前言:中文期刊网精心挑选了量子力学最新研究范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
量子力学最新研究范文1
量子力学是近代物理的两大支柱之一,它的建立是20世纪划时代的成就之一,可以毫不夸张地说没有量子力学的建立,就没有人类的现代物质文明[1]。大批优秀的物理学家对原子物理的深入研究打开了量子力学的大门,这一人类新的认知很快延伸并运用到很多物理学领域,并且,导致了很多物理分支的诞生,如:核物理、粒子物理、凝聚态物理和激光物理等[2]。量子力学在近代物理中的地位如此之重,所以成为物理专业学生最重要的课程之一。但在实际教学过程中,学生普遍感到量子力学太过抽象、难以掌握。如何改革教学内容,将量子力学的基本观点由浅入深,使学生易于理解;如何改革教学手段,培养学生兴趣,使学生由被动学习变为主动学习。这是量子力学教学中遇到的主要问题。作者从几年的教学中摸索到一些经验,供大家参考。
一、教学内容和方法的改革
传统的本科量子力学教学一般包括了三大部分:第一部分是关于粒子的波粒二象性,正是因为微观粒子同时具有波动性和粒子性,才造成了一些牛顿力学无法解释的新现象,例如测不准关系、量子隧道效应等等;第二部分是介绍量子力学的基本原理,这部分是量子力学的核心内容,如波函数的统计解释、态叠加原理、电子自旋等;第三部分是量子力学的一些应用,如定态薛定谔方程的求解,微扰方法。以上三个部分相互联系构成了量子力学的整体框架[3]。随着量子力学的进一步发展,产生了很多新的现象和成果。例如量子通讯、量子计算机等等。许多学生对量子力学的兴趣就是从这些点点滴滴的新成果中得到的。如果我们仍按传统的内容授课,学生学完了这门课程发现感兴趣的那点东西完全没有接触到,就会对所学的量子力学感到怀疑,而且极大地挫伤了学习自然科学的兴趣。所以作者建议在教学过程中适当添加一些量子力学的新成果和新现象,来激发学生的学习兴趣[4]。在教学方法上也应该按照量子力学的特点有所改革。由于量子力学的许多观点和经典力学完全不同,如果我们还是按照经典力学的方法来讲,就会引起学生思维上的混乱,所以建议从一开始就建立全新的量子观点。例如轨道是一经典概念,在讲授玻尔的氢原子模型时仍然采用了轨道的概念,但在讲到后面又说轨道的概念是不对的,这样学生就会怀疑老师讲错误的内容教给了他们,形成逻辑上的混乱。我们应该从一开始就建立量子的观点,淡化轨道的概念,这样学生更容易接受。
二、重视绪论课的教学
兴趣是最好的老师。作为量子力学课程的第一节课,绪论课的讲授效果对学生学习量子力学的兴趣影响很大,所以绪论课直接影响到学生对学习量子力学这门课程的态度。当然很多学生非常重视这门课程,但学这门课的主要目的是为将来参加研究生入学考试,仅仅只是在行动上重视,而没有从思想上重视起来。如何使这部分学生从被动的学习量子力学变为主动地学习,这就要从第一节课开始培养。在上绪论课时作者主要通过以下几点来抓住学生的兴趣。首先列举早期与量子力学相关的诺贝尔物理学奖。诺贝尔奖得主历来都是万众瞩目的人物,学生当然也会有所关心,而且这些诺贝尔奖获得者的主要工作在量子力学这门课程中都会一一介绍,这样一方面通过举例子的方法强调了量子力学在自然科学中的重要地位,另一方面为学生探索什么样的工作才可以拿到诺贝尔奖留下悬念。抓住学生兴趣的第二个主要方法是列举一些量子力学中奇特的现象,激发学生探索奥秘的动力,例如波粒二象性带来的“穿墙术”、量子通讯、如何测量太阳表面温度等等,这些都很能激发学生学习量子力学的兴趣。综上所述,绪论课的教学在整个教学过程中至关重要,是引导学生打开量子力学广阔天地的一把钥匙。
三、重视物理学史的引入
随着量子力学学习的深入,学生会接触到越来越多的数学公式以及数学物理方法的内容,虽然学生会对量子力学的博大精深以及人类认知能力惊叹不已,但在学习过程中感觉越来越枯燥乏味。并且,学生学习量子力学的兴趣和信息在这个时候受到很大的考验,想要把丰硕的量子力学成果以及博大精深的内涵传达给学生,就得在适当的时候增加学生的学习兴趣。实际上,很多学生对量子力学的发展史有很浓厚的兴趣,甚至成为学生闲聊的素材,因此,在适当的时候讲述量子力学发展史可以增加学生学习量子力学的学习兴趣和热情。在讲授过程中,可以结合教学内容,融入量子力学发展史中的名人逸事和照片,如:索尔维会议上的大量有趣争论和物理学界智慧之脑的“明星照”,或用简单的方法用板书的形式推导量子力学公式。例如在讲到黑体辐射时,作者讲到普朗克仅仅用了插值的方法,就给出了一个完美的黑体辐射公式。而插值的方法普通的本科生都能熟练掌握,这一方面鼓励学生:看起来很高深的学问,其实都是由很简单的一系列知识组成,我们每个人都有可能在科学的发展过程中做出自己的贡献;另一方面教导学生,不要看不起很细微的东西,伟大的成就往往就是从这些地方开始。