前言:中文期刊网精心挑选了粉末冶金的优点范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
粉末冶金的优点范文1
关键词 TiAl基合金;粉末冶金;力学性能
中图分类号TF12 文献标识码A 文章编号 1674-6708(2013)91-0045-02
0 引言
作为高温结构材料,TiAl基合金正受到业内界人士的越来越高度关注,良好的抗氧化性能,低密度,耐高温性能等,让其比之镍基合金和钛基合金更具优越性[1],因此成为航空,国防,军工等高科技领域极具吸引力的材料。然而,室温塑性低,高温屈服应力高和加工成形性差等,使得TiAl合金广泛应用受到严重的制约。因此,研究和开发针对TiAl合金合理高效的制备与成形技术,是科技工作者的一个重要课题。常规制备TiAl基合金的方法主要有粉末冶金,铸造,铸锭冶金等。其中粉末冶金方法有其显著独特优点:克服了铸造缺陷,如疏松缩孔等;加入合金元素来制备复合材料变得容易;材料成分均匀,显微组织细小,力学性能优异;复杂零件易于实现近净成形。
1 预合金粉末制备工艺
采用预合金粉末成型工艺制备TiAl基合金首先要制备γ-TiAl预合金粉末,之后经过模压成型与烧结反应而制得所需制件的工艺。此工艺的成本有些昂贵,因为,Ti熔点高且活性比较大,需要在制备过程中严格控制工艺,故难度也较大。现阶段,发展出来很多方法制备γ-TiAl预合金粉,其中主要被采用的有:雾化法、机械合金化法(MA)、自蔓延高温合成法(SHS)等。此工艺所获材料其晶粒大小,相分布以及合金元素分布的均匀性与相应的锻件相比,都得到显著提高。用预合金法,德国姆波公司制造出大型客机连接臂,和直升机叶片连杆接头,产品相比于锻件,材料和成本分别节省40%和34%[2]。随后美国坩埚公司又开发出,可以制备全致密,形状复杂的钛合金近形产品的陶瓷模热等静压技术,使得合金材料的力学性能得到进一步提升。
2 元素粉末法
元素粉末法是对Ti、Al和Nb、Cr、Mo等外加元素预压成形,在高温下反应合成之后进行致密化来制备TiAl基合金材料的,制品组织细小、成分均匀。此法优点是成本比较低,工艺设备简单而且容易添加各种高熔点合金元素,通过均匀化混合和高温反应能避免成分偏析。元素粉末法制备TiAl基合金,已经得到了广泛研究,所制备出来的材料性能可与铸造TiAl基合金媲美。元素粉末法制备TiAl合金时Ti,Al元素会发生扩散反应,基本反应过程为[3]:6Ti+6Al4Ti+2TiAl3, 4Ti+2TiAl3Ti3Al+TiAl+2TiAl2,Ti3Al+2TiAl2+TiAl 6TiAl。
3 成型工艺
预合金粉末属硬脆粉末,不便直接模压成形,所以采用挤压方式进行成形。有冷挤压和热挤压两种方式。此工艺让粉末晶粒得到了细化,组织均匀性和粉末间的高温扩散能力得到提高。对于元素粉末挤压可以消除压坯膨胀开裂,而对于预合金粉末,挤压也提高了粉末变形能力。随着科技的进步,出现了很多新技术如:温压技术,流动温压技术,模壁技术,爆炸压制技术,高速压制技术等。这使得粉末冶金成形技术正向高性能化,高致密化方向发展。
4 烧结反应工艺
以下是对目前出现的几种TiAl合金粉末冶金烧结工艺简单介绍。
4. 1热压和热等静压
热压和热等静压是目前两种很可行的制备钛铝基合金的工艺。在压制的过程粉末的受力比较均匀,所得制件的致密度很高,力学性能很优异。经文献和实践所知,在1100℃~1300℃,压力大于100MPa时,将雾化TiAl预合金粉末,直接进行热等静压效果为最好。刘咏等人用此热等静压的工艺方法所制得的钛铝基合金制件,致密度高,显微组织细小,结果很是成功[4]。
4.2 自蔓延高温合成工艺
自蔓延高温合成(也被称为燃烧合成方法),是利用化学反应过程所生成的热量和产生的高温,而使自身反应持续下去,进而获得所需材料或制品的方法。该工艺简单,高效节能,成本低且制品质量高,自问世后在世界范围内得到了广泛的研发与应用。其中开发出来的SHS制备粉体,烧结,致密化技术,能够制备出常规方法难以制备出的TiAl化合物,且产物形状复杂,致密度高,目前SHS粉末技术已成功应用与工业生产且技术越发成熟。
4.3 放电等离子烧结
