反应形成酸雨,通过降水和沉降而落到地面,导致土壤酸化。冶金工业排放的金属氧化物粉尘,由于重力作用会以降尘形式进入土壤中。

4、生物残体和牲畜排泄物对土壤的污染

利用禽畜饲养场的厩肥和屠宰场的废物作肥料,如果不进行物理和生化处理,则其中的寄生虫、病原菌和病毒等可导致土壤和水域污染,并通过水和农作物危害人群健康。

5、重金属元素引起的土壤污染

汽油中添加的防爆剂四乙基铅随废气排出污染土壤,造成铅污染;各种大量使用杀虫剂、杀菌剂、杀鼠剂和除草剂导致砷污染;铀矿开采和浓缩、钍矿开采、核实验、核废料处理、燃煤发电厂、磷酸盐矿开采及加工等是土壤辐射污染的来源。

五、我国土壤污染的治理措施

1、施用化学改良剂,增加土壤环境容量,增强土壤净化能力。

将石灰、碱性磷酸盐、氧化铁、碳酸盐和硫化物等化学改良剂施用到土壤中,加速有机物的分解,使重金属在土壤中固定,促使重金属在土壤及土壤植物体的迁移能力降低,并转化成为难溶的化合物,减少农作物的吸收,以减轻重金属对土壤中的毒害。

2、强化污染土壤环境管理与综合防治,大力发展清洁生产。

选择有代表性的污灌区农田和污染场地,开展污染土壤治理与修复;加强土壤污灌区的监测和管理,科学地进行污水灌溉;了解水中污染物的成分、含量及其动态,避免带有不易降解高残留污染物随机进入土壤;增施有机肥,提高土壤有机质含量;大力推广和发展清洁生产。

3、改变耕作制度,实行翻土和换土。

要采取铲除表土和换客土的方法来改变污染严重的土壤,对于轻度污染的土壤,采取深翻土或换无污染客土的方法。

4、采用农业生态工程措施

在污染土壤上繁殖非食用的种子、种植经济作物,从而减少污染物进入食物链的途径;或利用某些特定的动植物和微生物吸走或降解土壤中的污染物质,从而达到净化土壤的目的。

酸化土壤治理方法范文4

关键词:冶金矿山;废弃地;生态修复;土壤改良;边坡治理

冶金矿山行业涉及面广、产业关联度大,是国家经济建设的重要基础。但在矿山的开采过程中,会不可避免地挖掘和破坏山体、毁坏林地和耕地、挤压动植物的生存空间,造成严重的水土流失和生态系统退化,形成大片的山体和废弃矿场;在资源的加工过程中,会副产大量的固体废弃物,如废石、尾渣等,它们堆弃占用土地,破坏耕地,释放有毒物质,并向周围环境迁移扩散,通过食物链在动植物体内和人体中富集,威胁矿区生物的多样性和矿区居民的正常生产生活,制约区域经济的可持续发展[1-6]。随着矿产资源的日益贫化,这些问题日趋严重,因此,对矿山废弃地进行生态修复,恢复其原有功能,已经刻不容缓。

1冶金矿山废弃地的生态现状

冶金矿山废弃地指在矿山开采过程中因被污染、占用或破坏,以致暂时失去利用价值的土地[7]。根据其成因,矿山废弃地可分为五类:(1)排岩场。由被剥离的表土、被剥采的废石以及缺乏深加工价值的低品位矿岩堆弃而成,堆积体结构松散、不稳定,自然条件下很难风化粉碎,表层植被生长困难;(2)尾矿库。由矿石经洗选加工后产生的尾渣泵送堆积而成[8]。尾渣粒径小、质地松散、表层干燥、保水能力差,尾渣会持续向外界释放有毒物质,尾渣毒性很强,植被难以存活[1-2];(3)露天采坑。露天开采埋层较浅的矿床所形成的凹坑,通常直径较大、挖掘较深,表层岩石风化严重,植被立地条件差,难以形成植被覆盖[9];(4)塌陷区。矿区地下大量开采后,地质条件不稳定,地面塌陷所形成的块状、带状凹陷区域,塌陷区地表破碎、难以复垦,塌陷坑四周封闭,坑内常年积水[10-11];(5)压占地。为开发矿山所修建的辅助设施,如建筑物、公路等,它们会占用大量土地,在矿山停采后,这些区域被水泥、砌石、砖瓦等覆盖,难以复垦。我国在20世纪50年代就开始了矿山废弃地的生态修复工作,但受限于当时的观念和技术水平,这项工作一直处于零星、小规模状态,并未完全发展起来。针对矿区严重破坏的情况,国家相继出台了多项举措,一方面规范和引导矿区土地复垦工作[12],同时明确矿企在矿山修复工作中的责任,增强了企业的责任意识,政企联合,加快了我国矿山废弃地生态修复的工作进展[13],截止2016年底,我国已累计投入修复资金近千亿元,累计修复土地上百公顷,资助研发、推广了近200项先进治理技术,生态修复工作取得显著进步[14]。然而,我国矿区污染面积大,污染程度深,而多数矿企习惯了“先污染后治理”的生产模式,历史欠账多,使得环境治理资金需求量巨大。在当前持续低迷的矿业形势下,矿区土地的修复费用主要由政府财政拨款提供,资金缺口很大[15]。截止2016年底,我国矿山废弃地的修复率仍不足30%,与其他矿业发达国家50%~70%的平均修复率相距甚远,废弃土地修复工作不容乐观[13]。国外矿山的生态修复工作可追溯到19世纪末,到20世纪中期已经开始了系统化、规模化的治理工作,并在法律法规、管理方式和修复技术等方面获得了大量的成功经验。澳大利亚实行矿产开发、土壤改良与生态恢复相结合的“三位一体”管理模式,促进了矿区土地复垦和生态修复工作的进展[12];美国的矿山土地复垦工作始于20世纪30年代,现已形成了健全的法律体系和完善的管理制度,废弃土地复垦率高达85%,其首创的复垦保证金制度已被许多国家学习采用[16]。德国在矿区土地复垦方面投入了大量的人力和财力,目前德国废弃土地的复垦率已经超过90%[13]。相比较而言,我国矿山废弃地的生态修复工作任重而道远。

