粉末冶金新技术范例6篇

前言:中文期刊网精心挑选了粉末冶金新技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

粉末冶金新技术

粉末冶金新技术范文1

关键词:粉末冶金;汽车零件;金属粉末;高性能

粉末冶金材料是指用若干种金属粉末或是金属粉末与非金属粉末作原料, 通过按比例配料、压制成形、烧结等工艺过程而制成的材料。这种生产工艺过程也就是粉末冶金法, 它属于一种不同于熔炼和铸造的方法。由于其生产工艺过程与陶瓷制品工艺极为相似, 所以粉末冶金法又被称为金属陶瓷法。粉末冶金法不仅是制造某些具有特殊性能材料的方法, 同时也是一种无切屑或少切屑的加工方法。它具有生产效率高、材料利用率高、节省机床和生产占地面积等特点。但其也存在一定的缺陷,如金属粉末和模具费用高, 制品大小和形状受到一定限制, 制品的韧性也较差。粉末冶金法常被用于制作硬质合金材料、结构材料、减磨材料、难熔金属材料、摩擦材料、过滤材料、无偏析高速工具钢、金属陶瓷、耐热材料、磁性材料等。

一、粉末冶金技术的含义及其特点

粉末冶金技术附属于材料制备和成形的加工技术,而作为粉末冶金的雏形就是块炼铁技术,块炼铁技术也是人类最初制取铁器的唯一手段,其对人类社会进步作出了巨大贡献。

1、 粉末冶金技术的含义

粉末冶金的方法其实诞生已久。人类早期通过机械粉碎法来制取金、银、铜和青铜的粉末,用来当作陶器等的装饰涂料。早在200年前,一些欧洲国家,如俄、英等国就曾大规模的制取海绵铂粒,并经过热压、锻和模压、烧结等加工工艺来制造钱币和一些贵重器物。1890 年,美国的库利吉发明用粉末冶金方法制造灯泡用钨丝,从而奠定了现代粉末冶金技术的基础。直到1910年左右,人们已经开始用粉末冶金法来大量制造了钨钼合金制品、青铜含油轴承、硬质合金、集电刷、多孔过滤器等,并逐步形成了一整套粉末冶金相关技术。上世纪30年代,旋涡研磨铁粉和碳还原铁粉技术问世后,从而为粉末冶金法制造铁基机械零件较快的发展机遇。从第二次世界大战后,粉末冶金技术得到了较快的发展,新型的生产工艺和技术装备、新的材料和制品不断出现,开拓出一些能制造特殊材料的领域,成为现代工业中的重要组成部分。

2、 粉末冶金技术的主要作用

由于粉末冶金技术的具有特殊优点,使其已成为解决新材料问题的有效途径,而且在新材料的发展中历程中发挥着举足轻重的作用。

粉末冶金技术由于其可以在最大限度地来减少合金成分发生偏聚,消除粗大且不均匀的铸造组织。在制备高性能稀土永磁材料、稀土发光材料、稀土储氢材料、高温超导材料、稀土催化剂、新型金属材料上具有独特的作用。同时还可以制备非晶、纳米晶、准晶、微晶以及超饱和固溶体等一系列高性能非平衡材料,这些材料由于具有优异的电学、光学、磁学和力学性能。因此可以较容易地实现多种功能类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷和功能陶瓷材料等。可以实现净近形成形和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术

二、粉末冶金技术的发展趋势

随着汽车和飞机零件以及切削和成形工具发展的需要,粉末冶金制造零部件的强度和质量都得到了较好的改善和提高。汽车制造业作为粉末冶金零件的最大用户,1996 年汽车行业占有美国粉末治金零件的市场份额的69%,成为美国粉末冶金零件的最大市场。发展粉末冶金需要制取新技术、新工艺及其过程理论。

1 、向全致密化发展

粉末冶金的重点是超细粉末和纳米粉末的相关制备技术,机械合金化技术,快速冷凝制备非晶、微晶和准晶粉末制备技术,粉末粒度、结构、形貌、成分控制技术,自蔓延高温合成技术。粉末冶金技术发展的总趋势是向超细、超纯、粉末特性可控方向发展,从而建立以“净近形成形”技术为中心的各种新型固结技术及其过程模过程理论,如粉末注射成形、挤压成形、喷射成形、温压成形、粉末锻造等。建立以“全致密化”为主要目标的新型固结技术及其过程模拟技术。

2 、向高性能化、集成化和低成本等方向发展

粉末冶金制造零部件相关的新的成形技术层出不穷,如:粉末注射成形、温压成形、流动温压成形、喷射成形、高速压制成形等新技术不断涌现。目前, 粉末冶金技术正向着高致密化、高性能化、集成化和低成本等方向发展。有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展;制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金;用增强致密化过程来制造一般含有混合相组成的特殊合金;制造非均匀材料、非晶态、微晶或者亚稳合金;加工独特的和非一般形态或成分的复合零部件。

3 、粉末冶金产业化发展

由于相邻学科和相关技术的相互渗透和结合.更赋予了粉末冶金新的发展活力。粉末冶金新工艺层出不穷。粉末冶金产业化是指这些技术已比较成熟。甚至在一些国家已有生产规模,但主流还处于研究成果向产业化转化的过程之中。其工艺、设备、市场等已为产业化准备了条件,可以产业化,取得社会效益和经济效益。主要是指该技术实现产业化、集群化、模块化发展。其主要应用领域有汽车用粉末冶金零部件,汽车制造业仍是粉末冶金(PM)发展的牵引力;粉末注射成(PowderInjection Molding(PIM))温压成形技术(Warm Compaction)在众多为提高PM 件密度的生产方法中。温压成形技术被认为是最为经济的一种新工艺。本文将重点介绍以下产业化技术:

