量子化学和量子力学的关系范例6篇

前言:中文期刊网精心挑选了量子化学和量子力学的关系范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

量子化学和量子力学的关系

量子化学和量子力学的关系范文1

论文摘要:将量子化学原理及方法引入材料科学、能源以及生物大分子体系研究领域中无疑将从更高的理论起点来认识微观尺度上的各种参数、性能和规律,这将对材料科学、能源以及生物大分子体系的发展有着重要的意义。

量子化学是将量子力学的原理应用到化学中而产生的一门学科,经过化学家们的努力,量子化学理论和计算方法在近几十年来取得了很大的发展,在定性和定量地阐明许多分子、原子和电子尺度级问题上已经受到足够的重视。目前,量子化学已被广泛应用于化学的各个分支以及生物、医药、材料、环境、能源、军事等领域,取得了丰富的理论成果,并对实际工作起到了很好的指导作用。本文仅对量子化学原理及方法在材料、能源和生物大分子体系研究领域做一简要介绍。

一、在材料科学中的应用

(一)在建筑材料方面的应用

水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。

钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca钙矾石、含Ba钙矾石和含Sr钙矾石的Al-O键级基本一致,而含Sr钙矾石、含Ba钙矾石中的Sr,Ba原子键级与Sr-O,Ba-O共价键级都分别大于含Ca钙矾石中的Ca原子键级和Ca-O共价键级,由此认为,含Sr、Ba硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。

将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。

(二)在金属及合金材料方面的应用

过渡金属(Fe、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。

量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。

二、在能源研究中的应用

(一)在煤裂解的反应机理和动力学性质方面的应用

煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。

量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子,如低级芳香烃作为碳/碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian98程序中的半经验方法UAM1、在UHF/3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3LYP/3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。(二)在锂离子电池研究中的应用

锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。

锂离子电池又称摇椅型电池,电池的工作过程实际上是Li+离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago等[8]用半经验分子轨道法以C32H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago等[9]用abinitio分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li-C和具有共价性的Li-Li的混合物。Satoru等[10]用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。

随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。

三、在生物大分子体系研究中的应用

生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。

综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。

参考文献:

[1]程新.[学位论文].武汉:武汉工业大学材料科学与工程学院,1994

[2]程新,冯修吉.武汉工业大学学报,1995,17(4):12

[3]李北星,程新.建筑材料学报,1999,2(2):147

[4]闵新民,沈尔忠,江元生等.化学学报,1990,48(10):973

[5]程新,陈亚明.山东建材学院学报,1994,8(2):1

[6]闵新民.化学学报,1992,50(5):449

[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1

[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717

[9]AgoH,KatoM,YaharaAK.etal.JournaloftheElectrochemicalSociety,1999,146(4):1262

量子化学和量子力学的关系范文2

化学的学科发展,可以提到许多方面,如飞秒化学。化学向生物学和医学、材料设计、能源、大气和环境化学、国家安全与个人安全等领域的拓展等。在本文中,要着重说的是:化学与化学工程的重新融合。

20世纪初,化学工程从应用化学中脱胎而出,经历了单元操作和三传一反,形成了化学工程学,从以经验为主过渡到有一定预测功能的较完整的理论,从而导致化学与化学工程的分离。这种情况在20世纪90年生了变化,基础化学研究与化学工程之间发生了空前的交叠和渗透。化学家越来越多地介入复杂系统的构造、分析和使用中,这些自然而然与工程学中的系统方法有关。化学工程师正日益进入越来越多的化学基础领域,在一些情况下甚至处于领导地位。在2003年美国出版的《超越分子前沿――化学与化学工程面临的挑战》一书中,开始使用化学科学来代表所有化学家和化学工程师的工作范围。

化学是一个多尺度的科学。微观尺度是从电子和原子核到分子,例如分子设计。宏观尺度,例如实验室合成、生产装置、化学和物理操作、产品包装和运输。现在大家更关注介观尺度。从化学方面来说,人们关注超越分子的层次,进入超分子、分子集团、大分子、活性中心、器件的作用域,可以说从微观跨越到介观以至宏观层次。从化学工程来说。人们也不再满足于宏观的三传一反,而是逐步深入到颗粒、液滴、气泡、微孔、界面等介观行为,并对微观的机理也表现了浓厚的兴趣。化学由底向上,化学工程由顶向下,在介观层次相遇,互相借鉴,对于化学科学及其理论的发展,形成了巨大的推动。