在讲到普朗克为了自己提出的理论感到后悔,甚至想尽一切的办法推翻自己的理论时,告诉学生科研的道路并不是一帆风顺的,坚持自己的信念有时候比学习更多的知识还要重要。在讲到德布罗意如何从一个纨绔子弟成长为诺贝尔奖获得者;在讲到薛定谔如何在不被导师重视的条件下建立了波动力学;在讲到海森堡如何为了重获玻尔的青睐,而建立了测不准关系;在讲到乌伦贝尔和古兹米特两个年轻人如何大胆“猜测”,提出了电子自旋假设,这些学生都听得津津有味。这些小故事不仅让学生从中掌握的量子力学的基本观点和发展过程,而且对培养学生的思维方法和科研品质都有很大帮助。
四、教学手段的改革
量子力学中有很多比较抽象原理、概念、推导过程和现象,这增加了学生理解的难度。而且在授课过程中有大量的公式推导过程,非常的枯燥。所以在教学过程中穿插一些多媒体的教学形式,多媒体的应用能够弥补传统教学的不足,比如:把瞬间的过程随意地延长和缩短,把复杂的难以用语言描述的过程用动画或图片的形式分解成详细的直观的步骤表达清楚[5]。相对于经典物理来说,量子力学课程的实验并不多,在讲解康普顿散射、史特恩-盖拉赫等实验时,可以运用多媒体技术,采用图形图像的形式模拟实验的全过程。用合适的教学软件对真实情景再现和模拟,让学生多册观察模拟实验的全过程。量子力学的一些东西不容易用语言表达清楚,在头脑中想象也不是简单的事情,多媒体的应用可以弥补传统教学的这块短板,形象地模拟实验,帮助学生理解和记忆。比如电子衍射的实验,我们不仅可以用语言和书本上的图片描述这个过程,还可以通过多媒体用动画的形式表现出来,让电子通过动画的形式一个一个打到屏幕上,形成一个一个单独的点来显示出电子的粒子性;在快进的形式描述足够长时间之后的情况,也就是得出电子的衍射图样,从而给出电子波动性的结论和波函数的统计解释,经过这样的教学形式,相信学生能够更加深刻地理解微观粒子的波粒二象性[6]。但在具体授课过程中不能完全地依赖于多媒体教学,例如在公式的推导过程中,传统的板书就非常接近人本身的思维模式,容易让学生掌握,如果用多媒体一带而过,往往效果非常的不好。所以教学过程中应该传统教学和多媒体教学并重,对于一些现象的东西多媒体表现更为出色;而一些理论方面的东西传统的板书更为有利,两者相互结合可以大大提高教学效率,增强课堂教学效果和调动学生的学习积极性[7]。
五、加强教学过程的管理
量子力学最新研究范文2
关键词:量子力学 教学改革 物理思想
“量子力学”作为学习“固体物理”、“材料科学”、“材料物理与化学”和“激光原理”等课程的重要基础,同时也是物理学专业及相关工科专业最核心的基础课程之一。20世纪,“量子学说”被作为物理科学研究和人类文明进步的标志性贡献,引起了广泛地重视。通过对量子学说的学习,能够使学生充分利用到所学的理论知识,对问题进行分析和寻求解决方法,提高学生的科学素质和培养其创新能力。尽管如此,但该门课程所涉及的内容较为空洞、抽象,对学生学习造成阻碍,使学生丧失了学习的兴趣,学生也很难熟练掌握量子学说课程的要点。因此,培养学生的学习兴趣是提高教学质量和教学水平的关键,但是如何调动学生课堂学习的积极性,成为了广大教师很棘手的问题。笔者根据近几年的教学模式,综合长江大学(以下简称“我校”)的教学现状,在“量子学说”教学方面,整理出一套符合我校教学实际的改革和尝试,并取得了较好的效果。
1.“量子力学’’教学内容的改进。量子学说的理论与以往所学的传统物理体系大有不同,重点表现在处理问题的方式上,但是却又与传统物理有着不可分割的关系,可以说,量子学说中很多的概念和理论都来源于传统的物理学说。这就要求在学习量子学说的同时,既要摒弃以往学习物理形成的固有思考方式,又要遵循某些与传统物理中相通之处的原理和学习法则。然而,这种思维上的反差必然导致学生在学习时的困惑,除此之外,量子学说较强的理论性也误导学生陷于数学公式推导的烦恼中,从而使学生丧失了学习兴趣。根据这些教学中存在的问题,笔者提出了以下相应的有益改进。
(1)知识条理化,强化知识背景,增强趣味性。量子学说从诞生到最终建立,每一步的发展都经过了缜密、细致、实事求是的分析,并不断地完善和改进。通过介绍量子学说的发展背景,引起学生的学习兴趣,并有利于学生明确量子学说与传统物理之间的区别,同时让学生在发展历程中寻找合适的学习方法,有利于培养学生的科学思维能力。在解释某些理论和原理时,可以穿插讲述其历史背景,方便学生理解。通过这种方式,既能让学生掌握理论知识,又有利于学生区分量子学说与传统物理的区别[1]。
