量子力学的基本理论范例6篇

前言:中文期刊网精心挑选了量子力学的基本理论范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

量子力学的基本理论范文1

量子力学课程是工科电类专业的一门非常重要的专业基础课程。通过该课程的学习,使学生初步掌握量子力学的基本原理和基本方法,认识微观世界的物理图像以及微观粒子的运动规律,了解宏观世界与微观世界的内在联系和本质的区别。量子力学课程教学质量的好坏直接影响后续的如“固体物理学”、“半导体物理学”、“集成电路工艺原理”、“量子电子学”、“纳米电子学”、“微电子技术”等课程的学习。

量子力学课程的学习要求学生具有良好的数学和物理基础,对学生的逻辑思维能力和空间想象能力等要求较高,因此要学好量子力学,在我们教学的过程中,需要充分发挥学生的学习主动性和积极性。同时,随着科学日新月异的发展,对量子力学课程的教学也不断提出新的要求。如何充分激发学生的学习兴趣,充分调动学生的学习主动性和能动性,切实提高量子力学课程的教学质量和教师的教学水平,已经成为摆在高校教师目前的一项重要课题。

该课程组在近几年的教学改革和教学实践中,本着高校应用型人才的培养需求,强调量子力学基本原理、基本思维方法的训练,结合物理学史,充分激发学生的学习积极性;充分利用熟知软件,理解物理图像,激发学生学习主动性;结合现代科学知识,强调理论在实践中的应用,取得了良好的教学效果。

1 当前的现状及存在的主要问题

目前工科电类专业普遍感觉量子力学课程难学,其主要原因在于:第一,量子力学它是一门全新的课程理论体系,其基本理论思想与解决问题的方法都没有经典的对应,而学习量子力学必须完全脱离以前在头脑中根深蒂固的“经典”的观念;第二,量子力学的概念与规律抽象,应用的数学知识比较多,公式推导复杂,计算困难;第三,虽然量子力学问题接近实际,但要学生理解和解决问题,还需要一个过程;由于上述问题的存在,使初学者都感到量子力学课程枯燥无味、晦涩难懂,而且随着学科知识的飞速发展,知识的更新周期空前缩短,在有限的课时情况下,如何使学生在掌握扎实的基础知识的同时,跟上时代的步伐,了解科学的前沿,以适应新世纪人才培养的需求,是摆在我们教育工作者面前的巨大挑战。

2 结合物理学史激发学生学习兴趣

兴趣是最好的老师,在大学物理中,谈到了19世纪末物理学所遇到的“两朵乌云”,光电效应和紫外灾难,1900年,普朗克提出了能量子的概念,解决了黑体辐射的问题;后来,爱因斯坦在普朗克的启发下,提出了光量子的概念,解释了光电效应,并提出了光的波粒二象性;德布罗意又在爱因斯坦的启发下,大胆的提出实物粒子也具有波粒二象性;对于物理学的第三朵乌云“原子的线状光谱,”玻尔提出了关于氢原子的量子假设,解释了氢原子的结构以及线状光谱的实验。后来还有薛定谔、海森堡、狄拉克等伟大的物理学家的努力,建立了一套崭新的理论体系-量子力学。在教学的过程中,适当穿插量子力学的发展历史以及伟大科学家的传记故事,避免了量子力学课程“全是数学的推导”的现状,这样激发学生的学习兴趣和学习热情,通过对伟大科学家的介绍,培养刻苦钻研的精神。实践表明,这样的教学模式大大提高了学生的学习主动性。

3 结合熟知软件化抽象为形象

量子力学内容抽象,对一些典型的结论,可以用软件模拟的方式实现物理图像的重现。很多软件如matlab、c语言等很多学生不是很熟练,而且编程较难,结合物理结论作图较为困难;Excell是学生常用的软件之一,简单易学却功能强大,几乎每位同学都非常熟练,我们充分利用这一点,将Excell软件应用到量子力学的教学过程中,取得了良好的效果。

如在一维无限深势阱中,我们用解析法严格求解得到了波函数和能级的方程。而波函数的模方表示几率密度。我们要求学生用Excell作图,这样得到粒子阱中的几率分布,通过与经典几率的比较(经典粒子在阱中各处出现的几率应该相等)和经典能级的比较(经典的能量分布应该是连续的函数),通过学生的自我参与,充分激发了学生的求知欲望;从简单的作图,学生深刻理解了微观粒子的运动状态的波函数;微观粒子的能量不再是连续的,而是量子化了的能级,当n趋于无穷大时微观趋向于经典的结果,即经典是量子的极限情况;通过学生熟知的软件,直观的再现了物理图像,学生会进一步来深刻思考这个结论的由来,传统的教学中,我们先讲薛定谔方程,然后再解这个方程,再利用边界条件和波函数的标准条件,一步一步推导下来,这样的教学模式有很多学生由于数学的基础较为薄弱,推导过程又比较繁琐,因此会逐步对课程失去了兴趣,这也直接影响了后面章节的学习,而通过学生亲自作图实现的物理图像,改变了传统的“填鸭式”教学,最大限度的使学生参与到课程中,这样的效果也将事半功倍了,大大提高了教学的效果。

4 结合科学发展前沿拓宽学生视野

在课程的教学中,除了注重理论基础知识的讲解和基础知识的应用以外,还需介绍量子力学学科前沿发展的一些动态。结合教师的教学科研工作,将国内外反映量子力学方面的一些最新的成果融入到课程的教学之中,推荐和鼓励学生阅读反映这类问题的优秀网站、科研文章,使学生了解量子力学学科的发展前沿,从而达到拓宽学生视野,培养学生创新能力的目的。例如近年兴起并迅速发展起来的量子信息、量子通讯、量子计算机等学科,其基础理论就是量子力学的应用,了解了这些发展,学生会反过来进一步理解课程中如量子态、自旋等概念,量子态和自旋本身就是非常抽象的物理概念,他们没有经典的对应,通过对实验结果的理解,学生会进一步理解用态矢来表示一个量子态,由于电子的自旋只有两个取向,正好与计算机存储中二进制0和1相对应,这也正是量子计算机的基本原理,通过学生的主动学习,从而达到提高教学质量的目的。另外我们还要介绍量子力学在近代物理学、化学、材料学、生命学等交叉学科中的应用,拓宽学生的视野。