2冶金矿山的生态修复技术

矿山废弃地地表大多坑洼不平、浮石凸起,铁矿等金属矿废弃地地表还散落有许多硬度大、难以破碎的低品位矿石。在进行土地复垦前,应首先利用推土机、压路机等大型设备对其地表进行平整处理,使区域附近地表性质尽量均一化,减小土壤改良和植被恢复的阻力,为后续复垦工作创造有利条件。矿山废弃地土壤重金属污染严重,氮、磷、钾等营养元素严重缺失,土壤结构性差,在不进行人工干涉的情况下,矿区植被很难恢复。因此,修复矿区污染土壤是矿区植被恢复和生态重建的前提。

2.1物理修复技术

土壤的物理修复技术包括表土转移和客土回填两种。表土转移指在矿山开采前将区域内表层土壤收集保存,待闭矿后再重新覆盖的方法[17],在这个过程中,虽然地表植被被完全破坏,但土壤中的营养元素和种子库得以很好保存,能够加快植被的恢复速度[18],表土转移法仅适用于新开矿山和新建尾渣场,在西欧国家的铁矿露采场应用较为广泛。客土回填指直接将区域内原有表土全部移除,回填适于植被生长的耕植土,在表面形成0.1~1.0m厚的覆盖层,以达到土壤改良的目的,Mago-ba等[19-20]在大量实验后发现,覆土厚度与植被覆盖率的增量成正相关关系,当覆土厚度为30cm时,区域内植被的覆盖率能提高近70%。该法效果明显,但需要外借耕值土,费用昂贵。湖北黄梅马尾山铁矿通过经济技术比较后采用了表层客土全覆盖、乔灌草间植的方式进行植被恢复,对防治水土流失和改善区域环境起到了很好的效果。

2.2化学修复技术

矿山废弃地普遍酸碱化过度,土壤pH值严重偏离正常范围,不适于植被生长,必须添加酸碱调节剂进行基质改良。对于酸化土地,可以施用石灰、碳酸氢盐等进行基质改良[22],刘珊珊等[23]探究了用石灰调节南京紫金山铜矿堆浸场pH值的可行性,发现在浸场表层持续喷撒石灰一段时间后,能够显著提高基质表层的pH值,但由于渣堆厚度较深、下层尾渣酸化严重,因此对渣堆深处的pH值没有明显调节效果,这对于铁尾矿库表层基质的改良可起到一定的借鉴作用。对于碱化土地,可以投入石膏、碳酸氢盐、硫酸亚铁等来中和基质的碱性[24]。Na+含量过高容易导致土壤板结,石膏中的Ca2+能够有效地替换Na+,降低土壤碱性,疏松土壤,改善水分、空气和有机质的流通条件。当土壤酸碱度过高或失调时间过长时,宜采用“少量多次”的方法施加调节剂,这样既能保证药剂的持续效力,增强调节效果,又能节省药剂。重金属处理是土壤修复的关键,利用化学物质(包括钙酸盐、含磷材料、铁氧化物、铁盐、ED-TA、α-淀粉酶、腐殖酸等)的吸附沉淀、氧化还原、催化还原、络合等作用,可以在一定程度上达到重金属离子固定的目的,显著减弱重金属离子的迁移能力[25-31]。铁矿废弃地中存在的重金属主要有铜、镉、铅、锌等,Ca2+对这些重金属离子有明显的拮抗作用,可以有效缓解其毒性,向废弃土地中喷撒药剂可阻碍农作物对它们的吸收,保证农产品安全[32]。EDTA通过螯合作用可以固定多种重金属离子,且对土壤中的微生物群落几乎不产生影响,是目前广泛应用的铁矿废弃地重金属淋洗剂[33]。黄凯[34]将有机肥和泥炭的混合试剂经过特殊工艺处理后,用于修复铅锌矿尾矿库污染土壤。Wu等[35]利用黏土、生物炭成功研制出一种具有网状结构的新型纳米复合材料,能促使有毒的Cr6+转化成无毒的Cr3+,大大简化了土壤的修复步骤,提高了修复效率。另外,利用城市污泥较强的黏性、持水性和保水性,将其用于土壤改良,既能够提高土壤肥力,改善土壤的团粒结构,又能以废治废,促进城市固体废弃物的资源化再利用[36-37]。另外,从城市污泥中提取出的一些菌株还能对Cr6+起到还原作用,可有效去除其中90%的Cr6+,实现铬渣堆六价铬的高效治理[38-39]。