放电等离子体烧结亦叫作等离子体活化烧结,最早源于20世纪30年代年美国人的脉冲电流烧结原理,但此快速烧结工艺真正发展成熟是90年代从日本开始的,此后才得到广泛的关注与研发。在装有粉末的模具上联通瞬间,断续,高能脉冲电流,粉末颗粒间就能产生等离子放电现象,产生的高活性离子化的电导气体,迅速消除粉末粒表面的杂质和气体, 并加快粉末的净、活、均化等效应[5]。SPS艺有其独特优势:加热均匀,烧结温度低且升温速度快,产品组织细小均匀且致密度高。研究表明,用MA技术与SPS技术结合制备出的TiAl合金,组织均匀,性能优良。
4.4 粉末注射成形工艺
此技术是把塑料注射成形工艺和传统粉末冶金技术相互结合,而发展成为一种新型的近净成形的工艺。主要步骤为:混合粉末与粘结剂,注射成形,脱模,烧结。此工艺制备的制件致密度高,组织均匀,性能优越,能够制备质量要求高且精密复杂的制品,而且成本低,自动化程度高,材料利用率几近百分百。因此该工艺在国际上很热门,很受欢迎。采用PIM工艺制备出的TiAl合金组织细小均匀,相对密度高,性能优良,而且成本与传统工艺比大大降低,当然此方面的研究还有广阔空间。
5 粉末冶金TiAl基合金的力学性能
作为高温结构材料,TiAl合金因为低的密度,高强度系数,良好的抗氧化性能和抗蠕变性能等,而备受关注与欢迎。然而因低室温延展性,难加工性,使其被广泛应用受到制约[6]。如何使其强度和延展性相平衡是一个很大挑战,有关此方面的研究工作一直在进行。研究表明,TiAl合金中增加Nb能改善TiAl合金高温抗氧化性能,适量Cr可以提高延性,B可以细化晶粒, 提高抗蠕变性能。经过不断地改进和完善,粉末冶金TiAl合金的一些力学性能已得到了显著的提高。近期研究发现,合金添加Mo,V和Ag能改善显微组织,在1350度烧结能提高其致密度能达到96%,而抗压缩强度可达到1782MPa。然而,孔隙的难以彻底消除,间隙元素难于控制等问题,还需要不断地克服。
6 结论
TiAl合金因其独特的性能在军工,航空等高技术产业占有重要地位,采用粉末冶金工艺制备TiAl基合金,优势明显,能够制备得精密度很高的制件。在TiAl合金制备技术中,极富吸引力,进而脱颖而出。然而,粉末冶金法制备TiAl基合金技术并不是完美至极的,还有一些工作需要进一步研究和拓展:控制间隙元素和杂质的污染;合金元素的合理选择与添加,改善TiAl合金的性能;进一步完善致密化技术,让显微组织更加均匀细化,消除孔隙缺陷等;进一步研发让生产低成本,高效率,规模化,不但为军用而且为民所用,促进经济的发展。粉末冶金钛铝合金技术有其独特的优势和地位,若得到进一步改进和完善,对我国的经济发展,国力的提升,具有重大意义。
参考文献
[1]Q.Liu,P.Nash. The effect of Ruthenium addition on the microstructure and mechanical properties of TiAl alloys[J]. Intermetallics 2011(19):1282-1290.
[2]赵瑶,贺跃辉.粉末冶金Ti6Al4合金的研制进展[J].粉末冶金材料科学与工程,2008,13(2).
[3]Wang G X,Dahms M.PMI,1992,24(4):219-225.
粉末冶金的优点范文2
【关键词】激光焊接技术;原理;应用
一、激光焊接技术的基本原理
激光焊接就是以激光为热源进行的焊接。激光是一束平行的光,用抛物面镜或凸透镜聚光,可以得到高的功率密度。与电弧焊接的功率密度102~104kw/cm比较,聚集的激光束可以得到105~108kw左InZ的功率密度。用功率密度高的热源进行焊接,可以得到熔深较大的焊缝。激光焊接可以得到与电子束焊接同样熔深的焊缝。激光焊接可使表面温度迅速上升,激光照射完后迅速冷却,可以进行熔融或非熔融的表面处理。当功率密度大于103kw/c耐时,可进行熔深较大的焊接。这时,在大气中熔融金属容易被氧化。因此,要用Ar、He、CO,等气体密封焊接部位。尤其是提高功率密度时,瞬间从光束中熔融金属被排出,这时若辅以高压气体吹扫,可促进熔融金属排出,适宜进行开孔或切断。激光焊接最大的特点是选择适合的焊接材料和功率密度,可以得到稳定的焊接形态。激光焊接有两种基本方式:传导焊与深熔焊。这两种方式最根本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵人;而深熔焊时,小孔的不断关闭能导致气孔的产生。传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。可以调节激光焊接过程中各因素相互作用的程度,使得小孔建立以后能够在脉冲间歇阶段收缩,从而减小气体侵入的可能性,降低气孔产生的倾向。
