量子力学的认识范例6篇

前言:中文期刊网精心挑选了量子力学的认识范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

量子力学的认识

量子力学的认识范文1

无论是对于大学生还是研究生,量子力学都是一门最基本的课程。它以极其惊人的精确程度解释微观世界的各种现象,对它的深刻理解和广泛应用,产生了给我们的世界带来革命变革的各种高新技术。量子力学语言今日已经成为物理学家们日常必不可少的重要交流工具。然而,绝大多数物理学家都深知,对于量子力学基础的理解存在着难以克服的困难,甚至使人们产生了这样一种印象,即该理论迄今仍然缺少真正令人满意并信服的理论形式。

许多量子力学教科书阐述量子力学的理论形式,并将其用来理解原子、分子、流体和固体的性质,处理辐射与物质的相互作用,使我们对于周围的物理世界有更深刻的理解。还有一些教科书阐明这一学科的发展历史,指出量子力学经历了哪些步骤才达到了现代形式。

本书对为避免由正统解释量子力学概念的困难而找出的各种替代形式,给出了清晰而客观的阐述,仔细地介绍了各种解释的逻辑性和自洽性。作者力求全面和宽泛地评述对于量子力学中许多看似难以解释、哲学上矛盾和违反直觉的奇妙行为,从而使读者对于我们当前对该理论的理解有更全面的认识

全书共分成11章:1.历史回顾;2.目前状况,剩余的概念困难; 3.爱因斯坦、波多尔斯基和罗森定理;4.Bell定理; 5.更多的定理;6.量子纠缠; 7.量子纠缠的应用;8.量子测量; 9.实验:在真实时间看到的量子扁缩; 10.各种各样的解释; 11.附:量子力学的基本数学工具。书末还有11个附录,对于正文内容做出一些数学与物理的延伸和补充。

本书作者长期从事量子力学的教学与研究,他与Claude CohenTannoudji 及Bernard Diu 合作撰写的《量子力学》(Quantum Mechanics)是一部非常著名的教科书,在世界范围内有深远的影响。他在本书中探索了量子力学与生俱来的基本问题和困难,描述并比较了各种各样的解释,讨论了这些解释的成功之处和依然存在的问题。对于那些想要知道量子力学所面对的问题的更多细节但又不具备该学科专门知识的物理和数学的研究人员,本书是理想的参考书;而对于那些对量子物理及其奇特行为感兴趣的科学哲学家也应该很有吸引力;对于想要更进一步钻研量子力学的物理系和科学哲学系的大学生和研究生以及希望扩大自己量子力学知识的理论物理学家,本书提供了难得的和非常有参考价值的丰富资源。

量子力学的认识范文2

量子力学是近代物理的两大支柱之一,它的建立是20世纪划时代的成就之一,可以毫不夸张地说没有量子力学的建立,就没有人类的现代物质文明[1]。大批优秀的物理学家对原子物理的深入研究打开了量子力学的大门,这一人类新的认知很快延伸并运用到很多物理学领域,并且,导致了很多物理分支的诞生,如:核物理、粒子物理、凝聚态物理和激光物理等[2]。量子力学在近代物理中的地位如此之重,所以成为物理专业学生最重要的课程之一。但在实际教学过程中,学生普遍感到量子力学太过抽象、难以掌握。如何改革教学内容,将量子力学的基本观点由浅入深,使学生易于理解;如何改革教学手段,培养学生兴趣,使学生由被动学习变为主动学习。这是量子力学教学中遇到的主要问题。作者从几年的教学中摸索到一些经验,供大家参考。

一、教学内容和方法的改革

传统的本科量子力学教学一般包括了三大部分:第一部分是关于粒子的波粒二象性,正是因为微观粒子同时具有波动性和粒子性,才造成了一些牛顿力学无法解释的新现象,例如测不准关系、量子隧道效应等等;第二部分是介绍量子力学的基本原理,这部分是量子力学的核心内容,如波函数的统计解释、态叠加原理、电子自旋等;第三部分是量子力学的一些应用,如定态薛定谔方程的求解,微扰方法。以上三个部分相互联系构成了量子力学的整体框架[3]。随着量子力学的进一步发展,产生了很多新的现象和成果。例如量子通讯、量子计算机等等。许多学生对量子力学的兴趣就是从这些点点滴滴的新成果中得到的。如果我们仍按传统的内容授课,学生学完了这门课程发现感兴趣的那点东西完全没有接触到,就会对所学的量子力学感到怀疑,而且极大地挫伤了学习自然科学的兴趣。所以作者建议在教学过程中适当添加一些量子力学的新成果和新现象,来激发学生的学习兴趣[4]。在教学方法上也应该按照量子力学的特点有所改革。由于量子力学的许多观点和经典力学完全不同,如果我们还是按照经典力学的方法来讲,就会引起学生思维上的混乱,所以建议从一开始就建立全新的量子观点。例如轨道是一经典概念,在讲授玻尔的氢原子模型时仍然采用了轨道的概念,但在讲到后面又说轨道的概念是不对的,这样学生就会怀疑老师讲错误的内容教给了他们,形成逻辑上的混乱。我们应该从一开始就建立量子的观点,淡化轨道的概念,这样学生更容易接受。