2.3生物修复技术

生物修复技术指利用酶、菌类及土壤动物等的新陈代谢作用来降低土壤中有毒、有害物质的浓度,从而达到土壤修复目的的一种技术。赵永红等[40]认为,植物与降解菌的协同作用,可显著增加土壤中降解菌的数量,提高降解菌的活性,改善植被的根际微环境,促进植被对养分和水分的吸收,促进植被的立地生长,加快土壤环境的改善速度。Denny等[41]研究发现,在土壤中接种菌根,菌根分泌物能够增强土壤中重金属离子的迁移能力,增强植被的抗性,促进植物对重金属离子的吸收,加快土壤的净化速度。Boyer等[42]研究了土壤动物蚯蚓对土壤中重金属的净化作用,发现蚯蚓既能够吞食土壤中的重金属,又能够疏松板结土壤,增加土壤孔隙度,改善土壤的物理结构。徐池[43]对用不同驯化浓度/时间筛选出的赤子爱胜蚯的生理指标进行了系统比较,通过急性毒性试验和彗星试验确定了该种类蚯蚓的耐性最佳驯化条件,用该最佳条件筛选出的赤子爱胜蚯对重金属有强提取作用,利用蚯蚓的吞食作用来改善重金属污染土壤具有广阔的应用前景。

2.4植被恢复技术

铁矿废弃地土地贫瘠、盐碱化严重、重金属毒害作用强,经过一系列的修复措施,如表土转移、化学试剂投放等,在一定程度上修复被破坏的土壤,通过人工种植能较快实现矿区的植被覆盖,最终建立起新的生态平衡[44]。禾草植物和豆科植物经常都被用作矿山废弃地生态修复过程中的先锋植物,它们生长迅速,抗旱性强,耐贫瘠能力强,且豆科植物具有固氮能力,能够产生易于植被吸收、且缓释性能良好的有机氮,这对于贫瘠土壤的修复改良至关重要[45]。杨卓等[46]对禾草植物高羊茅和黑麦草的重金属耐受性进行了研究,发现这两种植物抗逆性很强,可在重金属污染土壤中迅速生长,能够起到防止土壤侵蚀的作用。Chen等[47]发现,香根草具有对Cd2+的强富集作用,即使在Cd2+含量极低的土壤中,叶片中所吸收的Cd2+浓度也可达218gC/hm,是铁矿废弃地中Cd的理想治理植物。此外,高山甘薯、海州香薷、酸模等对Cu有较强的富集作用,高山漆菇草、东南景天羽叶鬼针草等对Pb也有富集作用[48-52]。多季收割重金属富集植物,土壤中重金属离子浓度降低,这时可种植一些生物量更大的植物(如灌木、乔木等)来完善区域的生物群落,增强矿区的保水、保肥能力和抗逆性[53]。对于收割获得的重金属富集植物体,可采取焚烧法、高温分解法、生物解吸法、植物冶金法、液相萃取法等进行处理[54-55],其中焚烧法和高温分解法能够显著减少植物残体的体积和重量,是目前最为行之有效的重金属富集植物体处置技术[56-57]。

3冶金矿山的边坡治理技术

铁矿废弃地环境恶劣,露天采坑等区域表土几乎被完全剥离,土地结构破坏严重,水分和养分流失严重,滑坡时有发生;排岩场、尾矿库的堆积结构松散,颗粒易流动,且堆场往往势能较高,是潜在的人造泥石流发生源[11]。鉴于这些特征,除对矿区采取必要的生态修复手段外,还必须辅以边坡治理等措施,以疏通地表径流,减少基质流失,增强边坡稳定性,降低滑坡和溃坝风险。

3.1客土喷播技术

客土喷播技术是一项新型的岩质边坡绿化技术,主要利用机械搅拌设备将客土、种子、缓释肥、粘结剂、保水剂、稳定剂等充分混匀,在待修复坡面上锚杆挂网,然后利用泵和压缩空气机将基材垂直喷附到坡壁上,形成具有一定厚度的喷附层[58]。喷附层结构良好,含有植物生长所需的各种营养物质,其中的保水剂为高分子树脂材料,具有很强的储水保水能力,可吸收超过自身重量数百倍的水分,且高压下水分不脱除[59]。在种子的出苗和生长过程中,喷附层能够持续供水供肥,确保植物的正常生长,实现边坡的快速绿化。为丰富边坡生物群落,客土喷播技术通常采取草罐混植的搭配方式进行植被培育,同时选用根系发达、抗逆性强的植物种子,充分利用植物根系对土壤的加筋和锚固作用,力求达到最佳护坡效果[60]。

3.2植被混凝土技术

植被混凝土技术综合了土壤学、环境生态学、岩土力学、园艺学等多学科知识,系统考虑了边坡角度、裸岩性质、气候特征、绿化要求等条件,采用特定的混凝土配方和种子配方,将植生土、胶结剂、绿化剂、有机质、腐殖质、肥料、保水剂、草种等基础材料混匀,然后浇灌于坡壁以起到边坡防护与绿化的作用[61]。植被混凝土所用的胶结剂为普通硅酸盐水泥,将其与特制的绿化剂配合使用,能够在岩坡表面形成具有大量细密孔隙的植被生长基质,该生长基质既能像普通混凝土那样稳固边坡,又因为它独特的多孔结构,可以加快水分和养分的运输速率,营养物质供应顺畅,植被生长迅速,对裸岩边坡的治理效果良好[62]。

3.3生态灌浆技术

像排岩场这种类型的矿山废弃区域,它们的地表特征明显,堆渣呈块状、块间空隙大,几乎不存在植被生长土壤,可借鉴工程灌浆技术来对它们的边坡进行治理。将基质材料、黏土和水等按照特定的配比搅拌制浆,然后由上而下对渣堆边坡灌浆,浆体填充表面空隙,并逐渐在渣堆表层形成一层富含养分的植被生长基质,该基质层具有一定硬度和抗侵蚀能力,既防渗护坡,又适于植被生长,能够为后续的植被恢复工作奠定良好基础[11]。