量子力学的基本理论范文2

[关键词] 原子物理学 教学改革 实践教学

随着科技的飞速发展,原子物理学已经成为21世纪重要科学技术的共同基础之一,它在高新科技中的基础地位和重要作用日益显现。同时它在培养学生的创新精神和科研能力方面也有着不可替代的作用,所以原子物理学成为了物理学专业的基础课程之一,也成为了其他理工科专业的必修课程之一。

一、原子物理学课程的性质与我系开设的历史回顾

原子物理学为物理学专业的基础课。它上承经典物理,下接量子力学,属于近代物理的范畴,是学习理论物理和从事材料科学、信息科学、光学、激光技术、化学、生命科学、能源科学、环境科学以及空间科学研究的基础。在内容体系的描述上,原子物理学采用了普通物理的描述风格,讲述量子物理的基本概念和物理图象以及支配物质运动和变化的基本相互作用,并在此基础上讨论物质结构在原子、原子核以及基本粒子等层次的性质、特点和规律。我院在上个世纪80年代就开设原子物理学课程,在90年代中期,为了全面讲解近代物理学的知识,我们曾经以近代物理学代替了原子物理学。到20世纪90年代末,又把原子物理学作为一门独立课程进行了设置。2002年,我院开始招收物理学专业本科学生,原子物理学成为一门专业基础课。为了提高原子物理学教学的效果,我们从2003级学生开始着手对原子物理学课程进行教学改革,2003级和2004级是探索阶段,在2005级、2006级、2007级加大了改革的力度。

二、原子物理学课程教学改革的实践

1.调整课程结构,整合教学内容,增加现代化的知识

调整课程结构,整合教学内容是教学改革的核心工作。在原子物理学的教学改革中,我们始终坚持把调整结构整合内容作为教改的中心工作。我们在教学中发现,随着科技的迅猛发展,许多高新科技都用到了原子物理学的基本理论,而我们大部分院校使用的教材是圣麟先生编写,1979年,出版的《原子物理学》,该教材虽然是1987年获国家教委一等奖的优秀教材,但是由于编写时间较早,缺少一些新知识、新技术的介绍,教学内容需要整合和充实。我们本着“加强基础,结合前沿,促进创新”的精神,对原子物理学的教学内容进行了大胆的调整和整合,重新编写了教学大纲和考试大纲,加强了科学前沿和高新技术的引进。精简和整合了传统教学内容,如旧量子论和中学物理已经涉及到的东西;大量引入了科技前沿和新成果,如里德堡原子、μ原子、反原子、反物质、粒子加速器、新粒子的探索、电子自旋成像等;引入多学科综合性问题,如隧道扫描显微镜,纳米科技,激光技术、原子的冷却等;引入应用领域问题,如激光技术,X射线造影,核磁共振,核电站的建设、太阳能的利用、中子弹的研制等;引入我们自己的科研工作,如纳米晶丝的磁性、铁磁非晶丝的磁化、磁晶各向异性等,介绍近些年诺贝尔物理学奖获得者的学术成就等。同时,我们还尝试了原子物理学和量子力学打通的工作,与量子力学课程组进行了研究。这样经调整整合后,其教学内容在已知与未知、过去与未来、基础与前沿等之间保持了一种恰当的张力,以针对性、应用性、实践性和满足后续课程(量子力学、固体物理等)学习需要为前提,既保留了该门课程的基本知识框架、知识间的内在联系,又反映了本学科领域最新科技成果和研究前沿方向,构建了支持学生终身学习的知识平台,促进了学生创新意识、实践能力和综合素质的培养,充分体现了教学内容的先进性和现代化,经过几年的实践,收到了良好的效果。

2.改革教学方法,培养学生的学习能力

有了先进的教学内容,如何让学生接受消化成了我们要研究的一个突出问题。按照学校的总体培养方案,原子物理学课程的教学时数越来越少,从每学期的72学时,减少到了54学时,48学时,再考虑到法定节日耽误的课时,一个学期48个学时都难以保证。而原子物理学是一个从经典物理到现代物理的一个过渡课程,有时用旧量子论处理问题,有时又必须用量子力学理论处理问题,这样就给学生造成了一个接受和理解的难度,有时甚至是造成了混乱和困惑,学生无所适从。为此我们对教学方法进行了研究。

第一,树立研究型教学思想,培养学生的学习能力,体现先进的课程理念。在原子物理学的教学中,我们首先更新观念,树立“以人为本,以学生为中心”的现代教育教学理念和以素质教育为主的研究型教学思想,以满足社会需要、学习者个人发展以及学科自身特殊性为前提,强调基本素质、基本知识、基本能力和基本技能并重,强化了课程理念的先进性。