二、激光焊接技术的应用领域
(1)制造业领域。20世纪80年代后期,千瓦级激光器成功应用于工业生产,而今激光焊接生产线已大规模出现在汽车制造业,成为汽车制造业突出的成就之一。90年代美国通用、福特和克莱斯特公司竟相将激光焊接引入汽车制造,尽管起步较晚,但发展很快。日本的本田和丰田汽车公司在制造车身覆盖件中都使用了激光焊接和切割工艺,高强钢激光焊接装配件因其性能优良在汽车车身制造中使用的越来越多。(2)粉末冶金领域。随着科学技术的不断发展,许多技术对材料有特殊要求,应用冶铸方法制造的材料已不能满足需要。由于粉末冶金材料具有特殊的性能和制造优点,在某些领域如汽车、飞机、工具刃具制造业中正在取代传统的冶铸材料,随着粉末冶金材料的日益发展,它与其它零件的连接问题显得日益突出,使粉末冶金材料的应用受到限制。在20世纪80年代初期,激光焊以其独特的优点进入粉末冶金材料加工领域,为粉末冶金材料的应用开辟了新的前景,如采用粉末冶金材料连接中常用的钎焊方法焊接金刚石,由于结合强度低,热影响区宽特别是不能适应高温及强度要求高而引起钎料熔化脱落,采用激光焊接可以提高焊接强度以及耐高温性能。(3)电子工业领域。激光焊接在电子工业中,特别是微电子工业中得到了广泛的应用。由于激光焊接热影响区小,加热集中迅速、热应力低,因而正在集成电路和半导体器件壳体的封装中,显示了独特的优越性,在真空器件研制中,激光焊接也得到了应用,。传感器或温控器中的弹性薄壁波纹片其厚度在0.05~0.1mm,采用传统焊接方法难以解决,电弧焊容易焊穿,等离子焊稳定性差,影响因素多,而采用激光焊接效果很好。(4)生物医学领域。生物组织的激光焊接始于20世纪70年代,Klink等及Jain用激光焊接输卵管和血管的成功及显示出来的优越性,使更多研究者尝试焊接各种生物组织,并推广到其它组织的焊接。有关激光焊接神经方面,目前国内外的研究主要集中在激光波长、剂量及对功能恢复及激光焊料选择等方面,刘铜军在激光焊接小血管及皮肤等基础研究的基础上又对大白鼠胆总管进行了焊接研究。激光焊接方法与与传统的缝合方法比较,激光焊接具有吻合速度快,愈合过程中没有异物反应,保持焊接部位的机械性质,被修复组织按其原生物力学性状生长等优点,将在以后的生物医学中得到更广泛的应用。(5)其他领域。在其他行业中,激光焊接也逐渐增加,特别是在特种材料焊接方面,我国进行了许多研究,如对BT20钛合金、HE130合金、Li-ion电池等激光焊接。德国玻璃机械制造商Glamaco Coswig公司与IFW接合技术与材料实验研究院合作开发出了一种用于平板玻璃的激光焊接新技术。
参 考 文 献
[1]游德勇,高向东.激光焊接技术的研究现状与展望[J].焊接技术.2008(4)
[2]杨春燕.激光焊接技术的应用与发展[J].西安航空技术高等专科学校学报.2008(5)
粉末冶金的优点范文3
【关键词】金属基复合材料 性能 关键技术
一、背景
20世纪60年代,美国航天飞机主舱体的主龙骨的支柱就采用了硼纤维增强铝基复合材料;20世纪80年代初期,逐渐强化对碳纤维增强铝基复合材料制备工艺技术研究力度,如压铸、半固态复合铸造以及喷射沉积和原位金属直接氧化法、反应生成法。80年中期开始加强对金属基复合材料界面稳定性研究。
二、金属基复合材料特征性能内容
高强度、高模量、低密度的增强纤维的加入,使MMC的比强度和比模量成倍地提高;良好的高温稳定性和热冲击性。金属基体的高温性能比聚合物高很多,加上增强材料主要为无机物,在高温下具有很高的强度和模量,因此MMC比基体金属具有更高的高温性能;热膨胀系数小、尺寸稳定性好;良好的导热性;不吸潮、不老化、气密性好。
三、MMC的制备工艺和制备方法研究