3.4生态植被毯和袋技术

生态植被毯是以稻草、麦秸、玉米杆等为骨架,负载壤土、保水剂、有机质、植物种子等制备出的一种边坡高效水土保持材料[63]。植被毯适用于坡度较缓的边坡,能够有效减少地表径流和降水对坡面的冲刷,减少水土流失,其中含有的壤土和营养物质可以有效促进区域植被的立地生长,植被毯生产成本低、修复效果好,目前应用十分广泛[64]。生态植被袋技术是一项新型的柔性护坡技术,袋体为无纺布袋,以聚丙乙烯为原料制备而成,通常会在制作过程中添加抗老化剂,以延长植被袋的使用寿命。在进行植被袋的护坡施工时,将耐性较强的草木种子通过木浆纸附着在袋体内侧,然后向袋内装入干燥、疏松的细粒壤土,为促进植被生长,还会适量掺入缓释肥和保水剂,当袋内壤土达到密度要求后,停止装土,用专用缝纫机封口,然后堆垒护坡[65]。在工程实践中,由钢材、水泥等筑造的护坡挡墙属于硬质结构,常因局部沉降或受力不均匀而破裂;由植被袋构筑的护坡系统属于柔性结构,可在一定范围内维持结构体的稳定。生态植被袋既能够稳固边坡,减少水土流失,又能为植被的生长提供载体,增强边坡的观赏性,是一种有效的生态护坡技术。

4冶金矿山的功能化再开发

在矿山生态功能基本恢复后,可根据矿区自身属性的不同,选择恰当的发展模式进行资源的再开发利用。常见的矿山废弃地生态开发模式有三种:单一复绿模式、农业复垦模式、景观再造模式。再利用模式的选择,依废弃地的规模、环境、交通等因素的不同而不同,不同的再利用模式能够产生不同的综合效益[66]。

4.1单一复绿模式

主要适用于地理位置不佳、复垦后可获得的耕地资源有限,基本无景观开发价值的矿山废弃地,可引入水生植物,如芦苇、金鱼藻等,将其培育成人工湿地,增加塌陷区的生态稳定性;而对于一些采深较大、面积较广的露天采坑,可对其边坡和底部进行加固防渗处理,以开发成小型湖泊;特别是对于一些破坏十分严重的矿区,经人工辅助手段后即使能够在它的地表形成植被覆盖,它的生态功能也仍有可能十分脆弱,稍加干扰就会引起植被的大片枯萎、死亡,使矿区再次朝废弃土地的方向逆转,这时可通过法规条例,将其设定为自然保护区,加强监管措施,杜绝人为扰动,为矿区生态正常恢复创造有利条件。

4.2农业复垦模式

主要针对经适当修复后可被重新赋予生产力的废弃土地,如马钢姑山矿的多层次立体土地复垦模式是国内铁矿废弃地农业复垦的典型,该矿排岩场是依托矿区原有露天采坑形成的多平台堆积场,根据生态系统的多物种配置和多层次配置原则,设计出了可进行农、林、牧、渔综合开发的立体复垦结构[67],将中心积水采坑设计成鱼塘,进行水产养殖;对水塘浅水区底层土壤施以必要改良措施,进行水稻种植,同时在水稻中放养鸭、鹅等家禽;对排岩场堆积平台,则种植上防风林、生态林、经济林等,同时林间修建小道,供市民休闲之用;排岩场斜坡坡度大、渣粒多、水土流失严重,可乔、灌、草间植,增加斜坡植被覆盖率,减少降水对斜坡的侵蚀,增加排岩场的生物多样性,提高生态位的利用率。

4.3景观再造模式

对于一些具有旅游开发潜力的矿山废弃地,可以将其作为景观资源加以二次开发,为城市的可持续性发展,特别是老工业城市的产业转型提供新的着力点。德国政府综合鲁尔区当时所面临的社会、环境、资源等各方面的问题,制定出了符合自身情况的长远规划方案,确保了区域环境治理方法与区域经济发展政策的连续性,设计人员对鲁尔区的铁矿采坑、桥梁隧道以及其它矿区建筑物进行了构思精妙的景观改造,将旧矿区成功开发成了新的旅游资源[68]。辽宁抚顺是我国重要的煤炭和铁矿基地,大规模的矿床开采作业使得当地地质灾害频发,矿区百姓深受其害,抚顺市在对矿区环境进行全面调查后,以国家“振兴东北老工业基地”政策为契机,将原有废弃矿坑、采坑塌陷地成功打造成了特色旅游景区,既缓解工矿企业与当地居民的矛盾,也促进了区域经济的转型升级[69]。湖北黄石国家矿山公园是我国第一家国家矿山公园,是铁矿遗址开发的典型代表,这种开发模式既有助于保留采址的原有风貌,展现矿区曾经的辉煌成绩,又能够启迪和教育后人,增强游客的环保意识,对其它矿山废弃地的开发利用具有重要借鉴作用[66]。