二、重视绪论课的教学

兴趣是最好的老师。作为量子力学课程的第一节课,绪论课的讲授效果对学生学习量子力学的兴趣影响很大,所以绪论课直接影响到学生对学习量子力学这门课程的态度。当然很多学生非常重视这门课程,但学这门课的主要目的是为将来参加研究生入学考试,仅仅只是在行动上重视,而没有从思想上重视起来。如何使这部分学生从被动的学习量子力学变为主动地学习,这就要从第一节课开始培养。在上绪论课时作者主要通过以下几点来抓住学生的兴趣。首先列举早期与量子力学相关的诺贝尔物理学奖。诺贝尔奖得主历来都是万众瞩目的人物,学生当然也会有所关心,而且这些诺贝尔奖获得者的主要工作在量子力学这门课程中都会一一介绍,这样一方面通过举例子的方法强调了量子力学在自然科学中的重要地位,另一方面为学生探索什么样的工作才可以拿到诺贝尔奖留下悬念。抓住学生兴趣的第二个主要方法是列举一些量子力学中奇特的现象,激发学生探索奥秘的动力,例如波粒二象性带来的“穿墙术”、量子通讯、如何测量太阳表面温度等等,这些都很能激发学生学习量子力学的兴趣。综上所述,绪论课的教学在整个教学过程中至关重要,是引导学生打开量子力学广阔天地的一把钥匙。

三、重视物理学史的引入

随着量子力学学习的深入,学生会接触到越来越多的数学公式以及数学物理方法的内容,虽然学生会对量子力学的博大精深以及人类认知能力惊叹不已,但在学习过程中感觉越来越枯燥乏味。并且,学生学习量子力学的兴趣和信息在这个时候受到很大的考验,想要把丰硕的量子力学成果以及博大精深的内涵传达给学生,就得在适当的时候增加学生的学习兴趣。实际上,很多学生对量子力学的发展史有很浓厚的兴趣,甚至成为学生闲聊的素材,因此,在适当的时候讲述量子力学发展史可以增加学生学习量子力学的学习兴趣和热情。在讲授过程中,可以结合教学内容,融入量子力学发展史中的名人逸事和照片,如:索尔维会议上的大量有趣争论和物理学界智慧之脑的“明星照”,或用简单的方法用板书的形式推导量子力学公式。例如在讲到黑体辐射时,作者讲到普朗克仅仅用了插值的方法,就给出了一个完美的黑体辐射公式。而插值的方法普通的本科生都能熟练掌握,这一方面鼓励学生:看起来很高深的学问,其实都是由很简单的一系列知识组成,我们每个人都有可能在科学的发展过程中做出自己的贡献;另一方面教导学生,不要看不起很细微的东西,伟大的成就往往就是从这些地方开始。在讲到普朗克为了自己提出的理论感到后悔,甚至想尽一切的办法推翻自己的理论时,告诉学生科研的道路并不是一帆风顺的,坚持自己的信念有时候比学习更多的知识还要重要。在讲到德布罗意如何从一个纨绔子弟成长为诺贝尔奖获得者;在讲到薛定谔如何在不被导师重视的条件下建立了波动力学;在讲到海森堡如何为了重获玻尔的青睐,而建立了测不准关系;在讲到乌伦贝尔和古兹米特两个年轻人如何大胆“猜测”,提出了电子自旋假设,这些学生都听得津津有味。这些小故事不仅让学生从中掌握的量子力学的基本观点和发展过程,而且对培养学生的思维方法和科研品质都有很大帮助。