金属基复合材料的制备工艺研究主要包含以下几个方面:金属基体和增强物的结合方式和结合性;增强物在金属基体中的混合分布情况;降低成本,复合材料硬度、稳定性的提升;避免连续性纤维在制作中的出现伤损状况。
目前制备方法有固态法,液态法,喷涂喷射沉积,原位复合等。
(一)固态法。固态法指在制备过程中把纤维、颗粒等与金属基体按照原始设计要求,通过低温、高压条件将二者复合粘结,最终形成金属基复合材料。该制备方法整个工艺保持在低温环境下、且金属材料和纤维、颗粒等增强物状态呈现为固态、界面反应不严重。固态法制备工艺包含以下两个方面:
1.扩散结合。扩散结合是指金属材料在一定温度和压强下,把新鲜清洁表面的金属和增强材料,通过表面原子的互相扩散而连接在一起的固态化焊接技术。如图
2.粉末冶金。粉末冶金(Powder Metallurgy)适应范围广,对于长纤维、短纤维、颗粒性金属基增强材料的制备都适合,粉末冶金制作工艺是将金属材料和增强物(颗粒、纤维等)按照一定要求混合,并经过压制、烧结及后期一系列处理工艺制成金属基复合材料。在制备过程中,为提升该方法产品的压制性和烧制收缩率,可根据实际需要加入液相烧结组元,通过这种工艺制备的金属基复合材料可有效增强其室、常温条件下材料的硬度、耐磨度的部分。[1]粉末冶金法工艺过程如下图
(二)液态法。液态法包含压铸、半固态的符合铸造、搅拌法和无压渗透法等,根据其内容划分又称之为“熔铸法”。这些方法的共同持点是金属基体在制备复合材料时均处于液态。这种方法优点显著,成本低、基础设施要求不高,且只需要一次性即可完成,它的这些优势决定其可批量大规模进行生产。其中日本松下润二 采用离心铸造法制造出AlSi 基石墨增强复合材料[2]。
(三)喷涂与喷射沉积。喷涂沉积主要应用于纤维增强金属基复合材料的预制层的制备,亦可以作为获取层状复合材料坯料的方法。该工艺主要用作颗粒型金属复合材料的制作,其最大的优势在于对增强材料、金属润湿要求不高,接触时间较短且界面反应量少。
(四)原位复合。解决了增强材料与金属基体之间的相容性问题、即增强材料与金属基体的润湿性要求。解决了高温下的界面反应等。例如:
四、技术关键以及难点
主要是加工温度高,性能波动,成本高以及制造工艺中的金属基复合材料中的金属与增强物的相容性。
五、应用前景
金属基复合材料独特优势,决定其必然在将来得到广泛利用,并得到规模生产,且伴随着科技发展,其成本亦会变得越来越低。当前就工艺技术而言,铸造法和原位复合法得到广泛应用,前者工艺流程简易、且成本廉价,而后者具备优良工艺特征,具备极强发展前景。若将来可综合二者,金属基复合材料将会取得更为显著的成果。
参考文献:
粉末冶金的优点范文4
关键词:K系列;冷作工磨具钢;粉末冶金;特性
从整体上来看,我国的冷作工磨具钢已经形成了多个系列,其中所涉及到的钢材种类有十多种,在一定程度上满足了社会的需求,但从另一个方面来讲,我国经济虽然发展速度非常快,但是由于起步比较晚,这就导致当前的冷作工磨具钢并不能够与社会技术发展同步,并不能够满足社会高端产品的需求。另外,我国还有很多都是采用落后的炼钢技术来生产产品,导致产品出现各种缺陷,并不能够促进钢材质量的发展。总而言之,我们必须要结合国外的成功经验来对冷作工磨具钢进行深入研究,只有这样才能够在生产过程中采用合适的钢材,从而降低经济成本,在国际市场中取得竞争优势。本文首先分析了K系列冷作工磨具钢的种类与化学成分,然后根据这一类参数阐述了这一系列的冷作工磨具钢的用途与国内的发展。
一、K系列冷作工磨具钢的种类
在K系列的冷作工磨具钢当中,根据其含钢合金的多少可以将其分为三种:首先是低合金冷作工磨具钢,这一种钢材当中含有的钢合金元素在5%以下;其次是中合金冷作工磨具钢,这一种钢材中所含有的钢合金元素一般在5~10%之间;再次是高合金冷作工磨具钢,这一种钢材中所含有的钢合金元素都超过10%,其中还可以将这一类钢材分为含有8%Cr钢与12%Cr钢。(1)8%Cr钢。目前,在国际上已开发了几种新的钢种,这些也就称之为8%Cr钢,这些钢具有加强的抗压强度,稳定性极高,可以将其运用在磨损较为强烈的不锈钢当中。在钢材当中,正因为其中的铬元素只有8%,因此其中的碳元素也就不多,在很大程度上增加了8%Cr钢的韧性。(2)12%Cr钢。国际上有一部分开发出来的钢种我国并没有记载,通过分析,这些钢材当中存在少量的钨元素,这些钨元素的主要功能是为了增加钢材的韧性以及抗磨能力。最后是粉末冶金冷作工磨具钢。一般来说,这一种钢材的制作方法也就是先将其炼制成钢水,然后再将其采用一定的设备熔制成钢锭,最后再将其打造成我们需要的材料。正因为是将钢水直接倒入电渣炉当中,电渣炉可以将钢水当中的杂质去除,从而有效的保证了型钢的质量。采用这种方法炼制出来的型钢,虽然其中含有的碳元素以及钢合金元素都相对较高,但是它的性能也比普通型钢的性能要高很多。