5结语

酸化土壤治理方法范文5

    传统森林经营中主要考虑森林的营造、密度控制和产出。对森林的健康程度、持续经营和综合效能关注度较低[1]。现代森林经营中,要统筹森林的多种功能、潜力挖掘和综合效益。因此,要从培育健康、高效森林角度出发,科学进行立地评价,合理确定培育目标,依据区域生态条件构建可实现的标准生物量模式,以此为达标要求,统筹考虑造林、幼林抚育、抚育间伐、天然更新等技术举措,实现可持续经营[2]。在构建森林之初,尽量培育优质容器苗,积极营造针阔混交林,密度不足或结构不佳要采取补植补造措施;在幼林抚育管理上,及时采取除草、割灌、施肥、修枝等系列措施,保证幼树营养和空间需要;在中林龄以上龄组林分抚育中,改变传统抚育模式,确定目标进行长期重点培育,并保持合理密度控制;在主伐之前及早考虑人工促进天然更新,主要采取人工较完全生土化方式,即在主要树种种子年时用工具把地表可燃物及其下部腐化土搂除、疏松新土层,在林中形成规律性分布,便于天然落种均匀更新。森林经营每一项技术举措均会对林地、植被产生破坏性作用,必须及时清理林地卫生,减少可燃物积累,并积极防控有害生物,定期检测森林生长状况,综合分析、评价每一项技术举措对森林的具体影响[3]。

    技术措施实施

    1针阔混交林营造进行立地评价,确定经营目标,设计造林模型。造林前对林地进行可燃物清理、拉线定点、工程整地、建设围栏,同期选择优质壮苗、配置基质、消毒除虫、容器苗培育、造林前检疫。在前期各项工作准备好后,采用优质容器苗植苗造林[1-3]。

    2幼林抚育进行立地评价,评定幼林现时健康程度,依据生长状况和经营目标选择幼林抚育方法,割灌除草或松土施肥。幼林抚育之后,认真清理林地内的枯枝、杂草等作业剩余物,同时注意合理保留天然乔、灌木,为形成合理的乔、灌、草结构奠定基础[4]。

    3人工林修枝进行立地评价,定量分析森林经营效果,评价作业林分健康程度。依据林分生长和自然整枝状况,确定修枝技术标准。若林分实际生物量超出标准生物量上限,对超出指标予以清除。清理林地时注意合理保留天然乔、灌木[3,5]。

    4定向目标抚育进行立地评价,确定林分健康程度,分析目标树经营状况。按照培育目的,精确标定目标树,确认一般树和干扰树。在保证目标树周围有适量的一般树能促进材质培育的基础上,伐去其余一般树和所有的干扰树。采伐和清理林地时也要注意合理保留天然乔、灌木[2]。

    5人工较完全生土化进行立地评价,确定林分健康程度,对林分天然更新进行分析。在林内顺行方向,用机械把活地被物、枯枝落叶层搂除,露出腐殖土,形成长条带状小沟,机械作业不便时采取人工措施。天然更新差的小班可采取人工撒种等辅助措施。土壤条件次的地段雨季对带状小沟两侧撒播熟石灰粉,提高酸碱度[6]。

    6森林保护建立森林长期保护机制,系统开展护林防火、病虫害防控、减少可燃物、健康监测等工作。设立专职管护,加强对项目区的看护和管理;加强森林有害生物预测预报,定时对项目区内林业有害生物进行调查与监测,及时进行预防;及时、妥善治理林内过多的地表可燃物,加强举措,促进分解,推进森林营养物质循环;定期进行资源监测,分析森林经营效果,保证后续经营举措科学、有效、及时[4,6]。

    森林健康经营技术实施效果

    1基础性指标森林培育目标得到进一步明确,林木密度保持合理,森林生长旺盛,林木胸径、树高、材积、冠幅等指标高于同类林分,林地肥力不下降,初步遏制了土壤酸化和板结现象,常规经营密度林分达到标准生物量[2]。

    2结构性指标保证了华北落叶松的优势种群地位,林分结构得到了改善,目标树占据主林层,特种培育密度的目标树占林分密度的90%以上,林分向乔灌草竖向层次结构和针阔型水平结构发展,林内乔木树种的天然更新个体数量增加,林分优势物种丰富度、个体数量丰富度、植物多样性、植物均匀度显着高于同类林分[3]。

    3抗干扰性指标地表可燃物分解速度加快,地表可燃物增加趋势下降,无雷击等自然性火灾,原发性害虫不成灾,外来性害虫能够得到及时控制,发生虫灾的程度较同类林分差。

    4生态服务价值林木年生长量得到提升,非木质生产能力得到增强,保持水土、涵养水源、固碳释氧以及净化大气等生态服务功能得到提高,景观游憩环境得到完善,生态服务功能进一步增强[4-5]。

酸化土壤治理方法范文6

关键词:重金属污染;煤矿区废弃地;环境质量评价;广东明山煤矿

中图分类号:X53 文献标识码:A 文章编号:0439-8114(2013)18-4351-04

矿山开采给人类带来了巨大的财富,也给区域生态环境带来了极大问题,其中矿坑排水、矿石及废石堆所产生的淋滤水、矿山工业和生活废水、矿石粉尘、燃煤排放的烟尘和SO2等,严重危害矿区生态环境和人们的身心健康,引发一系列经济、生态、社会等方面的问题[1,2]。煤矸石是煤炭开采、洗选加工过程中产生的固体废弃物,大量煤矸石的堆积不仅侵占大量工矿用地、林地、耕地、居民地,还破坏地质、地貌景观;煤矸石自燃时排放大量有害气体污染空气;刮风时,大量粉尘漂浮空中引起环境污染;下雨时,矸石山的淋滤液污染物随雨水径流和地下水的渗透污染周围农田和江河湖泊;矸石山塌崩时,滚石、渣石流危及生命安全。可见煤矸石成为固、液、气三害俱全的污染源,亟待治理[3-6]。