① 温压技术

温压技术在上世纪90 年代被誉为粉末冶金技术上重大突破,并于1990年取得了第一项采用一次压制烧结工艺制备高密度铁基(P / M)零件的美国专利。该技术可以使烧结钢中的孔隙度降低到6 %左右,而传统技术的孔隙度为10%以上,产品的密度能达到7.3g/cm3或以上,因此较大程度的拓宽了高密度、高强度烧结钢零件在工业上广泛应用的可能性。

② 模壁

模壁和温压是两个平行的提高铁基结构零件密度的方法。近年来,发展最迅速的是干模壁技术,即采用静电的方法,从而将干剂粉末吸附到模壁上进行,从而很好的避免了湿模壁在制备过程中压坯表面易于粘粉的缺点。

③注射成形

金属注射成形(MIM)是一种将塑料注射成形与粉末冶金技术结合而成的近净成形技术,此技术也是国内外公认的21 世纪粉末冶金的主流技术,被称为“第五代加工技术”。而且该技术也最适于用来大批量生产一些三维复杂形状的零件,同时还可以实现自动化连续作业,从而大大提高生产效率。目前,在一些发达国家,MIM技术已经成为一项最具竞争力的金属成形技术,而且开始大量用于不锈钢粉末冶金生产。

三、粉末冶金机械零件的制造现状与挑战

我国粉末冶金技术起步较晚,自1958年诞生以来,一直是处在蹒跚学步的状态中,而且一直不被人们重视,被当做是一个没有前景的小行业来对待。然而从世界粉末冶金行业发展状况来看,粉末冶金行业却是一个最具市场活力,发展速度极快,同时应用范围也是最广的冶金技术,尤其是日本在粉末冶金技术方面发展飞快,每年生产烧结含油轴承十几亿只。直到上世纪80年年代初,在我国体制改革的大潮中,粉末冶金零件行业正式划归当时的“基础件工业局”进行管理,并结束了粉末冶金零件行业自身自灭的状态,从而得到相应的发展机遇。我国自上世纪90年代至今约20多年间,粉末冶金零件得到迅猛发展,同时也经受住了金融危机的不利影响。

表1是我国自2007-2011年间粉末冶金分会53家会员企业的数据进行统计的结果,虽然我国粉末冶金行业目前显示出盎然生机,但也面临着各方面的挑战。现笔者将自己的针对其中的一些问题以及看法和相应的意见提供给大家参考:

四、粉末冶金机械零件制造技术在汽车行业的应用现状与前景

近年来,由于人们生活观念的改变,同时人们的环保意识也不断提高,因而轻量化的汽车也越来越受人们的亲睐,从而汽车工业也开始大量使用轻质合金材料,如铝合金、镁合金来生产汽车零部件。也正是由于粉末冶金能够很好的避免成分偏析,又可以满足具有各种特定性能的零部件一次性成型的要求。

目前粉末冶金汽车零件主要有两个市场,一个为汽车生产商市场,另一个为汽车维修服务点,即维修配件市场。而汽车生产商市场则是粉末冶金零件的主要市场,通常情况下,汽车生产商会与粉末冶金零件制造企业进行定向合作,从而导致其他零件制造企业难以插足获利。而维修配件市场相对来说则要开放的多,而且需求量也较大,但大多都是存在某些质量问题的货物。从表2可知,我国在汽车制造行业中对粉末冶金技术制造的零件的使用量只有日本的2/3左右,但我国的粉末冶金制造的零件的总量却要比日本的多,可见粉末冶金汽车零件的市场潜力是巨大的。

我国目前汽车行业正处于蓬勃发展期,因此也给我国粉末冶金零件制造企业带来了难得市场机遇。同时根据美国一家信息分析中心预测,2020年我国汽车销量将达到2000万辆,届时中国将超过美国成为全球汽车销量第一的国家。而我国粉末冶金汽车零件的主要制造企业有三十多家,且其主要生产的零部件为汽车所使用的一些轴承或者是小配件,总体呈现出还是处于相对来说较为低端的位置,而关于发动机或调速箱等关键部位的零部件则基本上是整体通过国外进口,同时随着全球经济一体化趋势的不断加速,我国粉末冶金企业毕竟面对国际化市场,这对我们来说既是机遇也是挑战。因此就需要我国粉末冶金企业把握机遇,迎难而上,主动积极的溶于国际化市场当中。

参考文献

[1]韩凤麟.粉末冶金零件与汽车工业[J].新材料产业,2007(11):31-38.

[2]杨伏良,甘卫平,陈招科.粉末粒度对高硅铝合金材料组织及性能的影响[J].材料科学与工艺,2006,14(3):268-271.

[3]印红羽,张华诚.粉末冶金模具设计手册[M].北京:机械工业出版社,2002.

[4]李祖德,李松林,赵慕岳.20世纪中、后期的粉末冶金新技术和新材料(1)――新工艺开发的回顾[J].粉末冶金材料科学与工程,2006,11(5):315-322.

[5]刘文海.铝合金新材料的发展动向[J].机械工业杂志,2007,291:160-162.

[6]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.

粉末冶金新技术范文2

公司的主要竞争优势

1、人才和研发优势

公司充分发挥自身在粉末冶金复合材料领域的强大技术优势,凝聚了一批国内顶尖的新材料人才队伍。其中公司的创始人黄伯云先生曾为我国“863”计划新材料领域首席科学家、中国工程院院士、2004年度国家科技发明奖一等奖获得者。公司现有享受国务院特殊津贴者3人,博士、博士后18人,硕士21人。拥有中级以上技术职称的人数占员工总数的17.39%。与博云新材保持长期合作的中南大学国家级研发机构包括:粉末冶金国家重点实验室、轻质高强结构材料国防科技重点实验室、粉末冶金国家工程研究中心、国家有色金属粉末冶金产品质量监督检验中心等。