二、介观尺度的研究

通常化学以量子力学或量子化学为理论基础,用以研究物质的微观结构、化学键和对称等,现在正逐步重视随时间发展的动态演变。在唯象地说明宏观现象时,则应用热力学。进入介观层次后,要采用平衡态和非平衡态的统计力学,后者需要综合应用流体力学的原理。

化学工程通常以流体力学和热力学为理论基础,特别重视湍流理论、多相流和不可逆过程的热力学。计算流体力学有很大的发展。在研究湍流的强相关机理以及涉及介观层次时,统计力学原理起着重要的作用。而在为特征参数找出规律时,则需要量子力学的帮助。

化学科学理论的发展,进入到综合运用量子力学、统计力学、热力学和流体力学的时代,目标是解决多尺度时空结构与宏观平衡和速率的关系。

进行多尺度时空结构研究,有两个重要方面:一是由下向上的预测。从分子结构逐级预测介观层次的各种结构及其随时间的演变,并进而预测宏观层次的结构、反应和分离的特性,以至在反应器和分离装置中的行为,目标是形成无缝的从微观到宏观的链接。要做到这一点,先要搞清楚各个相邻层次的时空结构是如何相互关联的。研究这种关联,首先要有实验的观察,总结经验的规律,然后是理论的建立和推导,作为过渡步骤,也常常是采用模型的半经验方法。二是由上向下的控制。用宏观的手段,逐级控制各级时空结构的形成。这两个方面有着紧密的联系,有相辅相成的关系。

三、对化学教学的启示

为了适应不断变化的新形势,化学教学要做好以下几点:

第一要打好基础。最重要的是,对于本学科的框架结构,通过教学,应使学生有一个系统的完整的初步认识。新的现象、规律和方法不断出现,要善于在学科的框架结构中找到它的位置。

对于物理化学,我们认识到的学科框架包括:

两大类研究对象:平衡和速率。

三个层次:宏观层次,由微观到宏观的过渡层次,微观层次。

两个方面:普遍规律和物质特性。两者结合,可以解决实际问题。

三种方法:研究物质特性,有实验方法、半经验方法和理论方法。从理论上研究物质特性,将进入下一个更深的层次。

例如生物膜中的促进传递和耦合传递。属于宏观层次的速率过程,具体来说是界面中的速率过程。对于普遍规律,要学教材中“传递过程”的内容(当然还有些特殊的地方)。为得到某一个生物膜的传递特性,要采用实验测定,或半经验方法。而要从理论上得到这种特性,必须应用统计力学。

又如耗散颗粒动态学DPD,它是一种介观层次的模拟,实质上它就是分子动态学模拟MD,属于从微观到宏观的过渡层次的普遍规律范畴。特殊之处是应用了粗粒化,引入更低的介观层次,相应还采用了耗散力和随机力。

第二要强调开放。框架是开放的,可以不断更新和充实。内容是开放的,可以经常介绍新的进展。

对于如此丰富的介观层次,上述框架的精神依旧。微观和宏观之间,可以加入各种由低到高的介观层次之间的过渡层次。研究某一介观层次的特性,仍然有实验、半经验、理论这三种方法。理论方法主要采用平衡态和非平衡态的统计力学,相应进入了下一个层次,即从更低的介观层次到该介观层次的过渡层次。

第三要善用类比。类比永远不会完美,却几乎常常有用。物理学是一个由于类比而兴旺的领域,例如,基于借自超导的概念,我们可以至少部分理解超流的氦。物理化学中类比于由理想气体到实际气体,在研究混合物时,我们由理想混合物到实际混合物。

上面提到的耦合传递,可以和耦合反应进行类比。又如密度泛函理论DFT,则是以密度分布p(r)代替传统的位能函数ε(r)为基本变量构筑泛函。变分原理则等价于最概然分布原理或熵最大原理。