土壤是人类赖以生存的宝贵自然资源。随着人口—资源—环境之间矛盾的日趋尖锐,煤矿区土壤质量问题日益受到世界范围内的广泛而特别的关注。矿区及周边农田土壤重金属(Cu、Zn、Cd、Pb、Hg、Cr、As、Ni、Co等)作为生态系统中一类具有很大危害的化学污染物,不能为土壤微生物所分解,相反微生物可富集重金属,并且在一定条件下可以转化为毒性更强的金属有机化合物,造成农作物可食部分重金属含量超标,通过食物链的逐级富集和传递,影响人类健康与生态安全[7-11]。因此,科学评价煤矿区废弃地土壤及重金属污染状况,不仅能更加了解矿区废弃地土壤的本质,更好地利用土地资源,而且对于农业、林业生产具有重要的指导意义。本研究以广东省明山煤矿区为例,旨在通过对废弃地重金属污染土壤环境质量的综合评价,为该矿区重金属富集植物筛选、土地复垦及生态重建提供理论依据。

1 研究区概况

明山煤矿位于广东省梅县白宫镇,地理位置为北纬23°23′-24°56′、东经115°18′-116°56′,平均海拔550 m,属亚热带季风湿润气候。该地区年均气温20.6~21.4 ℃,7月平均气温28.3~28.6 ℃,1月平均气温11.1~11.3 ℃,年均降雨量1 483.4~1 798.4 mm,75%以上降雨量集中在4~9月,年平均降雨时间为150 d,无霜期为309 d。

据廖富林等[12]2005年调查,明山煤矿废弃地自然定居植物共计64种,分属30科59属,其中禾本科10种、菊科7种、豆科5种;全部自然定居植物中,29种为1~2年生草本植物、13种为多年生草本植物、18种为木本植物,另有4种藤本植物。据2010年11-12月实地踏查,尾矿区废弃地业已形成一些相对稳定的单种斑块和小群落,如五节芒(Miscanthus floridulus)、胜红蓟(Ageratum conyzoides)、小飞蓬(Comnyza canadensis)、艾蒿(Artemisia argyi)、猪屎豆(Crotalaris mucronata)、毛马唐(Digitaria chrysoblephar)、莠狗尾草(Setaria geniculata)、香附子(Cyperus rotundus)等,这些在煤矿废弃地成功定居的土著先锋植物,可作为废弃地植被生态恢复与治理的优先选用植物[12,13]。

2 研究方法

2.1 样品采集

样品采集于明山煤矿总厂附近的能发矿堆积场,该尾矿堆积场南北两坡约45°、东坡约60°,且靠近一条大水沟,西坡较平缓。煤矿废弃地周围为低山,山坡的土壤为红壤。

2010年11-12月,依据该堆积场具体地形、水文条件及煤矸石堆积的不同年限等,以矸石堆为中心,沿地表水自然流向东南向布设采样线并按距离进行采样,分别在样线的10、50、100、200、500 m各设一个采样点(定为样点1、样点2、样点3、样点4、样点5),然后以各样点为中心,采集1 m2范围内的先锋植物根系周围0~30 cm深的尾矿区土壤,尽管样点1、样点4无植物分布,也采集样点中心0~30 cm深的尾矿区土壤。

2.2 样品测定

土壤于室温下风干,除去石块、植物根系和凋落物等,用玛瑙研钵磨碎,过100目筛(0.15 mm),在烘箱中干燥24 h后放在干燥器中备用。样品用HCl-HNO3-HF-HClO4混合酸消化后,用原子吸收分光光度计测定镍(Ni)、镉(Cd)、铜(Cu)、铅(Pb)、锌(Zn)、锰(Mn)、铬(Cr)含量,试验重复3次。土壤基本理化性质分析测定参照文献[14]进行。

2.3 土壤环境质量评价

采用单因子指数和内梅罗(Nemerow)综合污染指数相结合的方法进行重金属污染程度评价[15,16]。

单因子指数法:Pi=Ci/Si (1)

式(1)中,Pi为土壤污染物i的单项污染指数;Ci为土壤中污染物i的实测含量;Si为污染物i的评价标准,采用GB15618—1995中的土壤环境质量二级标式(2)中,Pn为内梅罗综合污染指数;Pimax为单因子污染指数最高值;Pi为单因子污染指数的算术平均值。

内梅罗综合污染指数既全面反映了各污染物对土壤的不同污染程度,又突出了高含量/浓度污染物对土壤环境质量的影响,因此,采用综合污染指数评定、划分土壤质量等级更加客观。综合污染指数Pn依据土壤综合污染等级划分(表1)。

3 结果与分析

3.1 土壤理化性质

由表2可知,矿区土壤pH范围在2.87~6.16,呈酸性,特别是样点1土壤pH仅2.87,属强酸性,不能够满足植物最基本的生长要求;样点3靠近民工工棚,虽有五节芒生长,但表层煤矸石较新鲜,故土壤pH也仅3.76。据毕银丽等[17,18]研究,煤矸石中含有铝、硫等致酸性物质,在雨水的淋溶冲洗下,能够酸化土壤条件,但随着煤矸石堆积时限的延长、风化程度的提高,经长期雨水淋洗的煤矸石基质成分已基本稳定,故pH逐渐增大并最终接近于弱酸性。