2、国家产业政策重点支持优势

博云新材研制的高科技产品涉及的行业被国家列为优先重点发展的行业,符合国家产业政策的发展要求。公司还承担了国家重点工业性实验、国家高新技术产业化示范工程等十余项国家、省、市级科研项目。公司生产的高科技粉末冶金复合材料产品打破了国外竞争对手长期垄断的格局,有利于我国新材料产业赶超世界先进水平,尤其是公司的航空产品(军用、民用飞机刹车副)和航天产品,确保了国家航空战略安全,同时在国防上具有重要战略意义。

3、细分产品市场优势

公司首获国内大型干线飞机一波音757飞机炭/炭复合材料飞机刹车副的PMA证书,公司开发生产的图一154飞机刹车副,获得俄罗斯图波列夫设计局颁发的生产许可证,公司开发的波音737-700/800飞机Goodrich机轮用粉末冶金刹车副是国内唯一取得民航产品生产许可证(PMA)的产品。博云汽车生产的环保型高性能汽车刹车片已配套多家汽车主机厂,近年来的销售额成持续上升局面。博云东方生产的高性能级进冲压模具材料占国内市场份额持续稳定增长。

4、可持续发展优势

博云新材开发的粉末冶金复合材料产品已在航空航天、汽车、高端冲压模具等应用领域得到了市场的充分认可,成功打入了原来由国外企业垄断的细分领域。公司开发的高性能粉末冶金复合材料产品通过在当前航空航天、汽车、高端冲压模具三个领域的应用,为公司产品拓展在其它领域的应用奠定了坚实的技术基础。公司产品未来将逐渐应用于高速列车、工程机械、船舶、石油、化工等领域,保证了公司的可持续性发展能力。

5、价格优势

博云新材的竞争优势尤其体现在产品的价格上。公司生产的粉末冶金复合材料产品主要与国外厂家进行竞争,飞机刹车副、环保型高性能汽车刹车片的价格为国外同类产品的60%左右,高性能模具材料价格为国外同类产品的50%左右,具有明显的价格优势,性价比高。

募集资金用途

粉末冶金新技术范文3

1高速压制成形技术最新研究进展

1.1成形装备

成形设备是实现粉末冶金高速压制成形的硬件基础,是发挥高速压制成形技术优势的前提条件,因此成形设备的研究进展也是高速压制技术研究人员关注的重点。为使冲击锤头获得高速度和高能量脉冲,目前可以采用的技术包括压缩空气、燃烧汽油-空气混合气、爆炸、电容器放电、叠并磁场、磁力驱动和机械弹簧等[2]。目前,基于液压驱动、重力势能驱动、机械弹簧蓄能驱动的高速压制成形设备进展较快。Hydropulsor公司以专利技术液压动力单位控制油路系统实现锤头的高速下降和提升,可实现高速的冲击压制和在极短时间间隔内多次高速压制,该公司已经成功开发出第四代HVC压机,可供应2 000t、900t、350t、100t等不同规格的机型,并销往多个国家和地区,对高速压制成形技术的研究起到积极的推动作用。但该类HVC成形设备成本较高、售价高昂,且压制速度通常在10m/s以下,无加热等辅助装置,在一定程度上限制了它的普及。重力势能驱动的HVC成形装置具有成本低廉,压制速度调节范围大等优势引起了研究人员的高度重视,华南理工大学肖志瑜教授等人[3]自行设计制造了一种重锤式温粉末高速压制成形试验装置。该装置采用独特的冲击结构,直接利用重力势能获得压制能量,通过调节重锤下落高度获得不同的冲击速度,最大理论速度可达18.78m/s,与Ku-mar[4]等人采用的重锤式试验装置冲击速度只能达到10m/s相比,具有明显的优势。该装置通过加热圈直接对模具进行加热,替代了热油加热,简化了加热元件的安装,加热温度可以精确控制,通过测温仪可以读出模具温度。同时,拿掉加热圈,就可以进行传统的高速压制,从而进行高速压制和温高速压制的对比实验,为研究提供了极大的方便。华南理工大学邵明教授等人[5],自行设计和制造了一种基于机械弹簧蓄能的粉末冶金高速压制压力机,并用于基础探索研究。该设备可以将气动、液压或其他动力机构能量储蓄在机械弹簧中,通过一个锤柄锁紧释放机构将压缩弹簧的机械势能瞬间释放,驱动冲击锤头达到10m/s以上的高速度,使压制瞬间的重锤冲击速度达到HVC技术的要求,并将冲击波通过上模冲传递给金属粉末颗粒,使其在极短时间内致密成形。

1.2模具结构优化

模具的稳定性和寿命影响着高速压制技术的工业化应用,而改善高速压制模具寿命的手段不外乎于合理选材和优化模具结构设计。在高速压制过程中,上模冲要承受剧烈的冲击,因此宜选用韧性好的材料;而模具结构优化方面,一般认为冲锤与模冲直径相等且均为等截面杆时,对模冲寿命和撞击效率来说 都 是 最 佳 选 择,但 这 势 必 会 缩 小 高 速 压 制(HVC)技术的应用范围,因此需要对模具进行进一步的结构优化,目前利用高速压制技术除已成功制备了圆柱体、环形、棒体和凸轮等单层零件外,还可以成功制备轴承盖、牙齿冒等复杂多级产品。如Hinzmann[6]等人即成功设计出可用于多级零部件高速压制成形的模具,他指出模具设计时采用单个上模冲和每级一个下模冲的结构更有利于模具寿命和冲击能量的传递;Le[7]等人用高速压制的方法将WC-Fe等材质成功压制成多级试样,并对界面的凝聚力和界面几何尺寸进行了分析;法国机械工程技术中心(CETIM)采用HVC技术成功制备了多阶零件和有内齿或沿高度方向有外齿的复杂形状部件[8];Eriksson等人[9]采用HVC和弹性模相结合的方法,使冲击能量通过弹性模以准等静压方式转移至零件的不同部位进行压制,成功制备了形状复杂的3D齿帽零件。