当前的薄弱环节是:从微观到宏观的过渡层次;传递速率;进展。

要加强教学资源建设,包括教材、系列参考书、电子教材、网站建设等。

四、教学方法

量子化学和量子力学的关系范文3

【关键词】 缺陷化学;研究生;教学改革

缺陷化学是固体化学的一个重要分支学科,属于材料科学的范畴。材料的所有物理性质都是由它们的精确结构与显微组织所决定的,所以其性质也与其缺陷结构和浓度相关,缺陷化学理论正是解释这些关系的。我们已经充分认识到新材料已经成为各个高新技术的发展的突破口,而材料的性能很大程度上取决于其结构,缺陷化学所研究的固体材料中的微观、显微微观结构的产生、缺陷的平衡等问题对我们了解电子材料、高温材料等的工艺控制和性能具有重要意义。缺陷化学中的许多概念、原理与理论对材料学科有重要的指导作用,如点缺陷理论,该课程对学生其它课程的理论学习和理解,以及科研素养的培养有着重要作用。因此,缺陷化学作为高等院校材料类专业研究生的主要基础课,应受到足够的重视。景德镇学院一直将其作为材料学硕士研究生的必修基础课,是一门理论性和应用性都较强专业主干课程。

随着现代教育体制的不断发展和完善,国内各高校都针对自身的学科建设和研究生培养,对课程开设和内容改革都进行了不断创新和有益尝试。景德镇学院作为以无机非金属材料为重点发展方向的的地方性特色高校,在调研国内一些著名学校该课程的建设和发展的基础上,结合学院多年教学体会和实践,得出了不少有益的经验和启发。

一、改革教学方法、优化教学手段

在现有教学大纲基本要求下,改变过去以“教——学”为主要方法的授课模式,打破以教师为中心的教学价值观,改为注重教师的引导作用,不再以系统简释理论知识为主线,而是强调启发学生的问题意识。合理分配学时,在保证有足够时间讲述重点难点内容的前提下,将属于拓展提高、细化应用等内容调整为学生提问、资料查阅的方式来完成;对于学生的问题,教师学会倾听,不忽视研究生的创新思想火花,而是引导学生了解其不足,鼓励学生大胆深入讨论;同时鼓励学生制作课件试讲,老师有针对性的点评,有意识的将一些与缺陷化学有关的题目留给学生,引导学生利用网络资源,主动获取知识,以此充分调动学生学习的积极性和主动性。例如:“原子尺度缺陷结构的生成分布”、“点缺陷结构域高技术陶瓷性能”等;教师在课堂教学中善于捕捉随时出现的新问题,这些问题有的来自教师的教学准备工作,有的来自教师参与的科研实验工作,有的来自研究生的课题工作。

采用现代教育技术编写、制作、使用多媒体技术。学院《缺陷化学》多媒体教学已经尝试多年,目前制作完成2套课件,包含100多幅实例图片,运用于教学实践后取得良好的教学效果。多媒体技术可以把微观世界的抽象性在虚拟世界里具体化,借助于计算机技术,学生能够直观感受原子、分子和固体内部,探索微观世界的奥妙,从而显著改善教学效果。多媒体教学广泛采用分子图形软件制作立体感强、可实时操作的动态模型,彻底解决了实物模型种类有限、数量不足的困难。通过绘制原子尺度缺陷结构、点缺陷模型、晶体三维点缺陷等,使抽象的概念具体化,最终改进教学效果。

针对课程重点难点,在教学中明确教学内容,合理分配学时,分类将属于基础性知识点交由学生自学,如晶体缺陷的类型、点缺陷的表示方法及缺陷反应方程式等;重点难点由老师诠释讲解,如电子缺陷、缺陷的类化学平衡等,将属于拓展提高、疑难问题辨析讨论,进一步应用细节等内容调整为给学生提问题,引导学生通过思考、查阅资料的方式完成,如含有杂质的晶体中缺陷的平衡等内容。

二、充分结合自身特点,利用科研促进教学

学院材料学研究生主要课题方向集中在无机非金属材料方面,以高性能结构陶瓷、功能材料为主,这就要求我们的专业基础课程要能够很好的为学生开展课题研究打下基础。

我们通过介绍缺陷化学与材料学专业其他课程的关系,使学生了解缺陷化学对其专业学习的重要性,引起学生对本课程学习的高度重视。比如讲到晶体结构和由于掺杂引起的缺陷内容时,可以介绍当前高科技领域的发展基本都是通过掺杂引起材料能带发生变化的特点,激励同学努力学习好这门大部分高科技所需要的基础知识;以固体材料的点缺陷结构为主线,引导学生深刻理解物质的结构决定性质的原理,比如为了让学生更好地掌握晶体的结构缺陷和性质的关系,如必须使学生真正理解什么是位错运动,实际晶体结构中的位错是什么样子。