通常认为,土壤交换量的大小基本上代表土壤保持养分能力的强弱(保肥力高低),交换量大,也就是保存养分的能力大,反之则弱。从表2交换性盐基、阳离子交换量看,均为样点5的土壤交换性能最好,样点1的交换性能最差,其中,交换性盐基为8.75~9.20 cmol/kg、阳离子交换量为9.02~9.57 cmol/kg,其阳离子交换量小于10 cmol/kg,属于保肥力弱的土壤;从土壤有机质看,样点4、样点5的含量相对较高,而样点1、样点3的含量相对较低,总体上,土壤较贫瘠(有机质为9.74~12.89 g/kg)。此外,交换性酸含量为0.27~0.48 cmol/kg。

3.2 土壤重金属含量

由图1可知,尾矿区土壤重金属元素含量变化较大,其中,Cd含量为0.759~3.109 mg/kg(平均含量为2.052 mg/kg),土壤中Cd含量最高的是样点5(3.109 mg/kg),是土壤环境质量标准(GB 15618-1995)[19]规定的二级土壤标准(0.3 mg/kg)的10倍多、三级标准(1.0 mg/kg)的3倍多;样点1的Cd含量(2.541 mg/kg)接近二级标准的9倍、是三级标准的2.5倍;样点2(0.759 mg/kg)、样点3(0.823 mg/kg)的Cd含量较低,但也均超过二级标准,说明明山尾矿区土壤Cd含量超标严重。余涛等[20]的研究表明,土壤pH是控制Cd等重金属元素地球化学行为的重要因素,明山尾矿区土壤的酸性环境可能会加剧Cd等有害元素离子交换态含量的增加,从而产生严重的生态风险。

Cu含量为39.522~270.308 mg/kg,平均含量为91.281 mg/kg,其中样点2 的Cu含量最高,为270.308 mg/kg,是二级标准果园标准值(150 mg/kg)的1.8倍、农田标准值(50 mg/kg)的5.4倍;其他样点Cu含量在100 mg/kg以下。说明存在一定程度的Cu污染,但污染不严重。Ni的含量为34.351~46.065 mg/kg,平均为38.991 mg/kg,样点2、样点5的Ni含量分别为46.065、45.048 mg/kg,略高于二级标准(40 mg/kg),说明土壤存在一定程度的Ni污染,但污染不严重。Pb、Zn、Cr含量分别为45.120~78.901(平均为61.967)、77.704~104.502(平均为88.831)、64.710~154.701(平均为91.442) mg/kg,参照土壤环境质量标准,明山尾矿区土壤基本不受Pb、Zn、Cr污染影响。Mn含量为387.057~488.660 mg/kg,平均含量为421.215 mg/kg,但目前尚无国家标准。另据臧小平[21]研究,Mn可能是酸性土壤第二重要限制因素(我国南方砖红壤和红壤中,红壤活性Mn含量一般为120 mg/kg,砖红壤、赤红壤为136 mg/kg),以此为参照,说明明山尾矿区Mn污染严重。

3.3 土壤重金属污染评价

从单因子污染指数看(表3),样点1污染最大的是Cd(8.470)、最小的是Pb(0.316),从大到小依次是Cd、Mn、Ni、Cr、Cu、Zn、Pb;样点2污染最大的是Mn(2.977)、最小的是Pb(0.243),从大到小依次是Mn、Cd、Cu、Ni、Cr、Zn、Pb;样点3污染最大的是Mn(3.759)、最小的是Pb(0.181),从大到小依次是Mn、Cd、Ni、Cr、Zn、Cu、Pb;样点4污染最大的是Cd(10.093)、最小的是Pb(0.251),从大到小依次是Cd、Mn、Ni、Zn、Cr、Cu、Pb;样点5污染最大的是Cd(10.363)、最小的是Pb(0.249),从大到小依次是Cd、Mn、Ni、Cr、Zn、Cu、Pb。

从各采样点综合污染指数看,受土壤重金属污染最大的是样点5,高达7.508,最小的是样点2,为2.343,从大到小依次是样点5、样点4、样点1、样点3、样点2,其中,样点5、样点4、样点1为极重污染,样点3、样点2为中度污染。由于煤矸石堆积而引起尾矿区土壤污染一般均呈表面富集,且由近及远重金属污染程度呈逐渐降低趋势,但煤矸石堆场周边的地形地貌、地质条件等也是影响土壤重金属污染的主要因素[4,6,22]。本研究中尾矿区各样点土壤重金属污染特征呈现出非线性递减的波动性也印证了这一观点,分析其原因,主要是样点4位于矸石山堆场的下坡,样点5为一个洼坑,煤矸石在降雨等自然淋滤作用下,造成重金属元素从煤矸石中析出,大量的淋滤液和矿坑排水经运移、沉淀作用后都在此不断沉积、富集,最终造成样点5、样点4的重金属污染很重,而样点3、样点2的重金属污染相对较轻。此外,煤矸石强烈风化产生的大量粉尘颗粒物在大气中迁移,经过干、湿沉降进入地表,在雨水的淋滤作用下渗入土壤也是影响土壤中重金属含量空间变化的重要因素。

4 小结与讨论

土壤是植物生长的载体,土壤理化特性决定土壤质量的高低,同时大多数植物适宜于在中性、肥沃的基质中生长。本研究中,土壤pH呈酸性(2.87~6.16),土壤阳离子交换量、有机质含量、交换性酸含量等偏低,明显不适宜植物生长。因此,煤矸石山的生态恢复首要的是包括酸碱度在内的基质改良。尽管煤矸石山在长期堆放的过程中,在雨水的淋溶冲洗下,pH呈现逐渐增大趋势(由极端酸性逐渐到弱酸性),但其自然过程缓慢、所需年限较长,而有关研究表明[17,18],煤炭燃烧后的粉煤灰呈极端的碱性,若两者混合使用可以以废治废达到变废为宝的目的。一方面可以利用粉煤灰极端的碱性中和煤矸石极端的酸性,调节基质的pH;另一方面,粉煤灰细小的颗粒填充于煤矸石粗大的石砾间,可降低矸石山中氧气的浓度,起到防止矸石山自燃的功能,同时粉煤灰均匀的粒径对煤矸石山的物理性质具有一定的改良作用,具有广阔的应用前景。