第二,在教学方法上,一改过去“教师唱主角满堂灌”的“注入式知识教育”为适应培养学生学习能力的“研究式素质教育”。正好我系2005级以后物理学专业学生的班容量不是很大,给我们改革教学方法提供了方便。我们采用了精讲式、启发式、研究式、探索式、渗透式等多种教学方法,增加了讨论课、学习报告的学习形式。对一些奠定基础的、在历史上起到重要作用的、在知识体系中不可或缺的内容必须精讲、启发;对一些前沿性的、应用性的、综合性的、没有定论的东西则采用研究、探索、渗透的方式;每学期设置2次讨论课,1次学习报告课,把学生在学习中遇到的感兴趣的、通过查阅资料能够解决的问题以及没有定论需要继续研究的问题在讨论和报告中处理;而有些知识则是采用不讲的方式,由学生自学,由连续型细节式授课转变为跳跃型平台式授课。这些教学方法的改进,极大地拓宽了学生的视野,提高了学生的学习积极性,促进了学生学习的主动性,培养了学生的学习能力和创新精神。

第三,在教学手段上,跳出了“一支粉笔一块黑板一张嘴”的填鸭式,编制了多媒体课件、电子教案等,利用现代化的网络技术来辅助教学,同时也注意纠正了“以机代人、人机共灌”的极端多媒体教学方式,这样由过去单一的课堂教学转化为多形式的互动交流,既解决了课程容量与教学时间的矛盾,同时又激发了学生的学习兴趣。培养了学生的学习能力和研究能力。

3.把原子物理学的教学与学生的毕业论文有机结合

为了激发学生的学习兴趣,我们把原子物理学的教学与学生的毕业论到了有机结合。近几届学生的毕业论文都有选自原子物理学课程的。有一些综述型的题目,如:原子物理学与量子力学的衔接、物质的结构层次、组成物质的最小单元、里德堡原子与μ原子、反原子与反物质等;有一些应用型的题目,如太阳能与我市太阳能利用、核电与我国的核电站、现代医疗与原子物理学等;也有一些研究型的题目,如:兰姆位移的实质、电子自旋对原子光谱的影响、纳米晶丝的磁性与原子磁矩、铁磁性物质参杂后的磁性等。

4.把近代物理实验与原子物理学课程打通

我系也和其他大部分院校一样,在开设原子物理学课程的同时,开设的另一门独立实验课程是近代物理实验,它由实验老师独立完成。在原子物理学进行教改的时候,我们发现近代物理实验许多都是和原子物理学有关系的,许多就是原子物理学理论的一个验证或是应用。为使原子物理学的理论和实验更加紧密地结合,增强学生对原子物理学理论的感性认识,经过系领导的同意,我们和近代物理实验老师合作,共同组成了原子物理学课程组,实现了原子物理学的理论教学和实验教学的同步,既深化了学生对理论的理解,也降低了实验课程的难度。效果颇佳。

5.编制了一些课程扩充资料

为了帮助学生理解课程内容,我们参考其他院校的做法,编制了作业题解答、课外习题集、考试试题库、卷库,并且选定了一些科技期刊和阅读材料提供给学生阅读和学习,开宽学生的眼界。

三、对原子物理学课程教学改革的思考

虽然对原子物理学课程的教学改革,我们取得了一些效果,但是总感觉教学改革进行的还不彻底,还有许多不尽如人意的地方,还有许多工作要做,关于这些我们做了如下思考。

第一,对原子物理学教学内容体系能不能来一个大的改革。首先,旧量子论的内容跳过不讲,直接用量子力学的理论来讲原子物理学。既在光谱的实验规律、弗兰克-赫兹实验、史特恩-盖拉赫实验、黑体辐射实验、康普顿效应等的基础上给出量子力学,然后用量子力学理论去研究原子的能级、光谱、电子自旋、原子核结构等问题。而把玻尔的旧量子论作为一个历史情节介绍,降低旧量子论的比重。其次,增加前沿动态。因为我们没有后续的原子核物理、粒子物理,所以特别应该增加原子核的方面的知识;增加粒子物理方面的知识;增加应用性的知识;增加外场中原子的行为和现象的介绍,增加新核素、新粒子的观察与探索等内容。

第二,一定要把原子物理学与量子力学打通,整合成一门理论课,并且把原子物理学、量子力学、固体物理学、近代物理实验组合成一个课程群。使之在培养学生的科研能力、学习能力和创新能力上做出更大的贡献。首先,原子物理学和量子力学必须打通,因为目前的分工看,原子物理学是量子力学的先行课程,成为了量子力学的基础,而量子力学又是处理原子问题的有力工具,二者相互渗透,没有先后。如果能够把原子物理学和量子力学打通成一门理论课程,那样既可以完善原子物理学中的理论,又可以增强学生对量子力学的感性认识,使得两门课程的体系更加完整,学习难度会自然降低。其次,要认真研究如何实现原子物理学、量子力学、固体物理学、近代物理实验这一课程群,并以此为依托申报省级以上的教改立项课题。这几门课程的理论是相通的,只是适用对象不同,所以会衍生出许多不同的知识,这个课程群建成后,能够使学生的知识体系更加紧凑和完善,使几门课程的知识互通,能够降低学习难度,能够使学生方便地接触到科技前沿,激发学习兴趣,对毕业后从事高新科技或是教授大中学的相关课程都是大有裨益的。

第三,如何进行考试改革。学生成绩的考核方式直接决定着学生的学习态度,我们要改传统的“结果性”考核为“过程性”考核。加强对学生学习过程的监测,注意发现那些有创新精神、勤奋刻苦的学生,注意发现那些有一定特长、有潜力、不循规蹈矩的学生,加强培养,加强引导。

第四,如何进行实践性教学内容的改革。实践性的教学在培养学生创新精神和创造能力方面具有不可替代的作用。如何充分发挥实践性教学的作用一直是我们努力探索的一个课题。我们要使实践性教学走出实验室,使实验课程走出验证的初级阶段,开设综合性、开放性、创新性实验,这一点需要一定的物质基础,值得我们去研究。