在教学中结合教师开展的科研课题,准确恰当的使用实例在说明利用缺陷化学原理指导制备功能材料的方法。如“BaTiO3正温度系数热敏材料的研制”,在家用电器、医疗等方面有广泛应用的BaTiO3热敏材料的研制正日益受到国内外广泛关注,这种材料正式利用缺陷化学原理与晶界理论而制造与发展的。又如“外界气氛对TiO2性能的影响”,实验发现TiO2在强氧化气氛下进行烧结时,可以获得金黄色的介质材料,如在还原气氛下烧结,却得到一种灰黑色材料,该种材料具有半导体性。为何在不同的气氛下烧结所得到的材料在性质上有如此大的差别,就可以利用缺陷化学的有关知识做出解释。

三、与时俱进,加快课程内容的更新,鼓励交叉学科内容的充实

从1926年弗伦克尔为了解释AX离子晶体导电的实验事实提出“佛伦克尔”缺陷模型以及“肖脱基缺陷”的提出开始,到现在电子能级的缺陷的控制成为新材料研制开发的关键,缺陷化学理论一直在科研实践中逐步发展,并且越来越对高新技术领域产生巨大的影响。缺陷化学的教学也应本着“宽口径、厚基础、强能力、高素质”的要求,不断使研究生更新知识,以适应科技发展和科研工作的需要。如:缺陷化学为剖析点缺陷对陶瓷材料特性提供了极其有效的工具,陶瓷材料的电导率、扩散传导、化学反应速率和传质的动力学都与缺陷的形态和数目密切相关,目前发展较快的功能陶瓷和纳米陶瓷传感器就是很好的教学例证。

随着越来越多交叉学科的出现及其在认识世界和改造世界中发挥作用的不辩事实, 交叉学科在科学领域中的生命力都得到了充分的证明。缺陷化学是一门新兴的交叉学科,涵盖了化学、物理、材料学等课程内容,在教学中结合量子力学、量子化学等的知识可以更加深入的讲解知识点,使学生能够更综合的考虑问题,能够全面的分析解决问题。比如量子化学中基于局域密度泛函和赝势的第一性原理方法可以用来研究金红石相TiO2点缺陷的电子性质,而且对点缺陷模型、点缺陷能量的计算机模拟和第一原理研究也是目前一个研究的热点内容,这对于拓宽学生的知识面,激发学习兴趣,提高其科研水平具有重要意义。

综上所述,缺陷化学在材料类研究生的课程体系中起着相当的重要作用。通过创新思想,利用先进的教学方法和手段,以学促教,融会贯通相关学科内容,以科研带动教学,将充分改善教学效果,大大提高学生的基本素质和创新能力,达到培养21世纪创新人才的迫切需要。

【参考文献】

[1] 于长凤,朱小平. 缺陷化学概论[M] .武汉:武汉理工大学出版社,2010.

量子化学和量子力学的关系范文4

[关键词] 天然化合物波谱解析;天然化合物;教学方法

[中图分类号] Q94 [文献标识码] B [文章编号] 1674-4721(2014)02(b)-0123-03

《天然化合物波谱解析》是研究天然化合物结构的一门课程,适合于中药学、中药制药、制药工程、药物制剂等专业的本科生,是中药学、药学类专业的选修课程之一。通过本课程的学习,使学生掌握如何根据天然化合物的波谱,尤其是四大光谱即磁共振波谱(NMR)、质谱(MS)、红外光谱(IR)、紫外光谱(UV)鉴定其化学结构,并掌握各种结构类型天然化合物的主要波谱特征。