二、K系列冷作工磨具钢的主要用途
不同种类的冷作工磨具钢有不同的用途,以下对几种常用型钢的用途进行分析:1)K100。这一类钢材可以当做冲切工具、木工工具、剪刀刀片等,另外,还可以当做测量工具、塑料模具或者应用在制药工业当中的冲压工具。2)K105。这一类钢的韧性极强,我们可以将其当做高性能切削工具使用,也可以当做冲压工具应用在制药工业与陶瓷工业当中;3)K110。这一类钢的用途与K105大致相似。4)K329。此类钢一般会当做高复合机加工刀具应用在纸张制作工业当中,或者是当做圆环形剪刀刀片应用在15mm以上的厚板材当中。5)K340。这类钢可以当做木工工具或者冷成型工具应用在工业当中,也可以当做造币工具。6)K360。当做压花工具制作艺术品,还可以当做剪刀刀片应用于纸张切割当中。7)K390。这一种钢的用途特别广泛,可以当做冲却工具应用在各种工业当中;可以当做排距应用在纸张工业或者其他相关工业当中;还可以将其应用在塑料加工工业当中。
三、国内外在冷作工模具钢方面的差距
1、基础研究
根据K系列各钢号间的性能,可对材料进行合理的选用,有效地发挥所选材料的效能,从而降低生产成本。该表是基础研究的一个方面,是钢种间的横向比较,属于工作量较庞大的基础研究,说明国外在冷作工具钢方面比国内做了更多的研究工作。我国还需要在基础研究方面下大力气,不能仅停留于单个钢号性能的研究,需做些比较性的研究,以便使用户更容易选用理想的钢材。
2、炼钢方法
常规的炼钢方法是电炉熔炼法,至今国内绝大部分钢材仍采用此法冶炼。而国外在几十年前就开始逐渐减少普通的电炉炼钢,不断增加炉外精炼、电渣重熔、真空电渣重熔和粉末冶金等先进炼钢法,目的是为了适应汽车制造业、微电子业和IT业的发展。因为随着汽车工业的发展,汽车的表面质量越来越重要。而汽车模具都是大型模具,任何钢材内部的缺陷如气孔、夹渣、偏析和裂纹等都可能引起产品表面的缺陷。采用普通电炉炼钢则内部缺陷过多,已无法满足高质量模具的需要,因此促进了炉外精炼、电渣重熔、真空电渣重熔和粉末冶金等先进炼钢法的应用。微电子业和IT业的迅猛发展更促进了电渣重熔、真空电渣重熔和粉末冶金等三种炼钢法的应用。K系列冷作工模具钢主要采用真空炉外精炼、电渣重熔、真空电渣重熔和粉末冶金等四种炼钢法。
3、型材尺寸和利用率
国外高级优质冷作工模具钢的型材厚度或直径可达500mm左右,其碳化物偏析轻微,夹杂物、疏松孔隙和气体含量很少,这是由于应用了电渣重熔炼钢法所致。国内由于大部分钢厂仍沿用传统的电炉炼钢法,少量使用炉外精炼,这两种方法制造的钢材尺寸(厚度或直径)一旦超过150mm,碳化物偏析将极为严重,同时心部将伴随大量夹杂物、疏松孔隙和气体,采用锻造方法也很难改善。因此,我国必须扩大电渣重熔炼钢法的应用,提高电渣重熔炼钢水平,以满足超大型材的制造要求。
在型材的利用率上,国外高级优质冷作工模具钢的利用率明显高于国内。因为国外高级优质钢在钢锭成型后首先将冒口充分去除,锻造和退火软化后将表面进行大余量的加工,以充分去除表面缺陷和脱碳层。经过这样处理后的供货型材整体质量差异极小,基本上可做到100%的可利用。而国内的许多型材由于冒口和表面缺陷未能充分去除,常常导致大量钢材无法利用,利用率远低于国外的,最终用户的材料使用成本反而高于国外的。
四、结束语
国内的冷作工模具钢分为退火状态和压力加工状态两种供货形式。退火状态保证珠光体级别和碳化物偏析在合格范围内,也就是所供应的钢已经过充分锻打加软化退火,以确保碳化物偏析达到合格级别,该种钢可被称作保证质量钢。国外的K系列冷作工模具钢则不同,只有退火软化状态供货,锻造改性工序由钢厂完成,用户只要直接加工使用,确保质量和使用寿命,因此可以将国外高级优质冷作工模具钢称作保证质量钢。当前及今后,国内必须借鉴发达国家的模式,改为退货软化状态一种供货模式,锻造改性由钢厂完成,为用户提供保证质量钢,以避免用户选错材料及造成浪费和对国内钢材的误解。