(2)重在物理思想,压缩数学推导。数学在其相关学科的运用,所起到的作用只是一种辅助工具。在物理研究中也不例外,如果过分强调数学的地位和作用,只会本末倒置。因此,在教学过程中,教师应着重加强基本概念和蕴含的区里实质,而不能将物理思想埋没在数学公式之中,应把重点放在物理意义和实际运用上,只有这样,学生才能保持较好的学习热情。
2.教学方法改革。传统的教学模式使学生一直处于被动接受知识的状态下,抑制了学生自主学习的主动性,不仅不利于学生对知识的获取,更阻碍了其创新思维的培养,而且量子学说的理论抽象,很难被学生理解,传统的教学方法,无法被学生接受,并会引起学生的反感,甚至厌学。如此一来,必然打击学生学习的主动性,更降低了学习效率。为了促进学习效率,提高学生学习兴趣,培养其科学素养,笔者在教学模式上,探索出一些有效的措施。
(1)发挥学生主体作用。教师在课堂学习中有着举足轻重的作用,除了传授学生知识以外,还有着更重要的引导作用。在讲解完规定的教学任务之外,还应设定教师与学生的互动环节,通过创设问题情景,引导学生进行思考和分析,使学生对所学的知识进行归纳总结。另外,还可以通过以问题的形式结束未讲授的内容,引起学生的兴趣,并鼓励学生课下利用课外资源寻求答案;还可以以小组的形式,让学生团结合作,对感兴趣的物理理论进行探讨分析,并完成相关的小组论文。
(2)注重构建物理图像。由于物理理论都比较抽象,不利于理解,所以构建图像很重要,它不仅能够完整地表达所要传达的信息,而且能够方便学生理解和记忆。图像简洁、清新的特点,使学生更熟练地掌握物理图像的构建能力,对培养学生的创新思维也有促进作用。
3.教学手段和考核方式改革。(1)用多种先进的教学模式。采用小组讨论课,可安排小组内讨论,然后是小组之间进行辩论,最后由教师对辩论进行点评和更正。例如,在讲到微观粒子的波函数时,有的学生认为是全部粒子组成波函数,有的学生认为是经典物理学的波。这些问题的讨论激发了学生的求知欲望,从而进一步激发了学生对一些不易理解的概念和量子原理进行深入理解,直至最后充分理解这些内容。另外布置课外论文和邀请知名专家进行讲座都是不错的方式。
(2)坚持研究型教学方式。教学中不再单一地只讲授课堂知识,而是把科研融入到课堂学习之中,结合最新的科研动态,向学生介绍所学的原理在其相关领域中的运用,以引起学生的兴趣。
(3)将人文教育与专业教学相结合。量子概念诞生于1900年,它首次由德国物理学家普朗克引入;1905年,爱因斯坦进一步完善了量子的概念;1913年,玻尔将量子化概念引入到原子中;1924年,德布罗意通过量子的概念提出微观粒子具有波粒二象性;由此可见,物理学史上,力学从诞生到发展所蕴含的创新思维是迄今为止任何一门学科都难以比拟的,教师和学生一起回顾量子力学的发展之路,让学生了解到量子力学的魅力所在,启发学生的创新思维。
量子力学最新研究范文3
关键词:科学史;近代物理;教学改革;高等教育
中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2014)50-0072-03
近代物理是高等学府物理类、化学类和电子类学科的一门必修课,通常放在讲授完大学物理之后。大学物理的内容主要是理论力学、电动力学、热力学和统计物理。近代物理的内容主要是相对论和量子力学。由于相对论和量子力学离我们的日常生活经验比较远,所以学起来比较晦涩难懂。本文介绍了笔者如何通过讲授近代物理知识和对应的近代物理科学史相接合,来提高同学们对近代物理的理解和兴趣。
一、近代物理科学史简介
近代物理的科学史是一部十分生动活泼的历史,时间跨度大概是从1900年到现代。这段时间可以说是十分不平凡和波澜壮阔的一百多年。这期间发生了人类历史上仅有的二次世界大战,其中涌现的具有极高才华和贡献的科学家数量差不多抵得上人类历史上前五千年的科学家数量总合。而人物传记作家也多对他们的人生经历极为感兴趣,出了很多关于他们的传记[1-3]。另外这些近代物理学家们很多本身也颇博学多才,具有良好的文学才能和修养,因此很多人他们自己也出自传。这些传记和自传都能给《近代物理》课堂上的科学史教学提供丰富的素材和参考。相对论和量子力学的理论和公式虽然比较高深难懂,但是它们解释的现象由于跟人们的日常经验相悖,所以还是会引起人们广泛的兴趣。比如时间和空间是不可分的,物体的动量和时间不能同时精确测量,光速是宇宙中最快的速度,这些一般人凭经验的确很难理解。进而人们也会对提出和发现这些理论的科学家们(如爱因斯坦)感兴趣。图1为作者按照时间顺序出场依次在课堂上介绍的量子力学史上各个重要的历史人物。这些科学人物大多数彼此交往比较密切,在学术上好像切磋和影响,进而也加速了思想火花的碰撞和创新性理论的诞生。