四、教学手段的改革

量子力学中有很多比较抽象原理、概念、推导过程和现象,这增加了学生理解的难度。而且在授课过程中有大量的公式推导过程,非常的枯燥。所以在教学过程中穿插一些多媒体的教学形式,多媒体的应用能够弥补传统教学的不足,比如:把瞬间的过程随意地延长和缩短,把复杂的难以用语言描述的过程用动画或图片的形式分解成详细的直观的步骤表达清楚[5]。相对于经典物理来说,量子力学课程的实验并不多,在讲解康普顿散射、史特恩-盖拉赫等实验时,可以运用多媒体技术,采用图形图像的形式模拟实验的全过程。用合适的教学软件对真实情景再现和模拟,让学生多册观察模拟实验的全过程。量子力学的一些东西不容易用语言表达清楚,在头脑中想象也不是简单的事情,多媒体的应用可以弥补传统教学的这块短板,形象地模拟实验,帮助学生理解和记忆。比如电子衍射的实验,我们不仅可以用语言和书本上的图片描述这个过程,还可以通过多媒体用动画的形式表现出来,让电子通过动画的形式一个一个打到屏幕上,形成一个一个单独的点来显示出电子的粒子性;在快进的形式描述足够长时间之后的情况,也就是得出电子的衍射图样,从而给出电子波动性的结论和波函数的统计解释,经过这样的教学形式,相信学生能够更加深刻地理解微观粒子的波粒二象性[6]。但在具体授课过程中不能完全地依赖于多媒体教学,例如在公式的推导过程中,传统的板书就非常接近人本身的思维模式,容易让学生掌握,如果用多媒体一带而过,往往效果非常的不好。所以教学过程中应该传统教学和多媒体教学并重,对于一些现象的东西多媒体表现更为出色;而一些理论方面的东西传统的板书更为有利,两者相互结合可以大大提高教学效率,增强课堂教学效果和调动学生的学习积极性[7]。

五、加强教学过程的管理

量子力学的认识范文3

关键词:量子力学;教学改革;物理思想

作者简介:王永强(1980-),男,山西河曲人,郑州轻工业学院技术物理系,讲师。(河南?郑州?450002)

基金项目:本文系郑州轻工业学院第九批教学改革项目“《量子力学》课程体系与教学内容的综合改革和实践”资助的研究成果。

中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)20-0070-02

“量子力学”是20世纪物理学对科学研究和人类文明进步的两大标志性贡献之一,已经成为物理学专业及部分工科专业最重要的基础课程之一,是学习“固体物理”、“材料科学”、“材料物理与化学”和“激光原理”等课程的重要基础。通过这门课程的学习,学生能熟练掌握量子力学的基本概念和基本理论,具备利用量子力学理论分析问题和解决问题的能力。同时,这门课程对培养学生的探索精神和创新意识及科学素养亦具有十分重要的意义。然而,“量子力学”本身是一门非常抽象的课程,众多学生谈“量子”色变,教学效果可想而知。如何激发学生学习本课程的热情,充分调动学生的积极性和主动性,提高量子力学的教学水平和教学质量,已经成为摆在教师面前的重要课题。近年来,笔者在借鉴前人经验的基础上,结合郑州轻工业学院(以下简称“我校”)教学实际,在“量子力学”的教学内容和教学方法方面做了一些有益的改革尝试,取得了较好的效果。

一、“量子力学”教学内容的改革

量子力学理论与学生长期以来接触到的经典物理体系相去甚远,尤其是处理问题的思路和手段与经典物理截然不同,但它们之间又不无关联,许多量子力学中的基本概念和基本理论是类比经典物理中的相关内容得出的。因此,在“量子力学”教学中,一方面需要学生摒弃在经典物理学习中形成的固有观念和认识,另一方面在学习某些基本概念和基本理论时又要求学生建立起与经典物理之间的联系以形成较为直观的物理图像,这种思维上的冲突导致学生在学习这门课程时困惑不堪。此外,这门课程理论性较强,众多学生陷于烦琐的数学推导之中,导致学习兴趣缺失。针对以上教学中发现的问题,笔者对“量子力学”课程的教学内容作了一些有益的调整。

1.理清脉络,强化知识背景

从经典物理所面临的困难出发,到半经典半量子理论的形成,最终到量子理论的建立,对量子力学的发展脉络进行细致的、实事求是的分析,特别是对量子理论早期的概念发展有一个准确清晰的理解,弄清楚到底哪些概念和原理是已经证明为正确并得到公认的,还存在哪些不完善的地方。这样一方面可使学生对量子力学中基本概念和基本理论的形成和建立的科学历史背景有一深刻了解,有助于学生理清经典物理与量子理论之间的界限和区别,加深他们对这些基本概念和基本理论的理解;另一方面,可使学生对蕴藏在这一历程中的智慧火花和科学思维方法有一全面的了解,有助于培养学生的创新意识及科学素养。比如:对于玻尔理论,由于对量子化假设很难用已经成形的经典理论来解释,学生往往会觉得不可思议,难以理解。为此,在讲解这部分内容时,很有必要介绍一下玻尔理论产生的历史背景,告诉学生在玻尔的量子化假设之前就已经出现了普朗克的量子论和爱因斯坦的光量子概念,且大量关于原子光谱的实验数据也已经被掌握,之前卢瑟福提出的简单行星模型却与经典物理理论及实验事实存在严重背离。为了解决这些问题,玻尔理论才应运而生。在用量子力学求解氢原子定态波函数时,还可以通过定态波函数的概率分布图,向学生介绍所谓的玻尔轨道并不是真实存在的,只是电子出现几率比较大的区域。通过这样讲述,学生可以清晰地体会到玻尔理论的承上启下的作用,而又不至于将其与量子力学中的概念混为一谈。