第五,关于教材的选择与处理。教材可以说是教学的抓手,是最为重要的教学资源。就目前看,比较通用的原子物理学教材是圣麟先生编写的《原子物理学》和杨福家院士编写的《原子物理学》,这两个版本的教材各有自己的优点。我们的观念是“教学是用教材教,而不是教教材”,今后,我们计划改以前固定一种版本教材为两种版本交替使用。这样有一个好处是上下连续两届学生可以互相借阅,使学生在学习时基本上都能够有两本教材,方便了学习。

以上这些只是我们在原子物理学课程改革中的一些做法和想法,有的甚至可能还很不成熟,希望得到各位同仁的支持和帮助。

参考文献:

量子力学的基本理论范文3

【关键词】量子模型 最优组合选择 金融投资

一、引言

金融市场是一个庞大而复杂的系统,对金融市场的研究的历史已经很长,过去的金融学家认为金融市场是一个随机市场过程,在这种随机环境下,如何进行最优的资源配置,以实现最有效的目标,获得高效、方便实用的投资组合,不管对于个人投资者还是大型的金融投资机构都是必不可少的。随着经济全球一体化步伐的加快,可以投资的资产种类日益繁多,交易方式也日趋多样化,这些都会对最后预期的总财富产生一定的影响。因此,当金融市场的这种不确定环境变得越来越复杂的时候,人们对投资组合选择的深入研究,才具有更加重要的理论意义和现实意义。

19世纪初,Bachelier就开始研究金融市场的理论体系。但是金融市场系统的理论研究是从20世纪50年代初期开始的,1952年Markowitz发表了资产组合选择理论,1964年Sharpe建立了资产定价模型,之后1973年Black和Scholes与Merton期权定价理论以及1976年Ross的套利定价理论等,他们所应有的工具基本上是经典理论中的一些方法,之后现资组合的研究大部分都是围绕Markowitz投资组合理论而展开的。随后量子理论从不同角度被引进到金融问题的研究中来。1998年Ilinksi采用量子场理论来描述了金融市场的动态变化,他运用场理论推导了资产价格和资金流动的速度随时间演化的方程。之后,Schaden做了进一步的研究,他他运用市场投资者持有的总资产数和总现金作为基矢来构造金融市场的状态空间,金融市场的不确定性由态矢迭加原理来刻画。然后,陈泽乾教授从量子力学的角度用Maxwell-Boltzm统计重新推导了著名Cox-Ross-Rubinstei期权定价公式,还用量子力学中的Bose-Einstein统计得到了一个全新的期权定价公式。这些都表明在理论上存在着关于金融市场的和谐的“量子理论”――量子金融。

二、单期资本市场中量子模型下的最优组合问题

在数学上,量子是用复Hilbert空间来描述的,假设单期金融市场遵循某种量子统计规律,可由量子概率空间(Cn,ρ,B+S)来描述,其中ρ代表一个定态,B代表无风险资产,S代表风险资产。假设该金融市场有d+1种长期证券,其中第0种证券为无风险证券,另外d种证券为风险证券,一般情况下,我们把这个金融市场经济记为(B,S)市场,其中S=(S1,S2,…,Sd)。

假定单期资本市场(B,S)是由一种无风险的证券价格B=(B0,B1)和d种风险证券价格S=(S0,S1)构成的,其中B0>0,S0>0,并且B1=B0R,S1=S0A,R>0,A是一个自伴算符列,且Aj满足Ak=■λjkEjk,k=1,2,…,d,Ejk是Ak取值λjk的投影算子。

下面我们就来运用马科维茨资产组合理论来研究量子金融市场的最优组合选择问题。

假设投资者投资于风险证券的比例为ωj(j=1,2,…,d),根据马科维茨模型中的假设条件,我们可以写出约束条件:ω0=1-ωT1,其中1=(1,1,…,1)T。若给定收益b,其期望收益为:ωT(μ-R1)=b-R

风险资产组合的方差为:σ2(ωTA)=ωT∑ω

金融市场中的投资者所要求的最优投资资产组合必须要满足下面条件之一:

(1)在预期收益水平确定的条件下即ωT(μ-R1)=b-R,求使得风险最小的ω。

(2)在风险水平确定的情况下σ2(ωTA)=ωT∑ω=σ,求使得收益最大的ω。

这两个线性规划问题是等价的,都能得到最优的投资组合选择。下面对条件(1)用数学语言表示出来:min■ωT∑ω

s.t. ωT(μ-R1)=b-R

对ω求偏导数得:ωb=■ (1)

此时,资产组合的方差为:σ2(ωTA)=■

(1)式可以表示为在(b,σ)平面上的两条直线,但是向下倾斜的直线是没有研究价值的,因为金融市场中理性的投资者根本不可能选择在同等风险下收益较小的证券投资组合。因此(1)式可以变形为下述直线:b=R+σ■ (2)

(2)式表明,如果量子金融市场存在无风险的资产,且在证券组合投资收益为b的条件下,风险最小的投资组合的风险为σ,则(b,σ)满足(2)式,即(b,σ)在一条直线上。换句话说,在这种条件下,满足最小方差的证券组合是存在的,与之相对应的证券组合就是最小方差证券组合。

综上所述,如果在量子金融市场中存在无风险资产时,那么在给定证券组合收益的情况下,我们所求得的最小方差证券组合,其标准方差与收益满足同一直线方程。这一直线的经济意义很明显,单个资产或组合资产的期望收益率由风险测度指标标准差来决定;风险越大收益率越高,风险越小收益率越低。因此,我们不能轻易下结论说随即模型完全可以反映金融市场的不确定性,在一个量子金融概率空间中,我们用自算符来描述金融资产的价格变化,也许更符合金融市场资产价格的演化规律,从而让我们的金融投资组合选择更加精确,更加合理有效。

参考文献:

[1]Feynman R P等著,张邦固等译.量子力学与路径积分[M].科学出版社,1986.