在课堂上讲述近代物理科学史的过程中,还可以帮助同学们了解在学术研究过程中需要注意的问题。比如搞科研不能囿于自己的私密空间,而要鼓励多做学术交流。学术交流的好处是:(1)可以了解最新的研究动态;象在近代物理史上著名的哥本哈根学派就是个很好的例子。1921年,在著名量子物理学家波尔的倡议下,成立了哥本哈根大学理论物理学研究所,由此形成哥本哈根学派。其中波恩、海森堡、泡利以及狄拉克等都是这个学派的主要成员。由于哥本哈根学派提供了很好的学术交流环境和学术氛围,在这个学派里鼓励发表不同的观点,不迷信权威,所以涌现出了很多重要的量子力学成果。(2)可以发现自己的不足;比如爱因斯坦于1919年在刚开始推导广义相对论的时候,在公式里人为增加了一个常数项,从而得出他起先所认为的静态宇宙模型。不过1922年亚历山大・弗里德曼摒弃了这个常数项,从而得出相应的宇宙膨胀理论。比利时牧师勒梅特应用这些解构造了宇宙大爆炸的最早模型,模型预言宇宙是从一个高温致密的状态演化而来。到1929年,哈勃等人又用实际的观测证明我们的宇宙的确处于膨胀状态。通过学术交流,爱因斯坦终于接受了宇宙膨胀理论,并承认添加宇宙常数项是他一生中犯下的最大错误。(3)可以激发自己的灵感;比如波尔在1911年从丹麦哥本哈根大学获得博士学位后去英国学习,先在剑桥汤姆逊主持的卡文迪许实验室工作,几个月后又去曼彻斯特在卢瑟福的手下搞科研,这使得他对汤姆逊关于原子的西瓜模型和卢瑟福的核式原子模型了如指掌,同时他又很熟悉普朗克和爱因斯坦的量子学说,这些学术交流活动激发了他的灵感,使得他最终于1913年初创造性地把普朗克的量子说和卢瑟福的原子核概念结合起来,提出了自己的波尔原子模型。(4)可以激励自己不断进步和成长。比如薛定谔在1925年受到爱因斯坦关于单原子理想气体的量子理论和德布罗意的物质波的假说的启发,从经典力学和几何光学间的类比提出了对应于波动光学的波动力学方程,从而奠定了波动力学的基础。但是他一开始并不清楚他自己建立的波动方程中的波具体代表什么物理概念。起初他试图把波函数解释为三维空间中的振动,把振幅解释为电荷密度,把粒子解释为波包,但他无法解决“波包扩散”的问题。最终经过他与波恩的多次学术交流,他逐渐认识到波函数其实是代表粒子在某时某个位置出现的几率,是一种几率波。
二、近代物理知识简介
近代物理的知识主要分为两大类:相对论和量子力学。相对论分为狭义相对论和广义相对论,内容包括伽利略坐标系、迈克尔逊-莫雷实验、洛伦兹变换、闵可夫斯基空间、质能关系式和相对论能量-动量关系式等。量子力学知识包括黑体辐射、光电效应、波尔原子模型、康普顿效应、德布罗意波、戴维逊和革末实验证实了电子的波动性、不确定性原理和薛定谔方程等。这些近代物理理论的公式通常比较复杂,需要用到高等数学的知识,比如薛定谔方程是一个偏微分方程,狄拉克方程里包含矩阵。因而对于近代物理公式的求解就变得十分困难,也不太直观。图2罗列了按时间顺序出现的课堂上需要讲授的量子力学公式。
黑体辐射公式描述的是频谱(单色能密度)u(v,T)和温度以及频率的关系式。光电效应是指每种金属存在截止频率。当照射在金属上的频率小于截止频率时,不管光强多大,照射时间多长,也不会有光电子产生。而当照射在金属上的频率大于截止频率时,不管光强多小,也会产生光电子,且响应时间小于1纳秒。光电子具有各种初速度,其最大初动能与光辐射频率成线性关系,而与光辐射强度无关。当频率在截止频率之上时,单位时间内发射出来的电子数目即光电流强度与光辐射强度成正比。在光电效应理论中,光的能量和光的频率成正比,光的动量和光的波长成反比。
波尔的原子模型给出了电子在分立轨道上的能量公式。能量和电荷的四次方成正比,跟定态的平方成反比。电子在定态具有分立的能量,在定态运动时不辐射电磁能量;但电子可以从一个定态能级跃迁到另一个能量低的定态能级,相应于两个能级差的能量将作为光子被释放出来。德布罗意公式则是给出了物体的能量和动量与其说对应的物质波的波长和频率之间的关系。动量和波长成反比,而能量和频率成正比。薛定谔方程精确地给出了物质波函数的表现形式。微观粒子的量子态可用波函数表示。当波函数确定,粒子的任何一个力学量及它们的各种可能的测量值的几率就完全确定。波函数跟粒子的质量和势能相关。波函数的自变量中包含空间坐标和时间坐标。由于薛定谔方程中出现虚数i,所以波函数原则上应是复数。它同时满足能量守恒,是线性的、单值解的。它给出的自由粒子解与简单的德布罗意波相一致,满足因果律。相对于薛定谔方程之于非相对论量子力学,狄拉克方程[4]是相对论量子力学的一项描述自旋-1/2粒子的波函数方程,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这个方程预言了反粒子的存在。