煤矸石随地质条件和产地的不同,其组成会有很大差别。一些研究已表明,煤矸石的淋溶水中Cd、Zn、Cr、Hg、Pb和As等剧毒元素的含量均超过水质标准[4,6]。这些淋溶水将严重污染地下水和地面水,对生物和人类健康造成严重影响。本研究中所测定的7种重金属元素(Ni、Cd、Cu、Pb、Zn、Mn、Cr)中,主要是Cd、Mn污染,且各样点土壤重金属污染特征呈现波动性而非线性递减,其中样点1、样点4、样点5为极重污染,样点2、样点3为中度污染。据《重金属污染综合防治“十二五”规划》显示(中国将对Hg、Cr、Cd、Pb等重金属进行重点防控),Cd污染是国家重点治理对象。相关研究表明[20,23],Cd在pH较高、尤其是在含有较多CaCO3的碱性土壤中活性低,不易移动,而在酸性条件下则易迁移,毒性增强。因此,提高土壤pH成为降低土壤Cd活性的有效措施之一。据臧小平[21]研究,土壤中Mn的可给性与pH存在相反的关系,明山煤矿废弃地土壤呈酸性,土壤的交换态Mn多,易还原态Mn少,Mn污染严重。

植物修复是近年来发展的一种环境友好、低成本的矿区土壤复垦技术,煤矸石的植物修复就是在煤矸石山表面建立植被,利用植被固定表层矸石。但受矿区贫瘠、干旱、重金属污染严重等极端地下环境条件的制约,植被恢复和生态重建的效益并不明显。但在长期的野外调查时发现,在矿区局部营养条件较好的区域,如堆放垃圾和污泥区域,一些植物的植株生长旺盛、健壮,植被盖度也较大,这为如何治理明山煤矸石废弃地提供了有益的启示。

参考文献:

[1] 胡振琪.中国土地复垦与生态重建20年:回顾与展望[J].科技导报,2009,27(17):25-29.

[2] 李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.

[3] 范英宏,陆兆华, 程建龙,等.中国煤矿区主要生态环境问题及生态重建技术[J].生态学报, 2003,23(10):2144-2152.

[4] 王心义,杨 建,郭慧霞. 矿区煤矸石堆放引起土壤重金属污染研究[J].煤炭学报,2006,31(6):808-812.

[5] 毕银丽,吴王燕,刘银平.丛枝菌根在煤矸石山土地复垦中的应用[J].生态学报,2007,27(9):3738-3743.

[6] 李 文,任晓旭,蔡体久.不同排矸年限煤矸石废弃地养分含量及重金属污染评价[J].林业科学,2011,47(6):162-166.

[7] 张玉涛,王修林,李 琳,等.土壤中重金属元素生物可给性研究进展[J].中国农学通报,2011,27(27):39-44.

[8] 付 瑾,崔岩山.食物中营养物及污染物的生物可给性研究进展[J].生态毒理学报,2011,6(2):113-120.

[9] 崔岩山,陈晓晨,付 瑾.污染土壤中铅、砷的生物可给性研究进展[J].生态环境学报,2010,19(2):480-486.

[10] KARATHANASIS A D, JOHNSON C M. Metal removal potential by three aquatic plants in an acid mine drainage wetland[J]. Mine Water and the Environment,2003,22(1):22-30.

[11] WEI S H, ZHOU Q X, WANG X, et al. Potential of weed species applied to remediation of soils contaminated with heavy metal[J]. Journal of Environmental Sciences China,2004, 16(5):868-873.

[12] 廖富林,杨期和,颜幼平,等.广东梅州明山煤矿废弃地的自然定居植物[J].华南农业大学学报,2006,27(2):71-75.

[13] 沈洽金,刘德良,郭宇翔,等.煤矿废弃地重金属含量及3种土著先锋植物吸收特征[J].广东农业科学,2011,38(20):134-138.

[14] 刘光崧.中国生态系统研究网络观测与分析标准方法:土壤理化分析与剖面描述[M].北京:中国标准出版社,1997.

[15] 童方平,徐艳平,龙应忠,等.冷水江锑矿区重金属污染林地土壤环境质量评价[J].中国农学通报,2008,24(12):179-183.

[16] 王开峰,彭 娜,曾广裕.粤东银锑矿区周边土壤重金属污染状况评价[J].广东化工,2009,36(11):126-128.

[17] 毕银丽,吴福勇.煤矸石和粉煤灰pH与电导率动态变化规律及其相关性研究[J].环境污染与防治,2004,26(5):384-386.

[18] 毕银丽,胡振琪,刘 杰,等.粉煤灰和煤矸石长期浸水后pH的动态变化[J].能源环境保护,2003,17(3):20-21.

[19] GB 15618-1995.土壤环境质量标准[S].

[20] 余 涛,杨忠芳,钟 坚,等. 土壤中重金属元素Pb、Cd地球化学行为影响因素研究[J]. 地学前缘,2008,9(5):67-73.

[21] 臧小平.土壤锰毒与植物锰的毒害[J].土壤通报,1999,30(3):139-141.