[2]李树德.量子金融(英文版)[M].世界图书出版社,2000.

量子力学的基本理论范文4

二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。

在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。我想谈一谈我对这个问题的一些看法和观点。首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。

一、历史的回顾

十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。

然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!

把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。

在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。

虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。

回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。

1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。

2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。

我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。

3)深入探索各层次间的联系。

这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。

上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。

爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]

现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:

1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。

2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。

三、现代物理学的理论基础是完美的吗?

相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的

呢?我们来审思一下这个问题。

1)对相对论的审思

当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。

时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。

爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。

我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。

弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。

在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')

有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。

1)对量子力学的审思

从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。

现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。

1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。

2)可能应该从两方面去控寻现代物理学革命的突破口。(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础,重新定义时间、空间,建立新的理论

量子力学的基本理论范文5

关键词:热力学与统计物理学;国家精品课程;统计热力学体系

“热力学与统计物理学”(简称“热统”)是我国高等院校本科物理专业的一门必修课程,是研究物质有关热现象(即宏观过程)规律的理论物理课,也是普通物理“热学”的后续课。内蒙古大学“热统”教学组在20多年教学实践中,不断更新教育观念,探索课程教学体系的改革,逐步建立了以微观理论为主线的教学体系,建设了首门“热统”国家精品课程(2004年)——“统计热力学”,陆续出版了配套教材[1]和学习辅导书[2]。

一、关于“热统”教学体系的思考

关于热现象的理论包括两部分,即宏观理论——“热力学”和微观理论——“统计物理学”。我国目前的“热统”课程由早年设置的 “热力学”和“统计物理学”两门课程合并而成,一直沿袭“热”、“统”相对独立的“一分为二”教学体系[3-5]。教学内容安排大体以学科发展历史和认识层次为序,由唯象到唯理,由宏观到微观。这种体系十分成熟,在多年教学实践中获得很大成功。随着科学技术和人类现代文明的飞速发展,人们认识世界的条件、增长知识的方式和获取信息的渠道发生了质的变化:昔日深奥难解的名词,今天已可闻之于街巷;诸多科学概念的理解,逐渐变得不很困难。在这种知识氛围和学习环境下,从中学到大学的物理教学内容均在不断地改革和深化。同时,现代科学成就在高新技术中的广泛应用向21世纪人才培养提出更高的要求。这一切,催动着大学物理课程改革的进程,也激发起我们对传统体系的思考。

从“热物理”系列课程改革现状来看,一方面,普通物理“热学”课程的内容已进行了必要的深化和后延,原有“热统”课程与现行“热学”课程内容出现较多重复。仅以汪志诚著《热力学 · 统计物理》[5]和秦允豪著《热学》[6]为例,二者内容重叠约为1/3。过多重复造成学习时间与精力的浪费,甚至引发学生的厌学情绪,使学习效益降低。另一方面,飞速发展的高新技术拉近了基础理论与应用技术的距离,就热物理而言,无论实际工作中的应用,还是继续深造时的基础,都对“热统”课程教学提出更高的要求。增加课程的统计物理比重,深化微观理论的系统理解势在必然。此外,改革开放以来,我国高等教育从学制到专业及课程设置均有较大幅度的变动,“热统”课教学时数多次削减(1208672、64),课堂教学的信息量和效益问题变得更加突出。面对这种形势,各校对“热统”课程的内容进行了不断的改革,逐步增加统计物理比重,努力减少和避免与“热学”的重复。然而,由于没有触动“一分为二”的体系,大量的简单重复难以避免,“热力学”内容仍然偏多,实际教学中统计物理的系统性难以保证。

针对上述问题,我们从体系结构着眼,对“热统”课程进行了较大力度的改革[1]。我们的改革思路是:打通“热物理”宏观与微观理论的壁垒,融二者为一体,削减学时、充实内容,有效地避免与普通物理的简单重复,提高教学效益;以微观理论为主导,确保统计物理体系的完整性与系统性,增加课程的先进性与适用性。在上述思想指导下,构建了“热统”课程的“统计热力学”体系。新体系从根本上解决了热物理课程中理论物理与普通物理之间层次交叠、内容重复的问题;大幅增加统计物理比重,使其理论及应用内容在总学时中占到3/4以上。

二、统计热力学体系的特色

统计热力学教学体系的主要特色是:热物理学以微观理论为框架;微观理论以系综理论为主线;系综理论以量子论为基础。体系知识结构框如上图所示。

1.以微观理论为框架,融微观与宏观一体

“统计热力学”以微观理论——统计物理为主导,建立了从微观到宏观、完整自恰的理论体系。

在传统的“一分为二”体系下,学生往往将过多精力用于热力学计算,不能很好地理解统计物理的理论体系,容易将热现象的宏观和微观理论割裂开来。本体系从微观理论出发,用统计物理理论导出热力学基本定律,讨论体系热力学性质,给出统计物理概念与宏观现象的对应,融热现象的微观、宏观理论于一体,结束了两种理论割裂的传统教学格局,提高了认识层次。同时,使理论物理与普通物理的分工更趋合理,便于解决传统体系难以避免的“热统”与“热学”过多重复问题。