2.重在物理思想,压缩数学推导

在物理学研究中,数学只是用来表述物理思想并在此基础上进行逻辑演算的工具,教师不能将深刻的物理思想淹没在复杂的数学形式之中。因此,在教学过程中,教师要着重于加强基本概念和基本理论的讲授,把握这些概念和理论中所蕴含的物理实质。对一些涉及繁难数学推导的内容,在教学中刻意忽略具体数学推导过程,着重于使学生掌握其中的思想方法。例如:在一维线性谐振子问题的教学中,对于数学方面的问题,只要求学生能正确写出薛定谔方程、记住其结论即可,重点放在该类问题所蕴含的物理意义及对现成结论的应用上。这样,学生就不会感到枯燥无味,而能始终保持较高的学习热情。

二、教学方法改革

传统的“填鸭式”教学法把课堂变成了教师的“一言堂”,使得学生在教学活动中始终处于被动接受地位,极大地压制了学生学习的主观能动性,十分不利于知识的获取以及对学生创新能力及科学思维的培养。而且,“量子力学”这门课程本身实验基础薄弱、理论性较强,物理图像不够直观,一味采取灌输式教学,学生势必感到枯燥,甚至厌烦。长期以往,学习积极性必然受挫,学习效果自然大打折扣。为了提高学生学习兴趣,激发其学习的积极性,培养其科学探索精神及创新能力,笔者在教学方法上进行了一些有益的探索。

1.发挥学生主体作用

除却必要的教学内容讲解外,每节课都留出一定的师生互动时间。教师通过创设问题情景,引导学生进行研究讨论,或者针对已讲授内容,使学生对已学内容进行复习、总结、辨析,以加深理解;或者针对未讲授内容,激发学生学习新知识的兴趣(比如,在讲授完一维无限深方势阱和一维线性谐振子这两个典型的束缚态问题后就可引导学生思考“非束缚态下微观粒子又将表现出什么样的行为”),[1]这样学生就会积极地预习下节内容;或者选择一些有代表性的习题,让学生提出不同的解决办法,培养学生的创新能力。对于在课堂上不能解决的问题,积极鼓励学生利用图书馆及网络资源等寻求解决,培养学生的科学探索精神。此外,还可使学生自由组合,挑选他们感兴趣的与课程有关的题目进行讨论、调研并完成小组论文,这一方面激发学生的自主学习积极性,另一方面使其接受初步的科研训练,一举两得。

2.注重构建物理图像

在实际教学中着重注意物理图像的构建,使学生对一些难以理解的概念和理论形成较为直观的印象,从而形成深刻的记忆和理解。例如:借助电子束衍射实验,通过三个不同的实验过程(强电子束、弱电子束及弱电子束长时间曝光),即可为实物粒子的波粒二象性构建出一幅清晰的物理图像;借助电子束衍射实验图像,再以光波类比电子波,即可凝练出波函数的统计解释;[2]借助电子双缝衍射实验图像,可使学生更易接受和理解态叠加原理;借助解析几何中的坐标系,可很好地为学生建立起表象的物理图像。尽管这其中光波和电子波、坐标系和表象这些概念之间有本质上的区别,但借助这些学生已经熟知和深刻理解的概念,可使学生非常容易地接受和理解量子力学中难以言明的概念和理论,同时,也可使学生掌握这种物理图像的构建能力,对培养学生的创新思维具有非常积极地作用。

三、教学手段和考核方式改革

1.课程教学采用多种先进的教学方式

如安排小组讨论课,对难于理解的概念和规律进行讨论。先是各小组内讨论,再是小组间辩论,最后老师对各小组讨论和辩论的观点进行评述和指正。例如,在讲到微观粒子的波函数时,有的学生认为是全部粒子组成波函数,有的学生认为是经典物理学的波。这些问题的讨论激发了学生的求知欲望,从而进一步激发了学生对一些不易理解的概念和量子原理进行深入理解,直至最后充分理解这些内容。另外课程作业布置小论文,邀请国内外专家开展系列量子力学讲座等都是不错的方式。

2.坚持研究型教学方式[3]