参考文献
粉末冶金的优点范文5
着重论述钨铜复合材料的制备方法,并探讨钨铜复合材料制备技术发展趋势。
关键词: 钨铜复合材料;制备技术;制备方法
中图分类号:TB331 文献标识码:A 文章编号:1671-7597(2012)0210146-02
所谓钨铜复合材料,是指以高熔点与高硬度的钨,结合以高塑性、高导电导热性的铜粉作为原料,运用粉末冶金技术而制备出来的一种复合型材料。这种材料具有较高的导电导热性,良好的耐电弧侵蚀性与抗熔焊性,较高的强度与硬度等众多优势,被广泛地应用于开关电器、电加工电极、电子封装及高密度合金等产品之中。由于钨铜复合材料的运用范围正在变得越来越广阔,这在客观上对于钨铜复合材料之设计与制备提出了新的更高的要求。
1 钨铜复合材料制备技术的发展现状
鉴于现代科技的高速发展,对于钨铜复合材料所具有的性能也提出了新的要求,那就是致密度和散热率要高,导电导热要好等等。但是,传统粉末冶金与熔渗法所制备的钨铜复合材料已无法满足以上要求。纳米钨铜复合材料因为具有众多传统钨铜复合材料所难以比拟的性能。比如,可以提高钨铜复合材料的固溶度,极大地提高烧结的活性,并且降低烧结的温度,提升烧结的致密度,以上这些均将提高钨铜复合材料的性能。因为纳米技术在快速发展,所以在纳米钨铜复合材料在制备方法上出现了新的突破,比如,功能梯度、剧烈塑性变形等被运用在钨铜复合材料制备上,使钨铜复合材料制备技术有新的发展。
2 钨铜复合材料的制备方法
2.1 普通烧结法
这种方法属于传统意义上的粉末冶金制备方法。其制备步骤如下:一是要把钨粉与铜粉进行称量与混合,随后再压制成形与烧结。普通烧结法的工艺较为简单,成本偏低,然而这一烧结方式因为温度较高,所以容易出现钨晶粒较为粗大之问题,因而难以获得成分均匀的那种合金。通过实施机械合金化,能够让粉末在压制与烧结之前得到原子级标准上的均匀与混合。这种在钨粉中有铜粉存在的一种复合粉,在稍微高于铜熔点之上的温度在短时间内烧结,就能得到94%以上致密度的钨铜复合材料,特别是适合低铜含量的钨铜材料之制备。因为超细粉末的表面活性较高,能够在较低的烧结温度上与较短的烧结时间条件内来得到致密化。把钨铜粉末的原料在高温之下进行氧化以后,通过三至六个小时的高能球磨,再在630℃的条件下还原以得到0.5μm之下均匀分散的一种钨铜复合粉。把这种复合粉在1200℃的高温烧结60分钟之后得到钨铜合金,致密度达到了99.5%。因为普通烧结设备的要求并不够高,而且工艺相对较为简单。因此,这一方法所制备的钨铜材料只能运用于对于材料性能要求并不高的一些地方。
2.2 熔渗法
这一方法的制备步骤如下:先那钨粉或者添加混有少量引导铜粉的钨粉制作成为压坯,随后在还原气氛或者真空当中,在900℃至950℃的条件之下进行预烧结,从而得到相当强度的多孔钨骨架。把块状铜金属或者压制好的铜坯放在多孔钨骨架之上或者之下,在高于铜熔点之上的温度实施的烧结被称之为熔渗,而把多孔钨骨架全部浸没于熔点比较低的铜熔液之中所得到的致密产品办法就是熔浸。铜熔液在多孔钨骨架毛细管的作用用,通过渗入钨骨架中的孔隙当中,从而形成了铜的网络分布。熔渗密度一般的理论密度为97%至98%,由于烧结骨架当中总是会存在着非常少的封闭孔隙无法为熔渗金属所填充,而在熔渗之后还可通过冷加工与热加工进一步地提高材料的密度。当前,这一种工艺方法已经被一些大、中型高压断路器与真空开关钨基触头生产当中得到运用。但是,熔浸法的工艺技术难度相对较高,所得到的触头材料成分较为均匀,而且性能也比较好。
2.3 热压烧结法
热压烧结法又被之称为加压烧结法,也就是将粉末装到模腔之中,并在加压同时让粉末能够加热到正常的烧结温度或者更低一些的温度。在通过比较短时间的烧结之后,能够得到致密而且均匀的制成品。热压烧结法是把压制与烧结这两道工序在同时加以完成,并能在比较低的压力之下快速得到冷压烧结状态之下所难以得到的密度。然而,热压烧结工艺对于模具的要求比较高,而且耗费比较大,而单件生产的效率又相对较低,所以,在实际生产中并不是经常用到的。比如,在1800℃下的炉膛压力是18N/mm3,在2h的条件之下获得的材料理论密度达到了94.6%,而富铜端的铜含量最高值是22.55vo1%。对于钨铜复合材料来说,热压烧结法还需要得到氢气保护或者真空烧结,因此生产的成本比较高。