本体系按照统计物理学的知识框架,将主要知识点划分为孤立系、封闭系和开放系等三个模块(参见上图)。各块均首先给出相应的统计分布,进而引入热力学势(特性函数),导出热力学基本定律,再用微观和宏观理论相结合的方法研究具体系统的热力学性质。例如:在孤立系一章,从等概率基本假设出发,引入统计物理的熵,导出热力学第一、第二定律,进而研究理想气体的平衡性质。在讨论封闭系时,从正则分布出发,引入热力学势——自由能,给出均匀系热力学基本微分式,进而导出麦克斯韦关系,介绍用热力学理论研究均匀物质宏观性质的方法,再具体讨论电、磁介质热力学、焦-汤效应等典型实例。同时用正则分布研究近独立子系构成的体系,导出麦-玻分布,介绍最概然法;进一步导出能均分定理,介绍运用统计理论研究半导体缺陷、负温度、理想和非理想气体等问题的方法。对于开放系,首先导出巨正则分布,再引入巨势,给出描述开放系的热力学微分式,研究多元复相系的平衡性质,讨论相变和化学热力学问题;用量子统计理论导出热力学第三定律,讨论低温化学反应的性质。另一方面,考虑全同性原理,用巨正则分布导出玻色、费密两种量子统计分布,给出它们的准经典极限——麦-玻统计分布,并运用获得的量子统计分布分别讨论电子气、半导体载流子、光子系的统计性质和玻色—爱因斯坦凝聚等应用实例。

2.以系综理论为主线,完善统计物理体系

与国内现流行体系不同,“统计热力学”的统计物理以“系综理论”为基础,具有更强的系统性。

现流行体系为便于学生理解,大多先避开系综理论,讲解统计物理中常用的分布和计算方法,如近独立粒子的最概然分布、玻耳兹曼统计、玻色统计和费米统计及其应用等,而在课程的最后介绍系综理论有关知识[5]。这种体系除内容不可避免地出现重复外,还在一定程度上牺牲了统计物理的系统性。在实际教学中,为了阐明有关分布和统计法,往往不可避免地运用如等概率假设、配分函数、巨配分函数等系综理论的基本概念,难免出现生吞活剥、“消化不良”的弊端。从体系实施现状来看,不少院校因学时有限,在热力学和基本统计方法的教学之后,对系综理论的介绍只能一带而过,学生难以完整掌握统计物理理论。

我们多年采用系综理论为主线的教学实践表明,“统计分布”与“系综”的“分割”是不必要的。本体系首先引入“系综”概念,将整个“统计热力学”的基础建立在系综理论之上,从一个基本假设——等概率假设(微正则系综)入手,渐次导出各种宏观条件下的系综分布,建立配分函数、巨配分函数等基本概念,给出相应的热力学势和热力学基本微分公式;同时,顺畅地导出如最概然分布、玻耳兹曼统计、玻色统计和费米统计法等常用分布和计算方法,并用于实际问题。在教学过程中,力求循序渐进地阐明统计物理的基本理论,使学生准确、清晰地掌握统计物理的基本概念,对热物理理论有完整系统的理解,能够全面、灵活地运用,为进一步学习更高深的知识和了解物理学的最新成果奠定扎实的基础。

3. 以量子理论为基础,认识微观运动本质

为使学生准确认识微观运动本质,“统计热力学”将系综理论建立在量子论的基础上,而经典统计则作为量子统计的极限给出。

传统体系多从经典统计入手,然后进入量子统计。我们教学实践的体会是,物理学历史上由经典论到量子论的认识过程没有必要在统计物理教学中重演。通过现设“普通物理学”课程的学习,学生已理解微观运动遵从量子力学规律,并具备了一定的量子论知识基础,在量子论基础上建立统计物理理论顺理成章。事实上,微观运动的正确描述须用量子理论,而量子统计与经典统计就统计规律性而言并无本质区别,经典统计只是量子统计的极限情形而已。以量子论为基础构建统计物理体系,更有利于学生尽快认识事物的本质,迅速进入对前沿科学的学习。

三、关于体系的兼容性——几个共同关注的问题

“统计热力学”以系综理论为主线,以量子论为基础,大幅提高统计物理比重,适当地增加了课程深度。在课时缩减,招生规模扩大的形势下,实施上述改革更有一定风险和难度。另一方面,新体系能否与流行体系兼容,也是国内同行普遍关注,需要在优化改革方案过程中解决的问题。为化解难度,提高兼容性,在体系建立和教学实践中,我们着力解决了以下几个问题:

问题之一:量子理论与系综理论理解困难问题。如前所述,学习本体系前应具备一定的量子论知识。目前国内物理专业的“热统”课程多排在“量子力学”之前。这就不可避免地出现了“前量子力学”困难。为解决这一问题,我们在课程引论中安排了量子论基本知识的讲授,介绍量子态、能级、简并、全同性、对应关系等概念。如此处理,再结合普通物理“原子物理学”中学到的量子力学初步知识,学生就能够较好地接受“量子统计”有关概念。此外,我们将“量子态”和“量子统计法”两个初学者较难理解的概念做分散处理:分别在第1章引入“系综”概念之前和第6章巨正则系综概念之后讲授,既分散了难点,又使概念和运用衔接紧密,有利于及时消化。

系综理论是统计物理中最核心、最抽象的内容,也是统计物理教学的难点。国内流行体系将系综理论与常用统计分布及计算方法分离,安排在课程最后集中单独介绍。我们实践的体会是,这种处理将多个难点(三种系综及相应热力学关系)集中,增加了学生的理解困难;加之系综概念孤立于基本统计方法和应用之外,更显抽象枯燥。学生学后或觉不知所云,或难纵观全局,终致应用乏力。鉴于此,我们遵循由表及里、由浅入深、循序渐进、层层推进的认识规律,将系综的基本概念和三个系综分散在七章中穿插讲授、逐步深入,并及时运用理论对相应系统的性质加以讨论。这样做,可分散认知难点,并及时结合应用,实现宏观微观的交错,避免枯燥无味的困惑,既保证了热物理理论的系统性和完整性,又解决了系综理论为主线的教学困难。