1.3成形过程数值模拟

数值模拟能大幅度降低设计成本、缩短设计周期,因此对高速压制致密化过程的数值模拟也是近几年的研究热点。对于粉末压制成形的数值模拟,目前主要是基于金属塑性力学和广义塑性力学两种方法,但在低密度情况下,其假设条件与实际情况有出入,因此在实际应用中,粉末压制模型是以完全致密化材料的基本模型为基础,加上给定的一系列引起塑性流动的条件而建立的。Haggblad[10,11]等利用Hopkinson实验装置对硅胶和钛粉进行高速压制,根据所得数据分别建立了相应的数学模型,用有限元法模拟了硅胶模中压制钛粉的情况得出密度分布和最佳尺寸设计,其结果与实验结果一致。中南大学的郑洲顺教授[12]等对高速压制成形过程中应力波的传播特征和粉末流动过程进行了数学建模和数值模拟,其研究结果表明,高速压制过程中,应力波的传播会使粉末应力突跃到峰值,每层的应力峰值随时间以指数衰减,从上层到下层应力峰值呈指数下降;应力波作用后,铁粉压坯垂直方向的线密度值从上层到底层递减,中间各层的线密度均匀;压制过程开始后,密度最先变化的是底层的单元,它们之间的空隙迅速缩小(对应颗粒重排),顶层的单元继续往下运动(对应颗粒塑性变形),顶层颗粒受压继续往下运动而底层颗粒运动基本达到平衡,粉末的密度分布开始趋于均匀,这一过程与高速压制成形的试验结果相符[13]。Jerier等[14]建立了一种高密度粉体接触模型,并在YADE开源软件系统上进行了离散元(DEM)数值模拟,其结果与多粒子有限元数值模拟及试验结果吻合程度均较高,在一定程度上克服了离散元法(DEM)数值模拟不能正确推演高密度粉末压制过程应力演变的缺点,为金属粉末高密度压制的数值模拟拓展了新理论和新方法。秦宣云[15]等通过等效热阻法建立了粉末散体空间导热的并联模型,并考虑了热辐射的贡献,推导的有效导热率的计算公式表达了分形维数、温度对有效导热率的影响。

1.4致密化机理

高速压制技术已经成功用于生产实际,但高速压制的致密化机理目前尚无定论,HVC致密化机理的分 析 也 一 直 是 研 究 热 点 之 一。果 世 驹 教 授 等人[16]提出了“热软化剪切致密化机制”,据此给出了相应的压制方程,该方程可合理地定性与定量解释高速压制下粉末压坯的致密化行为与特性;Sethi等人[2]认为HVC过程中并无冲击波产生,粉末体受冲击时,应力波形是一种逐渐上升的波形,在冲击速度不是非常高的情况下,很难在粉末内产生真正的冲击波;北京科技大学曲选辉教授等人[17]对铁粉、铜粉、钛粉等多种粉末进行的压制中证明了HVC过程中温升现象的存在,但并未发现绝热剪切现象;易明军等[18]初步研究了HVC过程中应力波波形的基本特征和对压坯质量的影响,结果表明,应力波为锯齿波形,每一个加载波形上都有数个极值点,其持续时间受加载速率的影响,且应力波在自由端面反射后会造成拉应力,从而导致压坯表面分层和剥落。陈进[19]对高速压制致密化机理进行了初步探讨,他认为粉末剧烈的塑性变形和颗粒间的摩擦产生较大温升,对粉末致密化起到主导作用。此外在成形过程中,气体绝热压缩对致密化也起到了重要的作用,即在高速压制时,瞬间内气体难以逸出而产生绝热压缩,使温度升高,从而使孔隙中气体分子的热运动加速,使粉末散体的传热增强,能量沉积在颗粒界面而使其软化,有利于进一步致密化。此外,高速压制的压坯密度不仅取决于冲击能量,还与压坯质量有很大关系,因此应该采用既能体现冲击能量又能反映压坯质量的质量能量密度的概念,即单位质量的压坯在压制过程中所受到的冲击能量,单位为J/g。闫志巧等[20]通过钛粉高速压制试验得知,对外径60mm内径30mm圆环形压坯,质量能量密度为40.1J/g时相对密度达到76.2%;而对直径20mm的圆柱形压坯,质量能量密度为121.7J/g时相对密度达到96.0%;不同压坯形状的致密化机理有所不同,圆环形压坯主要以颗粒滑动和颗粒重排为主,而圆柱形压坯主要以塑性变形为主。目前HVC研究的压制速度一般在10m/s左右,其机理无法套用爆炸成形的致密化机理,需要进一步进行研究与探索,尤其是重点研究粉末颗粒的微观行为,如粉末塑性变形、粉末碎裂等,以及粉末颗粒界面的显微组织形成与演变,粉末颗粒边界的扩散、焊合过程,孔隙形状的演变等现象。

1.5 HVC的成分体系适应性

近几年,国内外研究人员已经对铁粉、铜粉、钛粉、合金钢粉末、软磁材料以及聚合物等成分体系的高速压制致密化行为进行了初步探索,如Bos[21]等人所在的SKF公司用HVC技术大规模制备高密度、高强度的铁基和316L不锈钢零件,所生产的铁基齿轮件密度可达7.7g/cm3;王建忠[22,23]等人对铁粉和铜粉的高速压制试验表明:单次压制铁粉时,当冲击能量增加到6 510J时生坯密度达到7.336g/cm3,相对密度约为97%;单次压制铜粉时,当冲击能量为6 076J时,试样的生坯密度达到最大,为8.42g/cm3,相对密度约为95%;Eriksson[24]等人采用HVC技术制备了致密度为98.5%的钛/羟基磷灰石复合压坯,在500℃的低温即可实现材料的烧结;闫志巧[25]等人的研究表明,高速压制可制备高密度的钛粉压坯,当冲击能量为1 217J时,直径为20 mm圆柱试 样的压坯密度 最 大,达 到4.38g/cm3,相对密度为97.4%;中南大学的王志法[26,27]教授等人在950℃高速压制获得了相对密度大于80.65%的W骨 架,从 而 为 高 温 熔 渗 制 备90W-10Cu复合材料奠定了基础;Andersson[28]等人指出,由于高速压制(HVC)技术能显著提高磁粉的压制密度,从而能大幅提高其磁性能,使软磁材料具有更强的竞争力和更广泛的应用范围;Poitou[29]等人对聚四氟乙烯进行高速压制,发现其密度、晶体质量分数、抗磨损性能等物理和力学性能相对常规压制有所提高;Jauffres[30,31]等人采用高速压制技术对超大分子量聚乙烯进行成形,研究发现其杨氏模量、延伸率、屈服强度、蠕变强度和耐磨性等各项性能指标均优于传统压制成形方法。在上述研究的基础上,应进一步拓展合金钢粉末、复合材料粉末、铜合金粉末、钨合金粉末、铝合金粉末、磁性材料及非晶合金材料等成分体系的高速压制技术,从而为制备高密度高性能粉末冶金制品提供新途径。