2.4 活化烧结法
一般来说,为了加快钨铜复合材料在烧结当中的致密化进程,完全可通过添加其他类别的合金元素这种方法来加以实现。比如,Co与Fe的活化烧结效果是最好的。究其原因就在于Co与Fe 在铜当中的溶解度是有限的,可以和钨在烧结时形成较为稳定的中间相,并且形成大量具有高扩散性的界面层,并且促进固相钨颗粒之烧结。对于W-10Cu材料来说,Fe或者Co含量在0.35%至0.5%之时,它的密度、强度与硬度出现了最佳结果。同时,加入到活化剂之中的方式具有多样性。把钨粉直接加入到含有活化剂离子的盐溶液当中,随后在低温之下进行烘干,从而能够得到表面较为均匀的活化剂所覆盖的钨颗粒。其后,再对已经经过化学涂层处理的粉末压坯加以烧结,从而得到了致密度达到97%的复合材料。然而,活化剂之加入也就相当于引入了杂质元素,从而导致材料在导电与导热之时的电子散射作用有所增加,而且明显地使钨铜复合材料所具有的热导性与电导性有所下降。有鉴于此,采取活化烧结法制备的钨铜复合材料所具有的最大不足就是降低了钨铜材料所具有的导电性与导热性。然而,因为这一方法较为简单,而且生产成本偏低,对于一些性能要求相对较低的钨铜产品依然具有一定的生命力。
2.5 注射成形法
通过注射成形法所生产出来的钨铜复合材料主要有以下两种方法:其一是运用钨铜混合粉加以注射成形,其后再进行直接烧结。比如,在对纳米钨铜复合粉实施注射成形所得到的W-30Cu的主要参数所进行的研究。通过开展实验,就能得到粉末填充量是体积分数为45%至50%的注射成形坯,而且直接烧结之后的成品密度要高于96%。其二是首先注射成形钨坯,随后再通过熔渗进行烧结,比如,在对质量分数分别为10%、15%、20%的钨铜材料实施注射成形,粉末填充量的体积分数达到了52%,在经过了两步脱脂之后,在1150℃的高温下预烧结钨坯30分钟,最后再在1150℃的高温下熔渗5分钟,其中,W-15Cu在熔渗之后的致密度就达到了99%。对于钨铜复合材料而言,通过注射成形的最大优势就在于大批量地生产小型而复杂的零件或者细长的棒材。
2.6 功能梯度法
对于钨铜功能梯度材料所进行的研究,主要来自于传统均质材料所难以满足的高功率等条件。钨铜功能梯度材料的一端可以是高熔点与高硬度的钨或者高钨含量的钨铜复合材料,而另一端则是高导电性、导热性、可塑性的铜或者较低钨含量的钨铜复合材料,而中间则是成分进行连续变化的一个过渡层。这样一来就能较好地缓和因为钨和铜的热性能不相匹配而导致的热应力,这在整体上具有比较好的力学性质与抗烧蚀性、抗热震性等各种性能。据报道,可以运用热等静压扩散连接等方法,把不同组织的钨铜复合材料结合成为功能梯度材料。同时,一部分特殊成形工艺也能实现的成分梯度进行分布。比如,进行等离子喷涂,开展激光熔覆,实施电泳沉积与离心铸造等等。功能梯度之中心在于材料所具有的功能梯度设计进行优化,因而可以借助于数学计算方法与计算机分析软件进行辅助实施。
2.7 剧烈塑性变形法
这种方法完全是近年来逐步地发展起来的,是一种十分独特的运用超微粒子,即纳米晶、亚微晶等金属及其合金材料所制备出来的工艺。它在材料当中处在相对比较低的温度环境之中,一般是低于0.4Tm。在比较大的外部压力作用之下,可以发生较为严重的塑性变形,从而实现材料晶粒尺寸的细化至亚微米级或者纳米量级,这一方法具备十分强烈的细化晶粒之能力,甚至还能把晶体加工成为非晶体。当前,学术界研究比较多的剧烈塑性变形法主要有以下方法,比如,累计轧合的方法、等通道角挤压的方法、高压扭转的方法。其中,高压扭转法的重要装置由模具与压头组合而成,其一端是固定的,而另一端则是运动的,试样会被放置在模具当中,其后再靠近压头与模具,在数个GPa压力之下进行扭转变形。试样在压头旋转所产生的剪切力的影响之下,材料沿着半径方向上的不同位置进行晶粒细化的速率是不一致的,材料边缘部分的晶粒细化速率是最快的,在达到了一定的尺寸之后就不再细化,材料组织主要是沿着半径朝中心方向不断细化,一直到样品组织更加地均匀。尽管材料中的心位置理论应变量还是零,但是因为受到了四周材料之带动,其上、下部分也出现了旋转剪切的变形,所以,中心位置晶粒同样也被细化了。