天然药物化学成分研究的重要途径就是利用各种先进的色谱分离技术将中药中所含的化学成分分离出来并鉴定结构,由于各种先进色谱技术的发展,化学成分的提取分离已经变得越来越容易,而化学成分的结构研究主要依靠波谱方法,而波谱解析相对来说比较困难,因此天然化合物的结构解析是天然药物化学成分研究的核心问题与关键步骤。笔者在多年的《中药化学》《天然药物化学》本科及硕士研究生《天然化合物波谱解析》的教学工作,积累了一些经验,于2008年编写出版了《中药化学成分波谱解析》[1]。2012年担任主编组织编写出版了全国高等院校中医药类专业卫生部“十二五”规划教材、全国高等医药教材建设研究会规划教材《波谱解析》[2]。在多年的教学科研工作和编写论著的过程中,对于本科生的波谱解析课程教学方法,积累了一些经验,现总结如下。

1 与《仪器分析》课程的联系与区别

《仪器分析》[3-5]是一门介绍各种现代仪器分析方法的物理和化学原理,仪器的结构原理、测试原理和定性定量分析方法的课程,是药学专业的必修专业课程。《天然化合物波谱解析》是在学习过《仪器分析》中的波谱理论后,对波谱理论的实践应用,会加深对波谱理论的理解。然而,波谱技术的基本原理涉及量子力学、电学、磁学和光学等广泛领域,一般的化学工作者并不精通这些领域,会觉得比较难于理解。《仪器分析》在介绍波谱解析方法时均以小分子有机化合物为研究实例,而中药化学成分的结构比较复杂,结构研究比小分子有机化合物要复杂得多,学生普遍感到比较困难。因此,《波谱解析》在介绍波谱学基础知识时,应避开量子化学等波谱基本原理,以具体天然化合物为例,侧重于介绍波谱的解析方法和应用,以及结构解析的规律和过程,四大光谱中应重点讲授结构解析最有力的方法——磁共振谱。例如,在磁共振理论中要重点讲授化学位移值、耦合常数、峰型等与分子结构的关系,在质谱理论中讲授各种质谱裂解技术的特点、使用范围和选择依据,以及常见天然化合物的质谱裂解特征。掌握这些内容即可解析中药化学成分的结构,这是本课程与《仪器分析》的不同之处。

2 与《中药化学》及《天然药物化学》课程的联系与区别

《中药化学》[6-7]和《天然药物化学》[8-9]是一门运用有机化学、分析化学等现代科学理论和技术等研究中药或天然药物中化学成分的课程,研究内容包括化学成分的物理化学性质、提取分离、结构鉴定、生物合成途径等。这两门课程中虽然举例介绍常见天然化合物的波谱特征,但是没有讲授如何从图谱入手解析结构。

结构鉴定是中药化学研究领域中难度较大的一个环节。《天然化合物波谱解析》课程是本科生在学习《中药化学》或《天然药物化学》课程后,在掌握了天然化合物的结构类型、结构特征和理化性质的基础上,在结构研究方面的进一步深化、提高。因此,本课程在教学内容上应与《中药化学》或《天然药物化学》中介绍的化学成分的类型基本一致,主要包括糖苷类、小分子酚酸类、香豆素、木脂素类、黄酮类、醌类、萜类、甾体类、含氮有机化合物类、脂肪酸类、鞣质类等。对于二苯乙烯类、苯乙醇苷和色原酮类化合物,虽然《中药化学》或《天然药物化学》中没有涉及,但是这些类型的化学成分在天然药物中分布相对比较广泛,而且结构骨架比较有规律,所以也可以适当介绍。而多糖和蛋白质类成分,虽然分布很广泛,但是结构研究非常复杂,需要借助于化学方法和NMR、2D-NMR、3D-NMR、MS-MS等先进的波谱技术。

笔者在本科生、研究生教学中,发现学生虽然学习过波谱理论和常见中药化学成分的波谱特征,但对于解析中药化学成分图谱的学习仍感到比较困难,这是因为四大光谱的解析要比波谱数据分析困难的多,从图谱得到波谱数据需要波谱理论和分析图谱的实践经验。因此,本课程应介绍各类中药化学成分如何从图谱入手解析结构,例如在介绍NMR图谱解析方法时,应教会学生如何分析排除图谱中的溶剂信号、杂质信号、水峰等干扰信号,确定1H-NMR峰面积积分值与氢质子数目的对应关系,多重峰峰型和耦合常数的分析方法等。