把课程教学和科研相结合,在教学过程中针对教学内容,吸取科研中的研究成果,通过结合最新的科研动态,向学生讲授在相关领域的应用以培养学生学习兴趣。在量子力学诞生后,作为现代物理学的两大支柱之一的现代物理学的每一个分支及相关的边缘学科都离不开量子力学这个基础,量子理论与其他学科的交叉越来越多。例如:基本粒子、原子核、原子、分子、凝聚态物理到中子星、黑洞各个层次的研究以量子力学为基础;量子力学在通信和纳米技术中的应用;量子理论在生物学中的应用;量子力学与正在研究的量子计算机的关系等,在教学中适当地穿插这些知识,扩大学生的知识面,消除学生对量子力学的片面认识,提高学生学习兴趣和主动性。

3.利用量子力学课程将人文教育与专业教学相结合

量子力学从诞生到发展的物理学史所包含的创新思维是迄今为止哪一门学科都难以比拟的。在19世纪末至20世纪初,经典物理学晴空万里,然而黑体辐射、光电效应、原子光谱等物理现象的实验结果严重冲击经典物理学理论,让经典物理学陷入危机四伏的境地。1900年,德国物理学家普朗克创造性地引入了能量子的概念,成功地解释了黑体辐射现象,量子概念诞生。1905年,爱因斯坦进一步完善了量子化观念,指出能量不仅在吸收和辐射时是不连续的(普朗克假设),而且在物质相互作用中也是不连续的。1913年,玻尔将量子化概念引入到原子中,成功解释了有近30年历史的巴尔末经验光谱公式。泡利突破玻尔半经典、半量子论的局限,给予了令玻尔理论不安的反常塞曼效应以合理解释。1924年,德布罗意突破普朗克能量子观念提出微观粒子具有波粒二象性,开始与经典理论分庭抗礼。[4]和学生一起重温量子力学史的发展之路,在教学过程中展现量子力学数学形式之美,使学生在科学海洋中得到美的享受,从精神上熏陶他们的创新精神。

4.考试方式改革

在本课程的教学中采用了教考分离,通过小考题的形式复习章节内容,根据学生的实际水平适当辅导答疑,注重学生对量子力学基础知识理解的考核。对于评价系统的建立,其中平时成绩(包括作业、讨论、综合表现等)占30%,期末考试占70%。从实施的效果来看,督促了学生的学习,收到了较好的效果,受到学生的欢迎。

四、结论

通过近年来的改革尝试,我校的“量子力学”教学水平稳步提高,加速了专业建设。2009年,我校“量子力学”被评为校级精品课程,教学改革成果初现。然而,关于这门课程的教学仍存在不少问题,如教学手段单一、与生产实践结合不够紧密等等,这些都需要教师在今后教学中进一步改进。

参考文献:

[1]周世勋.量子力学教程(第二版)[M].北京:高等教育出版社,2009.

[2]吕增建.从量子力学的建立看类比思维的创新作用[J].力学与实践,

2009,(4).

量子力学的认识范文4

【关键词】PBL教学法;量子力学;电子科学与技术专业;教学改革

量子力学与相对论的提出,被称为20世纪物理学的两个划时代的里程碑。特别是量子力学的创立,揭示了微观物质世界中物质属性及其运动规律,造就了20世纪人类科学技术的辉煌,推动了原子能技术、航天航空技术、电子技术等方面的发展,并开辟了光子技术的诞生之路,将人类社会推进了信息时代。通过量子力学课程的学习,可使学生掌握量子力学的基本概念和基本理论,具有利用理论知识分析和解决实际问题的能力。量子力学课程的突出特点是理论性强、抽象难懂,在课程教学中需要特别把握好这些抽象理论知识的“入门教育”,把握得当,会达到事半功倍的效果。

根据《国家中长期教育改革和发展规划纲要(2010-2020年)》的文件精神,提高质量是高等教育发展的核心任务,是建设高等教育强国的基本要求。应适应经济社会发展和科技进步的要求,推进课程改革,提高课堂教学质量,充分调动学生学习积极性和主动性,提高学生的创新意识和创新能力。因此,在近几年量子力学课程的教学改革实践中,针对量子力学教学中出现的学生自主学习热情不高的现状,结合量子力学的课程特点,立足于提高学生学习积极性和培养学生科学探索精神及创新能力,提出了基于“PBL教学法”,即基于问题学习(Problem-Based Learning)、以学生为主体的量子力学课程教学改革的研究,摸索出一套行之有效的教学方案。

1 “PBL教学法”设计方案

“PBL教学法”是一种基于问题学习的教学方法,将学习置于复杂的有意义的问题情境中,激励学生积极探索隐含于问题背后的科学知识,实现知识体系的建构和转化,同时鼓励学生对学习内容展开讨论、反思,教师则以提问的方式推进这一过程,最终使学生在一个螺旋式上升的良性循环过程中理解知识,实现学习的不断延续,以促进学生解决问题、自主学习能力的发展,以及创新意识和创新能力的提高。具体设计模式如图1所示。