2高速压制成形技术的发展方向

高速压制是在传统模压中输入高速度机械能产生的新型压制技术,作为近十年才发展起来的一种新技术,其相关基础研究还不够系统和深入。此外,为了进行技术创新,可以考虑将高速压制技术与温压、模壁、复压复烧等工艺有机地结合起来,更深入、更全面地进行探索。尤其要深化以下几个方面的研究:

2.1温高速压制

华南理工大学肖志瑜教授等人[3]提出了一种高速压制和温压相结合的温高速压制(warm high ve-locity compaction,简称WHVC)技术的思路,并设计制造出了实验装备,开展了相关基础研究,并取得一系列研究成果。其实验结果表明,温高速压制能否获得更高的压坯密度,取决于粉末的种类和特性。对于316L不锈钢粉末、混合铁粉、电解铜粉等粉末来说,温高速压制压坯密度高于传统高速压制,这是因为:(1)在温度场条件下,粉末中潮气得到充分挥发,同时粉末中气体也得到较好地排出;(2)在一定的加热温度下能够降低粉末的屈服强度,延缓其加工硬化程度并提高其塑性变形能力,塑性变形能力的改善为颗粒重排过程提供协调性变形,克服粉末颗粒之间的相互牵制,从而降低颗粒重排阻力,有利于颗粒重排的充分进行。而对于铝粉来说,温高速压制和传统高速压制致密化程度相差不大,这是因为铝是面心立方结构的金属,且具有12个滑移系,发生滑移的临界分切应力很小,塑性变形能力非常高,传统高速压制已经能够达到理想的压坯密度。在实验基础上,还对温高速压制的致密化机理和应力波特点进行了分析,认为在致密化过程中温升效应起了很大作用,致密化过程主要以剧烈塑性变形和颗粒冷焊为主。截止目前,温粉末高速压制成形技术的研究只有华南理工大学开展,其研究具有前瞻性和新颖性,有望在高密度成形中获得新的突破。

2.2条件对HVC结果的影响

由于高速压制自身的特点,HVC成形粉末时可在少量剂甚至无剂的条件下成形[32],减少了脱脂和间隙元素引起的污染。如何在剂最少的前提下获得最理想的致密化程度是一个重要的研究目标。对于铁基、铜基等成形性较好的粉末通常采用模壁(即外),如邓三才等[33]研究了模壁对Fe-2Cu-1C粉末高速压制成形效果的影响,研究结果表明,模壁能有效降低粉末与模壁之间的摩擦,减少粉末颗粒与模壁冷焊的机会,相对提高有效压制压力,从而获得较高的生坯密度和生坯强度,以及较弱的弹性后效;此外,在相同压制速度时,有模壁时的最大冲击力要高于无模壁时的最大冲击力,且脱模力要小5~20kN。对于钛粉、钼粉等高硬化速率粉末的高速压制,通常采用内部添加剂的方式(即内),如闫志巧等人[34]研究了剂含量对钛粉高速压制性能的影响,结果表明,加入适量的剂,可以提高钛粉成形时的质量能量密度,从而获得更高密度的压坯。当剂加入量为0.3%(质量分数)时,钛粉成形的最大质量能 量 密 度 为0.192kJ/g,压 坯 密 度 为4.38g/cm3,相对密度为97.4%。此外,适量的剂能提高钛粉压制过程中的最大冲击力降低脱模力,但却会显著降低压坯的强度,密度较低的纯钛压坯的强度显著高于致密度较高的含剂压坯。对于不同剂含量的压坯,当密度接近时,其强度相差不大。在更广泛的成分体系内,研究方式、剂种类、剂添加量对高速压制成形效果的影响,开发适合高速压制条件下的新型剂,如高分子极性剂、大分子极性剂、无机层间化合物剂等都是今后较有价值的研究方向。

2.3复压复烧对HVC效果的影响

一般认为,与传统压制压坯密度只取决于压制压力而不随压制次数的增加而显著提高不同,高速压制的能量是可以累加的,即可以通过多次小冲击能量的压制得到与一次大冲击能量压制相同的效果,但王建忠等[35]对铁粉进行高速压制时发现,在总冲击能量相同的情况下,分两次压制制备的压坯密度最大,分三次压制的最小,一次压制的居中。Metec粉末冶金公司采用高速复压技术(HVR)制造出密度为7.7g/cm3的铁基粉末冶金制品,此外还通过高速压制316L不锈钢金属粉和1 385℃烧结工艺生产出高密度不锈钢零件,此类不锈钢制品在抗拉强度、冲击韧性和延展性等方面性能均较为突出。陈进等[36]在多次压制的基础上对铁粉进行了复压试验,即在两次高速压制之间引入预烧结工序,其研究结果表明,在冲击能量相同的条件下,复压比二次高速压制得到的生坯的密度更高,且随着复压冲击能量的增加生坯密度逐渐增大,在相同复压冲击能量下,预烧结温度为780℃时生坯密度最高,径向弹性后效最小。复压能大幅度提高生坯密度,主要是因为压坯经过预烧结阶段的回复与再结晶,粉末颗粒的强度和硬度下降,弹性储能得到一定的释放,再进行复压后,剂的去除促进更多的粉末颗粒发生塑性变形、微观焊接和熔合,颗粒界面得以消失,这有利于致密度的提高。此外,复压能量更多用于预压坯的塑性变形,弹性能量释放的少,一定程度上减轻了压坯尺寸的弹性膨胀,使得压坯与模具模壁的摩擦减小,从而导致复压时的脱模力较单次高速压制时显著降低。Fe-C粉末复压压坯经过复烧之后,密度高,孔隙少,珠光体较多且分布均匀,裂纹可能在晶粒内部沿着珠光体相或颗粒“烧结”界面展开,诱发了沿晶断裂,使得抗弯强度明显增强。复压复烧工艺是进一步发挥高速压制优越性的重要方向之一,需要进行更广泛、更细致、更深入的研究。