问题之二:关于最概然法与麦-玻统计问题。最概然(可几)法与麦克斯韦-玻尔兹曼(麦-玻)统计法,是统计物理中应用较广的两个方法。采用系综理论为主线的教学体系,是否会影响这两种方法的学习和运用?这也是国内同仁关注的问题之一。在新体系课程改革和教材编写中,对这两部分内容均给予充分的注意。在第三章(封闭系)导出正则分布和相应热力学公式之后,用两种方法导出麦-玻分布:一是作为近独立子系的平均分布,由正则分布导出;二是从微正则系综出发,用最概然法导出。同时还由麦-玻分布给出热力学公式,并讨论几种分布之间的关系,给出分布的应用实例。实践表明,这种处理模式能全面深化学生对最概然法与麦-玻分布的理解,以致在应用中得心应手;还能强化对系综理论和统计物理体系的理解。

问题之三:热力学基本方法掌握问题。热力学作为一种可靠的宏观理论,从基本定律出发,通过严格的数学推演,系统地给出热力学函数之间的有机联系,将其用于实际问题。深入理解热力学定律的主要推论和热力学关系,熟悉它们的应用,掌握热力学演绎推理方法,是“热统”课程不可或缺的内容。“统计热力学”体系以微观理论为框架组织教学,是否会削弱学生在热力学理论的理解和应用方面的训练?对这个问题,国内同行关注有加,各见仁智,也是我们在课程改革中始终注意的问题。我们的处理模式是:打通热物理宏观与微观理论的壁垒,针对不同宏观条件,在相应章节给出各种系综分布,然后导出热力学公式,并插入相应的热力学理论训练内容,确保足够篇幅讨论平衡态的热力学性质。例如:在建立封闭系的正则系综理论后,插入“均匀物质热力学性质”一章,集中讲授麦克斯韦关系、基本热力学函数和关系、特性函数等概念,介绍热力学基本方法和对典型实例的应用。建立开放系的巨正则系综理论后,又集中介绍与之相关的相平衡、化学平衡等问题的宏观理论。事实上,热物理的微观和宏观理论相得益彰、不可分割。在学习运用统计物理研究宏观过程的规律时,势必也会反复地运用热力学函数、公式和相应方法,使学习者得到相应训练。此外,再提供一定数量的习题,辅之以课外练习,以达到“学而时习之”的效果。这样,新体系虽然大量削减纯粹“热力学”内容,并未削弱对热力学理论的理解和方法的训练,相反可使其得到加强和升华。

内蒙古大学“热统”教学组近20年的课程改革和教学实践证明,用“统计热力学”体系组织本科物理专业“热统”课教学是可行的。采用同样的体系和教材,适当取舍内容,在应用物理和电子科学技术专业组织2学分“统计物理”教学,亦取得一定的经验,其效果令人欣慰。毋庸置疑,笔者主张统计热力学体系,丝毫无意否定“热统分治”的传统教学体系。两种体系,各有千秋,互补互鉴。究竟采用何种体系组织教学,还应视培养目标、师资力量、学生状况等,因地制宜地选择。

参考文献:

[1] 梁希侠,班士良. 统计热力学[M]. 呼和浩特:内蒙古大学出版社,2000.

梁希侠,班士良. 统计热力学(第二版)[M]. 北京:科学出版社,2008.

[2] 梁希侠,班士良,宫箭,崔鑫. 统计热力学(第二版)学习辅导[M]. 北京:科学出版社,2010.

[3] 王竹溪. 热力学简程[M]. 北京:高等教育出版社,1964.

[4] 王竹溪. 统计物理学导论[M]. 北京:高等教育出版社,1965.

量子力学的基本理论范文6

关键词 结构化学 教学方法 教学质量 兴趣

中图分类号:G642 文献标识码:A

结构化学是从微观的角度研究原子、分子和晶体结构的运动规律以及物质微观结构与其性能关系的科学。本课程是基础化学的后续和深化,具有知识面广、内容抽象、理论性强等特点,要求学生具有较多的数理知识和较强的逻辑思维能力以及丰富的空间想象能力,同时还要努力摆脱宏观现象的传统概念的束缚。因此,在教学过程中出现了教师感觉难教,学生感觉难学的现象,那么如何激发学生学习兴趣和求知欲,提高教学效果,便成为每一位教师必须研究的课题。本文就从教师的教学过程,学生的学习过程以及如何提高结构化学教学等方面进行了积极的思考和探索。

1 关于教师教学过程中的思考

1.1教材的选择

鉴于各个高校化学及相关专业的培养方案和教学内容都有很大差别,在结构化学课程教材的选择上,需要根据本校专业实际的特点,我们选择了由周公度、段连运编著的《结构化学基础》作为教材。本书更加注重介绍结构化学的基本原理,同时也反映结构化学的新成就、新进展以及作者在教学中的经验和体会,全书系统性和连贯性较强,层次分明,讲解清晰,便于教学。本教材共编10章,约60万字,主要包括量子力学基础知识、原子的结构和性质、各类物质的结构化学、化学键理论、晶体化学、研究结构的实验方法等内容。但由于课时有限而课程的内容较多,教师只能对具有代表性的重要章节进行讲解和辅导。根据我校实际和专业设置,结合学生的实际水平和往年教学实践的体会,我们主要讲解第1、2、3、5、6、7、8章,其余章节由同学们自学完成。

1.2教师应精通专业学科,具有扎实而渊博的知识

结构化学课程内容涉及面广、内容抽象、理论性强、教学难度大,教师如果没有过硬的专业理论水平和逻辑思维能力,是很难深刻理解并掌握结构化学的基本概念和基本理论。因此,教师应精通自己所教的专业学科,时刻学习,做一个知识渊博的教师。同时教师要备课充分,思路清晰,对知识的重、难点分析讲解透彻,学会举一反三,融会贯通。