图1 “PBL”教学法设计模式框图

与传统教学方法相比,“PBL教学法”对教师备课和教学实施过程提出了更高要求。

1.1 PBL教师备课

(1)确定问题。问题是PBL的起点和焦点。问题的产生可以是学生自己在生活中发现的有意义、需要解决的实际问题,也可以是在教师的帮助指导下发现的问题,还可以是教师根据实际生活问题、学生认知水平、学习内容等相关方面提出的问题。

(2)提供丰富的教学资源。教学资源是实施PBL的根本保障。随着网络课程、精品课程体系的建设,教师可以利用网络课程为学生解决问题提供多种媒体形式和丰富的教学资源。

(3)对学习成果提出要求,给学生提供一个明确的目标和必须达到的标准。

1.2 PBL教学实施

(1)学生分组。学生分组后,要让每个小组清楚地知道自己所要承担的任务,问题解决所要达到的目标,也要确定好小组内每个成员具体的任务分工。

(2)创设问题情境、呈现问题。布朗、科林斯等学者认为,认知是以情境为基础的,发生在认知过程中的活动是学习的组成部分之一,通过创设问题情境可吸引学习者。

1.3 PBL案例分析

例如,在讲到微观粒子的波函数时,有学生认为波函数是经典物理学的波,也有学生认为波函数由全部粒子组成。这些问题的讨论激发了学生的求知欲望,可以通过分组进行小组内讨论,再将讨论结果进行小组间辩论,最后老师对各小组讨论和辩论的观点进行评述和指正,实现学生对一些不易理解的量子概念和原理的深入理解。

2 用量子物理发展的渊源吸引学生

量子力学理论与学生长期以来接触到的经典物理体系相距甚远,尤其是处理问题的思路和手段与经典物理截然不同,但它们之间又不无关联,许多量子力学中的基本概念和基本理论是类比经典物理中的相关内容得出的。因此,在量子力学教学中,一方面需要学生摒弃在经典物理学习中形成的固有观念和认识;另一方面在学习某些基本概念和基本理论时,又要求学生建立起与经典物理之间的联系以形成较为直观的物理图像,这种思维上的冲突导致学生在学习这门课程时困惑不堪。此外,这门课程理论性较强,众多学生陷于烦琐的数学推导之中,导致学习兴趣缺失。教学实践证明,针对以上教学中发现的问题,应特别注意用学科理论自身的魅力吸引学生,通过尽可能还原量子力学早期的发展过程,让学生自己去体会量子力学的基本概念是如何建立并逐步完善的,最大限度地激发学生学习本课程的热情,也有助于学生深入理解教学内容。

3 抽象理论形象化,与学生深入探讨

量子力学课程的突出特点是抽象难懂,对此我们进行了探索。例如在量子力学教学中,“任何实物粒子都具有波粒二象性”是教学中的难点和重点。如何理解波粒二象性?我们可以先从光的波粒二象性入手,通过“光电效应”实验引出问题,通过总结光电效应实验的特点,发现与经典理论之间的严重矛盾,并通过诸多矛盾引出了爱因斯坦的光量子理论和光电方程,进而深入探讨光的本性和实质。随着内容的深入,我们可以进一步提出:波粒二象性是光子和一切实物粒子的共同本质,而且波动性和粒子性这两方面必有某种关系相联系。并顺理成章的指出物质波的概念和德布罗意关系式,从最基本的假定出发作出类比推理,理论的独创性给人深刻的印象。

在此,还可以以学生的口吻提出两个问题。

问题1)物质粒子既然是波,为什么人们在过去长期实践中把它们看成经典粒子并没有犯什么错误?

我们可以通过实物粒子子弹的德布罗意波长的求解找到答案,这是由于普朗克常数h是个小量,一般实物粒子的德布罗意波长λ=h/p很短,短到可以忽略不计。

问题2)在什么情况下可以近似的用经典理论来处理问题?在什么情况下又必须顾及运动粒子的波粒二象性?

进而作出解答,一般来说,当运动粒子的德布罗意波长远小于该粒子本身的尺寸时,可以近似的用经典理论来处理;否则,需要用量子理论来处理。

这种层层深入,带着问题寻找答案的教学方法符合逻辑思维,学生很容易接受,将抽象而复杂的问题形象化、简单化。

4 联系量子力学的未来发展激发学生求知的渴望

尽管量子力学是以微观世界为研究对象,但它对我们日常生活的影响却非常大。例如,在当今科学界还提出了量子通信的新概念,是实现完全保密的最佳通信方式,直接导致引领现今量子信息理论和研究的热潮,代表着21世纪信息技术革命―量子通信技术的发展方向。教师可以鼓励学生对与量子力学紧密相关的实际应用技术进行调研,打消学生学习量子力学“无用化”的顾虑,激发学生自主学习的热情。

5 结束语

近几年,针对量子力学教学中出现的实际问题,结合量子力学的课程特点,我们提出了基于“PBL教学法”的量子力学课程教学改革的研究,取得了一些成效,对于理论性较强的其他课程也具有较强的理论指导意义和推广应用价值。

【参考文献】

[1]国家中长期教育改革和发展规划纲要(2010-2020年)[R].2010.