三、近代物理科学史和近代物理知识的结合讲解
近代物理课如果只是讲解近代物理知识,往往显得枯燥无味,难以理解。其实任何科学知识都不是凭空产生的,往往经历了好几代人的不懈努力,最终从量变到质变,导致相对论或量子力学的建立。薛定谔方程也不是一蹴而就,而是经过很多科学家几十年的努力。如果一开始就讲解薛定谔方程,同学们通常很难理解。而如果采用循序渐进的方法并结合科学史来讲,抽丝剥茧,逐渐揭开真理的面纱,那么同学们不光饶有兴趣,而且更容易理解。图3列出了结合科学史和科学人物的近代物理讲解流程。在讲解科学史的过程中,重点讲解科学人物和他们的研究方法,以及这些近代物理公式是怎么一步步得来的。通过近代物理知识和科学史的结合讲解,可以启发同学,让他们了解任何知识都是建立在前人知识和研究的基础上。比如普朗克的黑体辐射公式来自于瑞利-金斯定律和维恩位移定律的启发。瑞利-金斯定律能够解释低频率下的结果,却无法解释高频率下的测量结果。而维恩位移定律能够解释高频率下的结果,却无法解释低频率下的测量结果。而普朗克公式是把这两种定律公式进行一下内插。通过这种历史背景的介绍,同学们就对普朗克公式的来龙去脉知道得一清二楚,对此公式也就理解得更深刻。普朗克公式其实一开始是一个不得已而为之的公式,然后普朗克对此公式进行反推,发现只有认为能量是量子化的,才能得出跟实验结果相吻合的普朗克公式。能量是非连续而是分立的,即使这个想法在当时是多么背离人的日常经验和惊世骇俗,由于它是唯一的解释,普朗克也就不得不接受了这个能量量子化思想。
而能量量子化这个理论不管在当时看上去多么荒谬,还是有人慧眼识珠的。5年之后的1905年,爱因斯坦凭着他对物理学的敏锐欣然接受了能量量子化这个观点,并在此基础上解释了光电效应。近代物理的科学史是一环扣一环,十分引人入胜。在课堂上授课时通过人物->公式->人物…->公式的顺序把所有近代物理的公式合理地衔接起来,自成一个整体,同学们学习起来就会思路清晰,公式也会记得牢,进而对公式能活学活用。普朗克和爱因斯坦彼此惺惺相惜,而普朗克也是少数很快发现爱因斯坦狭义相对论重要性的人之一。在爱因斯坦发表光电效应的8年之后,波尔也接受了能量量子化这个观点,并进而创新性地提出了三个假设:(1)定态假设,即电子只能在一系列分立的轨道上绕核运动,这些轨道对应确定能量值的稳定态,电子在这些状态(轨道)上不辐射电磁波;(2)跃迁假设,即原子在不同定态之间跃迁,以电磁辐射形式吸收或发射能量;(3)角动量量子化假设,即电子轨道角动量是分立的,首尾位相相同的环波才能稳定存在。波尔根据这三种假设成功推导出了氢原子的光谱公式,和实验结果完全吻合。
接下来就轮到德布罗意登场。在波尔提出原子模型的10年之后,1923年德布罗意创新性地在他的博士论文里提出了波粒二象性的观点。以前的量子论观点都是围绕光和能量,没有触及实际的物质或粒子。而德布罗意破天荒地提出任何物体都具有波粒二象性,既包括光,也包括电子、原子甚至人体等所有宇宙中的物体。德布罗意当时的博士生导师朗之万不认可这个观点,但是他比较有责任心,没有直接否决掉德布罗意的博士论文,而是把论文寄给爱因斯坦定夺。而爱因斯坦对物理的理解十分透彻,他马上承认了德布罗意的博士论文的正确性,并且将论文送去柏林科学院,使此理论在物理学界广为传播。1924年,德布罗意又提出可以用晶体作光栅观察电子束的衍射来验证他的波粒二象性理论,因为电子的波长和晶格间距处于同一个数量级。很快就有人响应了德布罗意的实验设想,1927年,克林顿・戴维森和雷斯特・革末用电子轰击镍晶体,果然发现电子的衍射图谱,和布拉格定律预测的一模一样,这证实了德布罗意的波粒二象性理论正确无误。既然电子是一个波,那就应该有个波动方程。所以德布罗意的理论极大地启发了海森堡和薛定谔,导致这两位科学家同时在1925年分别发表了薛定谔方程和矩阵力学,两者可以得到同样的结果。薛定谔随后证明,两者在数学上是等效的。薛定谔方程使用微分方程的形式,比矩阵力学容易理解,所以近代物理的授课一般只讲薛定谔方程。薛定谔提出了薛定谔方程之后,又有个新问题,就是此方程不符合相对论协变性原理,即物理规律的形式在任何的惯性参考系中应该是相同的。所以需要有另外一个量子力学方程来满足相对论。这个任务最终是3年之后(即1928年)由狄拉克来完成的。至此,在讲述有趣的近代物理科学史的同时同学们也掌握了丰富的近代物理知识。
总而言之,在近代物理的教学过程中结合近代物理科学史进行授课,提高了同学们对于近代物理知识的理解和兴趣,避免了填鸭式的教育,让同学们在掌握知识的同时更了解了科学家们科学的研究方法,“授之以渔不如授之以鱼”。该教改收到了十分良好的效果。
参考文献:
[1]格雷克.牛顿传[M].北京:高等教育出版社,2004.