粉末冶金新技术范文4

关键词:内燃机 组合式凸轮轴 加工工艺

前言

凸轮轴是发动机的重要零部件之一,凸轮轴的结构设计和加工质量的好坏,对发动机的性能起着极其重要的作用,随着发动机高速度、高输出功率、低燃油附加性、整车轻量化和低成本投入等的设计需求,对发动机零部件,尤其是凸轮轴提出了更高的设计要求,要求其结构紧凑、质量轻便、材料强度高、耐磨性好。而整体式凸轮轴一般为铸件或锻件,材料组成相同,各方面性能也相同,故无法达到以上的要求,而组合式凸轮轴无论从性能、成本,还是从质量方面均是理想的选择;目前国外应用数量已超过50%,但国内只有约10%。

1.组合式凸轮轴结构特点

1.1 产品方面的优势

1.1.1 组合式凸轮轴由钢管、凸轮、齿轮、六方和端头构成,然后通过装配形成凸轮轴,由于以上各部分单体进行毛坯制造,故可根据配气机构对凸轮轴各个部位的性能要求不同进行分体优化材料,即在同一凸轮轴上合理选择不同的凸轮、端头与钢管材料;例如钢管可选冷拔薄壁无缝钢管,凸轮可选冷锻/粉末冶金/冷激铸铁等,齿轮、六方、端头可选粉末冶金。

1.1.2 由于钢管选用冷拔空心管,凸轮材料的优化及精密成型技术的应用,可使凸轮轴整体重量降低20%~40%,节约材料可达30%以上。

1.2 机械加工方面的优势

1.2.1 可实现柔性设计,柔性生产与敏捷制造:可实现凸轮相位角与轴向位置的控制、调整和修正,有利于新产品的设计与制造,缩短新产品的研制周期。

1.2.2 可针对不同零件采用最适宜的热处理技术与表面强化技术,因而可显著提高凸轮工作曲面抗点蚀能力和耐磨性,且可避免整体凸轮轴热处理过程中产生的变形。

1.2.3 可视具体材料及形状采用冷精密塑性成形、粉末冶金烧结、精密铸造等近净成形工艺成形凸轮,既能够节省工时,并可大幅度降低制造成本。

2.组合式凸轮轴连接方法

2.1 组合式凸轮轴的连接方式较多,现仅针对目前国内轿车发动机组合式凸轮轴常用的三种连接方法进行介绍。

⑴滚花式连接原理:在凸轮内侧加工出轴向沟槽,然后在钢管外圆滚花加工出圆周/轴向方向的沟槽(滚花后产生凸起),将钢管滚花部分压装到凸轮内径中,形成过盈配合,目前蒂森克虏伯(大连)公司和宁波圣龙公司采用该种装配方式。

⑵热套式连接原理:装配之前先对过盈尺寸的凸轮进行加热(150-200℃),借以消除常温下的过盈量(约0.2mm过盈量),然后压入钢管中,常温下形成连接,目前德国埃马克公司采用该种装配方式。

⑶机械扩管式连接原理:利用滑动滚压原理使得薄壁钢管在带孔的凸轮中发生局部的扩张,可以使用带有过盈量并穿过钢管内部的钢球,使内管发生塑性扩张;目前绵阳瑞安公司采用此种装配方式。

2.2 三种连接方法的优缺点对比

滚花式靠装配槽实现装配,连接强度大,工作时不易打滑,但每个凸轮对应的钢管位置均需要切槽,生产效率较低。热套式装配设备简单、生产效率高,但是缺点是凸轮被加热,产生软化现象,耐磨性下降,且由于钢管导热使得初始与完了时的过盈量有变化,连接强度不易保持一致。机械扩管式装配前凸轮、钢管不需要精密加工,生产效率高,但钢管内侧通过钢球挤压变形产生过盈量,由于钢球推入初始与完了时磨损量有差异,过盈量存在变化,造成连接强度不一致。

3.组合式凸轮轴的加工工艺

3.1目前国内组合式凸轮轴生产厂家仅有宁波圣龙(滚花法)、绵阳瑞安(机械扩管法)、北内(韩国进口组合式凸轮轴毛坯),其他厂家如重庆西源(滚花法)、河南中汇(滚花法)正在建造生产线,因组合式凸轮轴制造工艺均类似,只是关键工序凸轮装配(装配机床)存在差异,现对工艺流程具体介绍如下:

钢管淬火钢管回火钢管冷校直凸轮装配装配端头扭矩试验钻两端中心孔研磨中心孔粗磨轴颈精车法兰钻攻螺纹精磨轴颈精磨凸轮去毛刺抛光探伤清洗。

3.2 传统的整体式凸轮轴加工工艺与组合式凸轮轴相比,整体式凸轮轴工艺流程需粗、半精、精加工,设备投入多,铸件/锻件余量大,工艺复杂,产品更改时设备变动大,设备台数多,投入大,不利于扩产,铸件/锻件毛坯,余量大、生产成本高、料费率高。而组合式凸轮轴加工就存在明显优势,组合式凸轮轴工艺流程仅装配和精加工即可,工艺简单、设备投入少,近净形工艺成形凸轮,余量小或不需精磨凸轮,结构、工艺简单,利于调整轴向尺寸及凸轮相位角,工序少、设备台数少,可降低投资风险,采用粉末冶金等材料,加工余量小,减小了生产成本及料费率。