[2]曾谨言.量子力学:卷1[M].2版.北京:科学出版社,1997:235-278.

[3]邹艳.浅谈量子力学的教学改革[J].物理与工程,2009,19(4):40-41.

量子力学的认识范文5

这是一部对于量子力学教科书很有价值的补充教材。它对当代物理学的一般理论框架给出了独特的介绍。这种介绍的焦点集中于概念性的、认识论的和本体论的各个方面的问题。通过追求如下一些问题的答案来发展理论:什么使物质实体一旦形成则既不会坍缩也不会急剧膨胀?什么使得由不“占据空间”的客体(例如粒子物理标准模型中的夸克和胶子)组成的“占据空间”的客体成为稳定的?如此表现出的物质的稳定性成为为什么物理学定律具有它们现有的特殊形式的理由。这些问题是本书关注的中心问题,作者认为这个问题的部分答案是:量子力学。

全书共分3部分23章。第1部分,概述,主要介绍通向薛定谔方程的两种途径:历史的途径和费曼的路径积分方法。为理解相关的理论概念,简略地介绍了一些必要的数学,包括狭义相对论等,力求让读者熟悉基础。含第1-7章:1.概率:基本概念和定理;2. “旧”量子论的简略历史;3. 数学的一些插叙;4,“新”量子论的简略历史;5. 通向薛定谔的费曼途径(第一阶段);6. 狭义相对论简介;7. 通向薛定谔的费曼途径(第二阶段)。第2部分:深度探讨,从稳定客体的存在导出量子力学的数学形式。含第8-15章:8. 为什么要量子力学; 9. 经典的力:效果; 10. 经典的力:原因;11. 再谈量子力学;12. 自旋;13. 复合系统; 14. 量子统计; 15. 相对论粒子。第三部分:含义,含第16-23章:16. 缺陷; 17. 评价策略;18. 量子世界空间的方方面面; 19. 微观世界; 20. 物质问题; 21. 表现形式;22. 为什么物理定律恰是如此;23. 量子(quanta)和吠檀多(vedanta)(古代印度哲学中一直发展至今的唯心主义理论)。书末尾有一个附录,给出了挑选的一些习题的解答。

本书是作者多年来在印度给大学生讲授侧重于哲学的当代物理学课程的基础上形成的。本书包括某些概念上新的陈述,尽量做到使这种陈述自成完整的体系,而且尽可能的简单,以适合广泛的读者使用。

这是一部从哲学观点讨论现代物理学诸方面问题的专著,作者叙述的内容范围非常广泛,但已经尽可能地简略。对于从事理论物理的教学及相关方面的研究人员是一本很好的参考书。

量子力学的认识范文6

[关键词]量子体系 对称性 守恒定律

一、引言

对称性是自然界最普遍、最重要的特性。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物(DNA的构型对称性等)和工程技术。

何谓对称性?按照英国《韦氏国际辞典》中的定义:“对称性乃是分界线或中央平面两侧各部分在大小、形状和相对位置的对应性”。这里讲的是人们观察客观事物形体上的最直观特征而形成的认识,也就是所谓的几何对称性。

关于对称性和守恒定律的研究一直是物理学中的一个重要领域,对称性与守恒定律的本质和它们之间的关系一直是人们研究的重要内容。在经典力学中,从牛顿方程出发,在一定条件下可以导出力学量的守恒定律,粗看起来,守恒定律似乎是运动方程的结果.但从本质上来看,守恒定律比运动方程更为基本,因为它表述了自然界的一些普遍法则,支配着自然界的所有过程,制约着不同领域的运动方程.物理学关于对称性探索的一个重要进展是诺特定理的建立,定理指出,如果运动定律在某一变换下具有不变性,必相应地存在一条守恒定律.简言之,物理定律的一种对称性,对应地存在一条守恒定律.经典物理范围内的对称性和守恒定律相联系的诺特定理后来经过推广,在量子力学范围内也成立.在量子力学和粒子物理学中,又引入了一些新的内部自由度,认识了一些新的抽象空间的对称性以及与之相应的守恒定律,这就给解决复杂的微观问题带来好处,尤其现在根据量子体系对称性用群论的方法处理问题,更显优越。