[2]艾萨克森.爱因斯坦传[M].长沙:湖南科技出版社,2012.
量子力学最新研究范文4
Quantum Themes
The Charms of the Microworld
2009, 225pp.
Hardcover
ISBN 9789812835451
T. Padmanabhan著
量子理论是理论物理学最抽象的一个分支,但是它给出的所有明确而具体的预言无一不在反复的实验中得到了精确的验证。这一不争的事实以及它的深刻和奥妙的哲学含义,总是让普通公众及科普作家甚至一些专业的研究人员着迷不已。最近,人们发现微观物理与宏观物理之间存在着大量意想不到的和极为重要的密切联系和相互影响。按照当前流行的宇宙学观点,暗物质、暗能量、宇宙结构的形式、甚至早期宇宙物理乃至宇宙的起源都与量子理论的概念密切相关。这些新的和影响深远的突破性进展促使作者决心写这样一部科普著作,力图以一种能让受过基础教育的外行知道什么是量子理论、量子理论已经取得了哪些成就以及这个理论未来将走向何方,介绍这些最新的成果。作者强烈地认为,在目前这样做是非常值得的。
作者认为科普著作应避免以下两种极端倾向,一是必须要依靠数学才能解释清楚;二是为了迎合读者而扭曲概念本来的含义。为此作者力求从一开始就用尽可能通俗的语言吸引读者的兴趣,并以严格的科学方式描述概念,避免陷于哲学争论之中或给人一种刻意炒作的印象;其次作者还努力要让本书的内容尽可能多地包括最新的进展,不用数学语言而仔细地解释概念和细节以及那些必需的技术术语,但重点放在量子理论的一些最基本的前沿论题,特别强调量子理论与引力及宇宙学的交汇点。避开了关于量子力学的哲学基础、实验细节以及一些技术应用的详细介绍。
全书内容分成7章,各章的标题分别为:1.无所不能的经典物理学;2. 然后出了个爱因斯坦;3. 微观世界的疯狂;4. 粒子,无所不在的粒子;5. 宇宙和量子;6. 引力的实质;7. 开始的时候……。
这是一部面向普通读者的高级科普读物,其内容新颖,叙述深入浅出、简洁易懂,难易与“New Scientist”或“Scientific American”的文章相当。对于那些对当前成为人们热点话题的暗物质、暗能量以及宇宙的演化感兴趣的一般公众,它是一部值得一读的好书。而对于从事量子理论及宇宙学研究的专家学者以及相关专业的大学生和研究生,本书也极具参考价值。
丁亦兵,
教授
(中国科学院研究生院)
量子力学最新研究范文5
自从 Thompson 于100多年前发现了作为第一个基本粒子的电子以来,粒子物理逐渐成为现代科学的前沿,受到了普遍的关注,吸引了越来越多的实验家和理论家投入其中。他们企图发现物质的最深层结构,探究这些最基本组分之间的作用力,并致力于这些作用力的统一描述的实验和理论研究。粒子物理实验家和理论家们当前还面对许多需要进一步努力解决的难题。比如,到底有多少代夸克和轻子存在?费米子质量是怎么来的?“上帝的粒子”Higgs粒子究竟有没有?CP破坏来源是什么?为什么物质与反物质如此的不平衡?引力怎样才能与其它相互作用统一起来?