4.结语

作为凸轮轴的新型生产技术,组合式凸轮轴正越来越受到人们的关注,因为其加工技术符合精益生产原则,是高精度、高效率、高柔性、低成本的先进生产技术,是凸轮轴制造技术的发展和升级,是实现创新跨越的关键,在大力提倡环境保护、开发低能耗、无污染发动机,并使其达到成本低、轻量化的今天,组合式凸轮轴以其相应优势,可以广泛用于汽车、铁路、船舶发动机领域,发展前景十分广阔。

参考文献:

[1]张弛,杨慎华,寇淑清.装配式凸轮轴生产工艺及应用[J]汽车技术,2004(1):32~34

粉末冶金新技术范文5

关键词: 教学法 课堂教学 内容拓展 机械制造工艺

在机械专业课程课堂教学过程中,严格按教学计划实施教学是必需的,但是,若仅局限于课本知识的讲授,则往往使教学内容枯燥乏味、空洞刻板,教学容量不足。根据教材的内容特点和学生的认知水平开展拓展教学,适当增加一些与教学内容贴近的小故事、有趣的小插曲;补充一些新工艺、新技术;利用教学实践录像、多媒体课件、现场实践参观教学等,可取得事半功倍的教学效果。

一、通过拓展教学帮助学生建立合理的知识结构

随着科学技术的不断进步,现代生产加工技术的飞速发展,各种新技术、新工艺、新材料和新设备不断涌现,机械制造技术正向着高质量、高生产率、低消耗、低成本和有利于保护环境的方向发展,计算机控制技术日渐融入机械制造加工方式,对机械专业人员的知识结构要求发生变化。因此,在机械专业理论教学中,及时拓展这方面知识,可帮助学生了解新技术、新工艺的发展现状,建立合理的知识体系。

例如,笔者在讲解铸造工艺特点时,以一根漂亮的不锈钢表带为话题,拓展讲解了“注塑成型+粉末冶金合成新工艺”,即精细铸造[1]。其基本原理是:将树脂等混合于平均粒径为5~10μm的金属粉末中,并以此为原料用注塑成型机注射加工成型,经过热处理工艺除去其中的树脂成分,然后采用与粉末冶金相同的方法进行烧结处理。这种方法适用于制造表带等复杂的小型不锈钢制品,与现行金属加工方法相比,成型容易,效率高,可望推广应用于照相机、缝纫机、机器人、汽车等精密零件的加工中。这样拓展帮助学生了解到精细铸造的新工艺,完善学生铸造工艺的知识体系。

二、通过拓展教学增加课堂教学容量

在课堂教学过程中,如果拘泥于教学计划实施教学,仅局限书本上的有限知识,则往往显得教学内容枯燥乏味、刻板,教学容量不足。身处信息爆炸、科学技术飞速发展的时代,在有限的学习时间内,更多地了解与专业相关的新技术、新工艺非常重要。通过使用多媒体课件、播放现代制造技术的录像等,可增加课堂知识容量,也可使内容更生动直观。

例如,在讲解锻造工艺特点时,通过播放录像拓展介绍水下爆炸冲压工艺。该工艺所用装置是一门所谓“水下冲压火炮”,且所配火药与传统火药成分不同,其组成是酸、丙烷、丁烷的混合物[2],所用炮弹是一个工作阀。冲压火炮击发时,不产生任何浓烟。击发后,特制炮弹――工作阀在1/1000s的瞬间内,以极高的速度向水冲击,被冲击水流可产生相当于100MPa的大气压的冲压力,在此高压作用下,被加工零件便能获得所需形状。该冲压工艺具有加工成本低、效率高和结构紧凑的特点,无需配置传统冲压工艺所用的笨重的液压系统及各种高压泵和分流装置等。目前,利用该冲压工艺加工的重型汽车及拖拉机后桥,不仅比原来的铸造件强度高,而且外形精度极为理想。

再如在讲解焊接工艺特点时,用多媒体课件介绍电解法氢氧焊接工艺。先用电解法从水中生产氢气和氧气,然后以氢氧气为热源进行气焊。该系统被称为“氢氧发生器”,用普通燃料室作气体源,可以从3L水中生产5000L气体,而且用于焊接时比氧乙炔焊还安全得多。因为它只要生产够当时使用的适量氢氧气体就可以了,无需储存备用燃气。借助这些现代教学手段,可适时增大教学信息量,拓展学生知识面。

由于“机械制造工艺基础”课程中有机床的传动系统图、刀具的几何角度图、夹具的结构原理图等,量多且图形较复杂,在讲授过程中边讲边在黑板绘制,缺乏立体感,不够直观形象,而且费时。如制成幻灯片、动画或视频短片演示,可大大增加课堂教学信息量,节省板书板图时间,同时让学生快速形成感观认识,加深学生对教学内容的理解和记忆,提高授课效率。

三、通过拓展教学活跃课堂气氛,培养学习兴趣

相当一部分技校学生学习基础差,学习过程中很少体验到成功的快乐,有的更是长期处于挫败状态,甚至产生严重的厌学情绪,学习兴趣普遍较低。因此,激发技校生的学习兴趣成为关注焦点。

在课堂教学中,可通过充分吸引学生的注意力,强化其参与意识,激发学生兴趣。如通过精心设计导入环节,将拓展内容与教学内容巧妙地衔接,激发学生兴趣。

例如,笔者在讲解车削工艺特点时,首先提问:同学们,你们都喜欢玩手机,有谁知道手机的振动功能是怎样产生的吗?里面到底是一个什么机构呢?大家一脸茫然,都说不知道。接着展示一个从手机中拆下的比黄豆略大的微型电机,告诉他们手机的振动功能是由电动机带动一个偏心装置产生的。然后提问:这么小的电机是怎么制成的?引起学生强烈的探究欲望,再以此为例讲解纳米技术和精密加工工艺,并进一步介绍采用金刚石刀具的超精密切创加工技术,主要用于玻璃、陶瓷等硬脆材料的纳米级超精密磨削的加工。