在物理学中,尤其是在理论物理学中,我们所说的对称性指的是体系的拉格朗日量或者哈密顿量在某种变换下的不变性。这些变换一般可分为连续变换、分立变换和对于内禀参量的变换。每一种变换下的不变性,都对应一种守恒律,意味着存在某种不可观测量。例如,时间平移不变性,对应能量守恒,意味着时间的原点不可观测;空间平移评议不变性,对应动量守恒,意味着空间的绝对位置不可观测;空间旋转不变性,对应角动量守恒,意味着空间的绝对方向不可观测,等等。在物理学中对称性与守恒定律占着重要地位,特别是三个普遍的守恒定律——动量、能量、角动量守恒,其重要性是众所周知,并且在工程技术上也得到广泛的应用。因此,为了对守恒定律的物理实质有较深刻的理解,必须研究体系的时空对称性与守恒定律之间的关系。

本文将着重讨论非相对论情形下讨论量子体系的时空对称性与三个守恒定律的关系,并在最后给出一些我们常见的对称变换与守恒定律的简单介绍。

二、对称变换及其性质

一个力学系统的对称性就是它的运动规律的不变性,在经典力学里,运动规律由拉格朗日函数决定,因而时空对称性表现为拉格朗日函数在时空变换下的不变性.在量子力学里,运动规律是薛定谔方程,它决定于系统的哈密顿算符,因此,量子力学系统的对称性表现为哈密顿算符的不变性。

对称变换就是保持体系的哈密顿算符不变的变换.在变换S(例如空间平移、空间转动等)下,体系的任何状态ψ变为ψ(s)。

三、对称变换与守恒量的关系

经典力学中守恒量就是在运动过程中不随时间变化的量,从此考虑过渡到量子力学,当是厄米算符,则表示某个力学量,而

然而,当不是厄米算符,则就不表示力学量.但是,若为连续变换时,我们就很方便的找到了力学量守恒。

设是连续变换,于是可写成为=1+IλF,λ为一无穷小参量,当λ0时,为恒等变换。考虑到除时间反演外,时空对称变换都是幺正变换,所以

(8)式中忽略λ的高阶小量,由上式看到

即F是厄米算符,F称为变换算符的生成元。由此可见,当不是厄米算符时,与某个力学量F相对应。再根据可得

(10)

可见F是体系的一个守恒量。

从上面的讨论说明,量子体系的对称性,对应着力学量的守恒,下面具体讨论时空对称性与动量、能量、角动量守恒。

1.空间平移不变性(空间均匀性)与动量守恒。

空间平移不变性就是指体系整体移动δr时,体系的哈密顿算符保持不变.当没有外场时,体系就是具有空间平移不变性。

设体系的坐标自r平移到,那么波函数ψ(r)变换到ψ(s)(r)

2.空间旋转不变性(空间各向同性)与角动量守恒

空间旋转不变性就是指体系整体绕任意轴n旋δφ时,体系的哈密顿算符不变。当体系处于中心对称场或无外场时,体系具有空间旋转不变性。

3.时间平移不变性与能量守恒

时间平移不变性就是指体系作时间平移时,其哈密顿算符不变。当体系处于不变外场或没有外场时,体系的哈密顿算符与时间无关(),体系具有时间平移不变性。

和空间平移讨论类似,时间平移算符δt对波函数的作用就是使体系从态变为时间平移态:

同样,将(27)式的右端在T的领域展开为泰勒级数

四、结语

从上面的讨论我们可以看到,三个守恒定律都是由于体系的时空对称性引起的,这说明物质运动与时间空间的对称性有着密切的联系,并且这三个守恒定律的确立为后来认识普遍运动规律提供了线索和启示,曾加了我们对对称性和守恒定律的认识.对称性和守恒定律之间的联系,使我们认识到,任何一种对称性,或者说一种拉格朗日或哈密顿的变换不变性,都对应着一种守恒定律和一种不可观测量,这一结论在我们的物理研究中具有极其重要的意义,尤其是在粒子物理学和物理学中,重子数守恒、轻子数守恒和同位旋守恒等内禀参量的守恒在我们的研究中起着重要的作用.下表中我们简要给出一些对称性和守恒律之间的关系。

参考文献

[1]戴元本.相互作用的规范理论,科学出版社,2005.

[2]张瑞明,钟志成.应用群伦导引.华中理工大学出版社,2001.

[3]A.W.约什.物理学中的群伦基础.科学出版社,1982.

[4]W.顾莱纳,B.缪勒.量子力学:对称性.北京大学出版社,2002.

[5]于祖荣.核物理中的群论方法.原子能出版社,1993.

[6]卓崇培,刘文杰.时空对称性与守恒定律.人民教育出版社,1982.

[7]曾谨言,钱伯初.量子力学专题分析 (上册).高等教育出版社,1990.207-208.

[8]李政道.场论与粒子物理 (上册).科学出版社,1980.112-119.