本书不仅涵盖了几乎所有重要的基本概念和最新的发展,还详细地介绍了天体物理学、宇宙学与粒子物理之间的新的交叉学科,即所谓的天体粒子物理学的基本知识。
本书的两位作者(兄弟二人)都是巴基斯坦著名的理论粒子物理学家、诺奖得主Salam 的学生,从事粒子物理研究几十年。本书是他们在世界多所大学讲授粒子物理的讲义发展而成的。第1版出版于1992年,2000年出版了第2版,对于原书做了很多修改和补充。本书是2012年出版的第3版。它对于原书做了大量的更新和扩充。有7章彻底改写了。添加了许多新的内容和大量习题。
全书内容共分成18章:1. 导论; 2. 散射和粒子的相互作用; 3. 时空对称性;4. 内部对称性;5. U-群和SU(3);6. SU(6)和夸克模型;7. 色、规范原理和量子色动力学;8. 重味; 9. 重夸克等效理论; 10. 弱相互作用;11. 强子弱流的性质和手征对称性;12. 中微子; 13. 弱电统一; 14. 深度非弹性散射; 15.重味的弱衰变; 16. 粒子的混合与CP-破坏; 17. 大统一、超对称和弦; 18. 宇宙学和天体粒子物理学。书末有两个附录,分别简要地介绍了量子场论和重整化群与运行耦合常数的基本知识。
本书对于粒子物理的介绍非常丰富,推导很详细,而且尽量不用形式化的量子场论而更多地依靠量子力学知识。因此适合于广泛的读者,诸如高能物理、粒子物理、原子核物理学、天文学和天体粒子物理学等领域的研究生和研究人员,选做粒子物理的教材和重要的参考书。
量子力学最新研究范文6
(赤峰学院 物理与电子信息工程学院,内蒙古 赤峰 024000)
摘 要:实验是科学研究的基础,能够创造新知识、产生新技术.近代物理实验对培养学生综合能力具有特殊功能,是培养创新思维品质、分析解决问题能力、实践能力和实验技能的重要环节.近代实验技术在许多科学领域与工程实践中有广泛应用.本文结合原子物理学课程、近代物理实验课程特点和学生实际,探讨近代物理实验的教学方法和教学组织形式,培养学生创新意识和创新能力.
关键词 :创新思维;创新能力;开放式教学
中图分类号:G642.4文献标识码:A文章编号:1673-260X(2015)01-0233-02
1 引言
众所周知,在近代物理学的发展过程中,两个重要的物理实验与经典的物理学理论尖锐矛盾,一个是黑体辐射中的紫外灾难(ultra-violet catastrophe),另一个是迈克尔逊 A.A.Michelson-莫雷E.W.Morley实验.它们导致量子理论和相对论的建立,开创了近代物理的新纪元.Einstein提出的狭义相对论,改变了Newton力学的绝对时空观,而量子理论则涉及物质运动形式和规律的根本改变[1-3].量子理论不仅能够揭示极为广泛的自然现象,同时还引发了极为广泛的新技术上的应用.近代物理理论和技术的应用推动了原子物理、核物理、粒子物理、凝聚态物理和天体物理等的研究,产生了半导体、核工程、激光等新的现代科学技术.这些新技术在能源、材料、工程技术、工农业、国防、生物科学、医学等诸多领域有着十分广泛的应用.纵观物理学的发展过程,实验始终是科学研究的基础,能够创造新知识、产生新技术,是培养创新思维品质、分析解决问题能力、实践能力和实验技能的重要环节.但学生不重视实验课程,动手能力和主动性较差,个性和潜能不能充分发挥,因此我们尝试推进近代物理实验教学改革.
2 合理设置教学内容 突出思想方法和现代实验技术
近代物理学的两大支柱-量子论和相对论,前者研究微观粒子的统计行为,后者则研究高速(接近光速)运动物体的行为,许多经典物理学的规律已不再适用,两者在生活中又没有相应的模型与之对应,因此研究过程离不开新的物理思想、方法和现代测量技术.近代物理实验课程,目的是使学生掌握先进的研究问题的思想、方法、技术和手段,跟踪最新科学研究动态,培养学生创新思维品质,造就高素质人才.我们在近代物理实验项目建设过程中,经充分论证,设置了黑体辐射、弗兰克-赫兹实验、X射线物象分析、原子力显微镜、扫描隧道显微镜、微波测量技术、激光拉曼、塞曼效应、钠原子光谱、核磁共振等12个必修项目,另外我们正在积极建设原子核物理技术实验-快速电子的动量与动能的相对论关系实验项目.这些实验包括了近代物理学发展过程中具有经典性、物理思想影响深远的物理实验,体现实验技能和现代测试技术的实验及现论、现代新技术在各领域应用的实验,使学生掌握基本理论、研究问题的思想方法和高级实验技能,培养学生创新思维意识、创新能力、分析解决问题能力和自主研究问题的兴趣与能力.
3 合理选择教学方法 培养创新思维品质
近代物理实验课程是物理学专业和应用物理学专业高年级学生的必修课程,重在培养学生的创新思维品质和科学素质,提高学生科学认知的水平和能力.12个近代物理实验项目中涉及到原子物理实验、X光技术、微波技术、磁共振技术等[4-5].针对教学内容和学生实际适时调整教学方式方法,对于实验原理、仪器构造、操作注意事项等内容,用现代多媒体技术手段呈现并认真分析讲解.对于具体的操作方法、技能,教师要充分发挥主导和示范作用,学生须严格按操作规程序完成操作.如塞曼效应实验中,法布里-珀罗标准具的调节;激光拉曼实验中外光路的调节及应用程序的使用;扫描隧道显微镜实验中针尖、样品的安装,STM工作软件的使用等以提高学生的基本实验技能.对于综合研究性、设计性的实验内容,教师要创设实验教学环境,提出需要研究解决的问题,采用探索研究式、启发式、讨论式等教学方法并根据实验进展适时引导、启发、答疑、解惑,改变学生机械、被动的重复教材实验过程的状态,引导学生思维活动,培养学生的创新思维品质,同时鼓励学生大胆质疑,相互讨论,使学生不迷信、不盲从于教材和教师,充分发挥学生的积极性、主动性,将实验过程变成积极思维、勇于探索的创造性过程,培养学生创造性思维品质和创新能力.