通过这样导入新技术、新工艺,活跃课堂气氛,使刻板乏味的教学内容变得生动鲜明,不仅激发学生的学习兴趣,而且形成良好的师生互动,取得明显的教学效果。

四、结语

“机械制造工艺基础”教学不能拘泥于课本和教学计划,而要找到合适的切入点,由一个共性话题、常用生活物品,启发引领学生随着教师的讲解而逐渐深入,拓展了解现代新技术、新工艺在生产、生活中的应用实例。当然,拓展内容的选择要紧扣教材,不可离题太远。同时,在教学中尽量使用多媒体教学手段,进行拓展讲解,对激发学生学习兴趣,拓展课堂教学容量,强化教学效果大有裨益。

参考文献:

[1]孙永泰.机械制造新工艺集锦[J].机械工程师,2002(12):63-64.

粉末冶金新技术范文6

[关键词]镐型截齿;材料;热处理;加工工艺

中图分类号:TD421.6 文献标识码:A 文章编号:1009-914X(2015)21-0046-02

在机械化采煤中,采煤机滚筒和掘进机截割头作为切削岩石和煤的主要工作机构,其性能好坏除受自身的整体结构和运行参数影响外,其上安装的镐型截齿的使用寿命和性能也是影响其性能的关键性因素。影响矿用镐型截齿使用寿命和性能的主要因素包括工作环境、运行参数、安装参数、结构参数以及截齿的材料和工艺性参数。在这些参数中工作环境、运行参数、安装参数、结构参数属于设计性参数,我国镐型截齿的设计性参数已达到国际先进水平,其材料和工艺性参数与国外还有较大的差距。由于材料和工艺差距的存在,使得我国国产镐型截齿每万吨煤的消耗量在100把以上,而国外镐型截齿平均每万吨煤的消耗量在20把以内,大大制约了我国国产截齿的制造水平和推广使用。为此,本文通过查阅文献,总结出了目前我国镐型截齿所使用的主要材料和一些材料的热处理工艺,并对其进行了分析和总结,以求促进镐型截齿制造材料和工艺的发展。

1.国产镐型截齿所使用的材料

镐型截齿材料包括合金头材料、齿身材料以及合金头与齿身焊接过程中所使用的钎料,这些材料的选择直接影响镐型截齿使用过程中的耐磨性和可靠性,影响截齿寿命,为此本文作者通过查阅大量文献和资料,对国产镐型截齿所使用的材料进行总结和概括,表1为目前国产镐型截齿主要使用的材料。

2.国产镐型截齿所用材料的热处理工艺

截齿工作时受煤和岩石的磨损及冲击作用,因此要求截齿的尖部具有较高的硬度与耐磨性,齿体具有较好的表面硬度和芯部强韧性以防止弯曲变形及断裂。下文是根据有关文献对齿身及硬质合金头的热处理工艺进行总结和概括。对于齿身材料所采取的热处理工艺主要有传统热处理工艺和特殊热处理工艺,分别见表2和表3。

由于WC合金本身所具得较高硬度和较强耐磨性,使其成为截齿合金头最常使用的合金材料。为能够更加详细的了解WC硬质合金的性能,相关学者对WC硬质合金不同的热处理阶段的性能进行了检测,测得的具体数据如表4所示。

3.分析与结语

根据相关文介绍献及四表数据可以看出:45钢经过一定的特殊处理能够明显提高截齿齿身的性能,但是效果不明显,只能适用于一些煤岩较软的场合,由于这种局限性,现在基本上使用45钢来作为齿身材料;40Mn2B经过热工艺后具有一定的物理和力学性能,但由于当前采煤机功率较大,切割的煤岩硬度较高,使其不能满足当今煤矿生产的要求,因此很少使用;BZ-30是一种物理、力学性能较好的材料,能够很好的满足截齿的性能需要,而且价格比ZG45Cr4SiMoVRE低许多,所以国产截齿中很多都使用这种材料制造截齿齿身;ZG45Cr4SiMoVRE是一种先进的金属材料,用这种材料制作的齿身能够极大的提高截齿的整体性能,国外很多厂家都采用这种材料,但由于价格较高,我国只有少数能够生产优质截齿的厂家使用该种材料;陶瓷材料是经过粉末冶金工艺后得到的一种具有高性能的复合材料,但由于其制造成本和制造水平的限制,在采煤机截齿上的运用,仅还在试验研究阶段;经过淬火和回火后的WC硬质合金具有很好的物理、力学性能,能够满足一般截齿的性能要求,但是在进行截齿齿身与WC合金头焊接时,由于两种材料成分、性能差异,不能很好的结合,因此,该方面的研究工作也尤为重要。

参考文献

[1] 孙玉宗,李惠琪,于洪爱,王大陆.采煤机镐形截齿生产新技术的研究[J].煤矿机械,2006(7):32~34.

[2] 赵运才,唐果.宁采煤机截齿齿体材料及工艺分析[J].矿山机械,1999(12):22~23.

[3] 钱书华,赵红,肖长顺.采煤机截齿等温淬火工艺的改进[J].煤炭科技,1999,18(2):1~2.

[4] 练子富,唐东萍.优质镐型截齿生产工艺[J].煤矿机电,1998(1):41~42

[5] 文武兴.用作采煤机扁形截齿的钢结硬质合金GA5[J].粉末冶金,1991,9(1):34~39.

[6] 姚树玉,李惠琪.采煤机堆焊涂层截齿热处理工艺研究[J].金属热处理,2004,29(9):40~43.