3 注意教学内容的代表性

本课程介绍的化合物应为在天然药物中分布较广泛,结构特征具有代表性,在《中药化学》或《天然药物化学》课程教学重点介绍的化合物。例如,在小分子酚酸类化合物中介绍咖啡酸、阿魏酸、苯甲酸等结构解析方法,在黄酮一章中介绍芹菜素、山萘酚、木犀草素、槲皮素、葛根素、芦丁等化合物,在单萜中介绍梓醇、栀子苷等化合物,在三萜中介绍齐墩果酸、熊果酸、羽扇豆醇等化合物,学生对这些化合物的结构比较熟悉,而且结构具有代表性,在中药中分布较广泛,通过解析这些化合物的结构并掌握其波谱特征,就能够熟练解析该类化合物的结构。

4 与研究生课程的区别

本课程是药学类本科生、研究生两个层面均设课的一门必修课程,在教学中应针对不同阶段学生讲授的侧重点不同。对于本科生来说,本课程是一门难度较大的专业课程,因此,应重点介绍在天然药物中分部广泛且结构简单、结构规律明显的化合物,例如黄酮一章中应介绍黄酮类、黄酮醇类、二氢黄酮类、异黄酮类、查尔酮、黄酮碳苷类、二氢黄酮醇、二氢异黄酮、二氢查尔酮、黄烷醇、高异黄酮等其他黄酮就不再介绍;在单萜类化合物中应重点介绍环烯醚萜类,在化合物中讲授紫罗兰酮类,在三萜类化合物中讲授齐墩果酸类化合物,对于结构复杂的倍半萜、二萜、四环三萜可不用讲授;在二苯乙烯类和间苯三酚类化合物中应介绍单聚体,对于二聚体、三聚体等多聚体不再讲授;在含氮化合物中讲授结构简单的麻黄碱类生物碱以及结构规律性强的小檗碱类生物碱;鞣质类化合物中讲授可水解鞣质单聚体,对于可水解鞣质二聚体以上以及缩合鞣质、复合鞣质均不介绍。

5 授课方式

本课程授课过程中给出大量图谱,故需要采用多媒体教学。建议授课时以讨论式教学方式,带领学生分析讨论每个化合物的图谱,详细介绍如何从图谱入手解析各类天然化合物的结构,并且对每类化合物的波谱特征和规律进行归纳总结。

5.1 注重对各类化合物波谱规律、特征的总结

中药化学成分是存在于自然界的天然化学成分,每类成分均有其独特的结构特征,这种结构上的特征会相应地反映在波谱中。因此,解析完每一类化合物后,结构解析中在介绍每类化合物的结构解析方法以后,重点总结各类化合物的波谱特征和规律,这对于学生掌握天然化合物的结构研究方法具有非常重要的意义。

5.2 注重图谱的真实性

本课程授课过程中讲授的各种图谱均应为真实图谱,有些图谱中甚至有杂质信号,这都反映了实验室常规测试的实际情况。教师不能刻意将图谱优化,例如去掉1H-NMR图谱中的溶剂峰、水峰、杂质峰、旋转边峰等干扰信号,图谱解析应具有实战性,否则学生不能很好地掌握图谱解析方法。

综上所述,《天然化合物波谱解析》是本科药学专业本科生的一门难度较大、专业性较强的课程,教学中应根据本科生的特点,选择天然化合物中分布广泛、结构简单、结构规律性强、具有一定代表性的化合物,化合物结构由简到难、从小到大,从真实图谱分析入手,分析讨论图谱,得出波谱数据并推断结构,在此基础上总结每类化合物的波谱特征和规律,使学生较快掌握天然化合物的结构解析方法。

[参考文献]

[1] 冯卫生,王彦志,郑晓珂.中药化学成分波谱解析[M].北京:科学出版社,2008.

[2] 冯卫生.波谱解析[M].北京:人民卫生出版社,2012.

[3] 李发美.分析化学[M].北京:人民卫生出版社,2011.

[4] 梁生旺,万丽.仪器分析[M].9版.北京:中国中医药出版社,2012.

[5] 尹华,王新宏.仪器分析[M].北京:人民卫生出版社,2011.

[6] 匡海学.中药化学[M].北京:中国中医药出版社,2003.

[7] 石任兵.中药化学[M].北京:人民卫生出版社,2012.

[8] 吴立君.天然药物化学[M].北京:人民卫生出版社,2011.