1.3教学方法要灵活多样

单一的教学方法是乏味的,为使整个课堂教学过程充满情趣和活力,这就要求教师要采取灵活多样的教学方法来处理课堂教学。首先,充满激情、幽默生动、严谨标准的教学语言能够调动学生的学习兴趣。其次,教师可以根据不同的教学内容采用不同的教学方法,启发学生思维,提升课堂教学效果。比如启发式教学、互动式教学、讨论式教学和类比式教学等等。比如“物质波”和“机械波”的异同,“波函数”和“电子云”的联系等采用类比的方法加以解释和说明,使课堂教学效果能够得到较大提高。再者,在课堂教学中适当的展示实物模型,可以激发学生的学习兴趣,提高教学质量。

1.4教学中重视科研,以科研促进教学

高校教师既要从事教学,又要进行科研,二者的有机结合有利于提高教学质量。因此,教师应该精心选择有关结构化学方面的一些新成就和新进展、新文献融入课堂教学,丰富课堂教学内容,从而激发学生的学习热情。同时,在教学中渗入化学史教育,像普朗克、薛定谔、德布罗意、R.B.伍德沃德等科学家坚持不懈地对真理的追求及其奋斗历史,不仅可以陶冶学生的情操,激发他们的学习兴趣,还可以培养他们的科学思想、科学精神、优秀的思想品质以及科学探究能力。

1.5教学中充分利用多媒体辅助教学,提高教学效果

多媒体教学存在直观、形象、生动、信息量大的优点,具有传统教学无法比拟的优势。多媒体的合理应用能突破教学重难点,丰富结构化学课堂教学的形式,通过图、文、声、像等手段,能把抽象的理论知识转化成具体、形象、直观、真实的语言材料,启迪学生思维,加深学生对理论知识的理解。例如Pauling的杂化轨道及价键理论、分子对称性及点群、等径圆球密堆积结构、晶体结构周期性与点阵等内容都比较抽象,采用多媒体软件辅助教学可将这些抽象、微观、枯燥的理论知识形象化、具体化、感性化,易于学生理解,有利于激发学生学习兴趣,提高学习效率。

1.6理论与实践相结合,重视实验教学

教师在强调理论知识学习的同时,应该把实验教学渗透到结构化学教学中,使其不再是纯粹的理论,真正做到理论与实践相结合。因此,教师在教学中可以适当地安排一些实验,也可以鼓励学生积极参与教师的研究课题,这样可以加深学生对理论知识的理解,培养学生的理论联系实践的能力,进而提高教学质量。比如磁化率的测定,偶极距的测定,在X射线粉末衍射仪上测定晶体的结构等等。

2 关于学生学习过程中的思考

2.1加强自主学习

结构化学课程是化学学生本科阶段初次接触的理论课程,内容广泛,涉及到较多的高等数学、物理学及量子力学等基本知识。因此,学生学习结构化学时感觉很费力,致使学生对该课程产生排斥心理。所以,学生应加强自主学习,提前预习,上课注意听讲,不懂就学,不懂就问,学会分析和归纳总结,真正做到学有所思、思有所得、得有所成,从心理上不再害怕结构化学。

2.2抓住重点,建立完整知识体系

本科阶段的结构化学课程主要包括三种理论(量子理论、化学键理论和点阵理论),三种结构(原子结构、分子结构和点阵结构),三个基础(量子力学基础、对称性基础和晶体学基础)。在学习结构化学过程中一定不要过于深究其数学推导过程,需要分清主次,明确重点,做到抓重点、抓中心、抓关键,建立完整知识体系。只有这样才能做到不本末倒置,才能把握住问题的关键,才能体现学习达到学深、学透的效果。

2.3充分利用网络教学资源

当今社会,网络资源丰富多彩,各种信息以多媒体化――文字、图像、声音、视频图像、动画等呈现,使结构化学抽象的内容生动化、形象化、多样化。因此,学生除了学习教材外,要善于合理利用校园网、国际互联网中丰富的教学资源,这样,不但激发了其探索新知的欲望,而且使他们对课堂的知识有了更深刻、更全面的理解。

2.4多阅读相关科技文献,了解最新发展动态

当今世界各国科学技术迅猛发展,每时每刻都有大量的科技文献产生,学生通过阅读科技文献可以了解国内外结构化学相关领域的发展动态和成果、跟踪国内外某个领域的研究进展。所以学生要多搜集和阅读一些前沿的科技文献资料,有利于专业知识的巩固、深化以及综合能力和创造思维的提高。这样他们就可以变被动学习为主动学习,激发了学习潜能,提高了学习积极性。

2.5 学会沟通和交流

在传统教学过程中,学生学习方式单一、被动,学生只是被动地接受知识,缺少自主探索、合作交流、独立获取知识的机会。因此,学生与学生之间,学生与老师之间应该加强沟通和交流,从而产生生生之间、师生之间情感的交融,促进学生学习能力提高。

2.6 重视理论联系实践

学生除了学习基本理论知识外,应该充分利用课余时间参加大学生科技创新活动、参与教师科研课题、撰写科研专题报告、发表学术论文等,培养自主学习与创新思维能力,提高分析与解决问题的能力。只有做到理论与实践的有机结合,才能把自己所学的理论知识转化为认识和分析、解决问题的能力。

3 结论

“教学有法,但无定法,贵在得法”,只有通过授课教师不断的改进教学方法,更新教学理念,探索教学规律,创新教学模式,避免教学方法上和学习方法的单一化,不断强化学生学习兴趣,真正做到教与学的和谐统一,充分调动学生的学习积极性,才能提高教学质量。

基金项目:周口师范学院教育教学改革研究项目(J201421)。

参考文献

[1] 潘道皑,赵成大,郑载兴.物质结构(第2版) [M].高等教育出版社出版,2004.