4 采取开放式教学模式 促使知识向能力转化
12个近代物理实验项目计划课时仅为48学时,这就需要打破传统的教与学、理论与实验、时间与空间的界限,采用开放式的教学模式,实现教与学的互动.开放式教学指设备、场地、内容、时间、兴趣、思维、教学方法、教学手段等全面开放,以促进学生将知识转化为能力.就原子物理部分实验而言,教师可以根据理论课的教学进程、教学内容灵活安排实验内容和时间,课堂上提出要探讨研究的课题,引导学生进行分析讨论并综合运用所学知识、技能,提出研究解决问题的思路方法,设计实验方案.如:在玻尔理论的教学过程中,课堂上可引导学生分析讨论,提出实验验证原子内部能量量子化的思想方法并设计实验方案,然后与弗兰克-赫兹实验进行比较修改完善设计方案.在这个基础上并在这个时间点安排学生完成弗兰克-赫兹实验实验,证明原子内部量子化的量子化.弗兰克-赫兹实验是验证性实验,但教师在授课过程中提出能够引发学生思维的问题,创设思维环境,调动学生积极思考问题,并综合运用所学知识解决问题,理论与实验的有机结合使这个验证性实验变成了设计性实验,促进学生将所学知识向能力进行转化.对于原子的核式结构模型、原子的空间量子化、实物粒子的波粒二象性等教学内容虽然没安排相应的实验或没有实验条件,同样可以采用这种方式进行教学,如验证卢瑟福散射公式、原子的空间量子化等,教师创设思维环境,提出有待解决的问题,引导学生分析讨论,调动学生思维,探求解决方案,然后让学生查阅相关资料,完善改进自己的设计方案,培养获取信息的能力、运用所学知识分析解决问题的能力及创造性思维能力.原子物理学课程中[6-7],巧妙的构思与设计贯穿于教学过程始终,在教学过程中,教师要善于创设问题情境,解放学生的思维空间,学生大胆想象、设计、争论、探究,教师及时引导、修正、解惑、答疑,理论课与实验课有机结合统筹安排的教学效果明显优于传统的二者分开教学的教学效果.
由于设备、场地、内容、时间、兴趣、思维等全面开放,教师可以精选实验仪器设备开发新的实验项目进行科学研究或作为学生的选修项目.对于选修实验项目,教师要明确提出任务要求,学生根据实验任务要求综合运用所学知识技能进行构思,并正确选择实验仪器,设计实验方案,独立进行实验操作,培养学生综合运用知识解决物理问题的能力和创造能力.学生也可以参与教师的科研工作,培养学生实验设计能力、组织实施能力和知识应用能力.除此之外,学生也可根据自己的专业特点、兴趣爱好,有目的有计划的进行自主实验,即学生根据自己要研究解决问题的,查阅资料并认真研究,提出分析、解决问题的构想,自主选择仪器、设计研究方案,然后在教师的指导下独立进行实验研究,对于实验过程中出现的一些新的问题及时与教师研究讨论,不断修改完善实验方案,寻求解决问题的最佳途径.自主实验在时间、空间、实验内容、实验方案的设计等方面给学生充分的自主权,充分的学习思维空间,丰富的想象空间,充分发挥学生的积极性,培养学生观察、思维、设计、操作、创新能力.
近代物理的理论和技术在诸多领域有广泛应用,在教学过程中,将理论课、实验课的教学内容适当拓宽,实现理论、实验、应用同步教学.如将理论课与实验资源、网络资源有机结合,引导学生探究描隧道显微技术、核磁共振层析技术、核能利用、X射线衍射物象分析技术、血管造影技术、激光技术等内容,激发学生的创造热情和潜能,培养学生科学严谨的科学态度.
5 结语
近代物理实验是一门综合性较强的实验课程,在教学过程中恰当的选择教学方法、适当拓展教学内容,采用以学生为主体、教师为主导的开放式实验教学模式,使学生进入创新思维能力、分析解决问题能力、实验技术和实验能力不断提高的良性循环中.开放性教学的实施,给学生充分的学习、思维和想象空间,使学生运用知识、技能独立分析和解决实际问题的能力、动手实践能力、思维能力和创新能力得到提高.但实施过程中也会遇到各种意想不到的问题,教师面临前所未有的挑战,这就要求教师不断充实和完善自己,确保教学质量稳步提升.
参考文献:
〔1〕曾谨言.量子力学教程[M].科学出版社,2003.
〔2〕曾谨言,龙贵鲁,裴寿镛.量子力学新进展(第三辑)[M].清华大学出版社,2003.
〔3〕曾谨言,裴寿镛,龙贵鲁.量子力学新进展(第二辑)[M].清华大学出版社,2001.
〔4〕张天喆,董有尔.近代物理实验[M].科学出版社,2004.
〔5〕吴思诚,王祖铨.近代物理实验[M].北京大学出版社,1995.