通过实验研究,对于原始钨晶粒的尺寸是2至10μm,而且晶粒的分布不均匀的W-25%Cu,运用高压扭转的方法。W-25%Cu的试样直径达到了8mm,其厚度则是0.8mm,所施加的压力是8GPa。总而言之,当应变比较小,即小于等于64之时,温度之变化对于显微结构之影响并不是十分明显的。一旦应变比较大,也就是大于64时。温度对于显微结构之影响也就比较大了。在室温情况下,当应变比较小时,也就是小于等于4时,只有很少量的钨晶粒出现了断裂,并且形成了少量塑性的变形带。但是,随着应力的不断增加,这种塑性变形也得到了进一步的增加,局部塑性变形带与钨颗粒的断裂也在增加。一旦当应变增加到64之时,钨晶粒就会被拉长,而且和剪切面形成了一定角度,即0°至20°。虽然复合材料中显微组织的均匀性能十分差,然而当应变增大到了256之时,所观察到的晶粒度则是从10 nm至20nm呈现均匀分布状况的一种钨铜复合材料,这时的晶粒度已达到了一定程度的饱和,也就是说,即使应变还会继续进一步地增加,晶粒也不会再持续地细化下去。
3 钨铜复合材料制备技术发展趋势
笔者认为,新型钨铜复合材料的制备肯定会朝着更高性能的趋势发展下去。虽然一些新技术因为设备与成本等各种因素的制约,还处在实验室研究状态之中,尚未真正达到可以进行规模化生产的状态,但是这一技术的发展前景是可靠的。一是粉末制备技术。比如,热气流雾化与热化学法等先进的制粉技术有希望在制备纳米钨铜复合材料中得到新的突破。前者能够增长金属液滴在液相之中的时间,导致粉末能够经过二次雾化而极大地提升雾化效率,从而容易得到更加细密的粉末粒度,而后者的优势主要是易于实现混合粉所具有的高分散性以及超细化。二是粉末压制技术。随着近年来德国Fraunhofer研究所已经制成了流动温压技术。这一技术在传统冷压工艺的基础之上,以相当低的成本制成高密度、高性能的粉末冶金方法,然而,在关键技术与工艺上还需要进一步加以完善。
4 结束语
综上所述,作为一种十分重要的粉末冶金复合材料,钨铜复合材料因其具备了很多优秀性能而倍受关注,并得到了广泛的运用。但是,在常规的熔渗与烧结条件之下,钨铜复合材料因为受到了两种金属之间互不溶性、低浸润性等影响,由此而导致其致密化的程度、组织结构的分布、成分、形状及尺寸控制等均无法实现理想化的状态。鉴于现代科技的进一步发展,一些新型技术的引进,获得综合性能更好的高致密性钨铜复合材料已经具有现实可能性。笔者坚信,这肯定会进一步拓展钨铜复合材料的应用范围。
参考文献:
[1]周武平、吕大铭,钨铜材料应用和生产的发展现状[J].粉末冶金材料科学与工程,2005(1).
[2]高娃、张存信,钨铜合金的最新研究进展及应用[J].新材料产业,2006(2).
[3]刘孙和、郑子樵,热化学方法制备钨铜合金及性能研究[J].硬质合金,2006(3).
[4]史晓亮,热压烧结制备高密度钨铜合金[J].机械工程材料,2007(3).
[5]王正云,高能球磨时间对钨铜复合材料性能的影响[J].西华大学学报・自然科学版,2007(3).
[6]张喜庆,钨铜复合材料制备及应用进展[J].有色金属,2010(3).
粉末冶金的优点范文6
该项目是将中航工业制动的碳/碳刹车材料制备技术与西北工业大学的陶瓷基复合材料应用技术科学结合,发明的一种领先世界的新型复合材料――“碳陶飞机刹车功能复合材料”,简称“碳陶刹车材料”。它是产学研合作取得的一项饱含“中国创造”智慧的自主技术创新硕果。
其实,早在2008年中航工业制动用此材料制作的飞机刹车盘――“碳陶刹车盘”就在歼10某型飞机上实现了成功首飞。此后,碳陶刹车盘成熟地应用在我国舰载机、歼击机、运输机等10多种先进机型上,使我国成为世界上第一个将碳陶刹车盘成功应用机上的国家。碳陶刹车材料,改写了刹车材料的历史,彰显了碳陶刹车技术领跑世界的中国力量。
如今,关乎飞机起降安全的碳陶刹车盘授此大奖,实至名归。这项新型材料融合了粉末冶金刹车材料和碳/碳复合刹车材料的优点,具有重量轻、硬度高、刹车平稳、耐高温、耐腐蚀、环境适应性强等优点,被公认为性能优异的新一代刹车材料。
在产业界“一辈子只做刹车”的中航工业制动董事长、党委书记向克阳激动地说:“今天的获奖,就好比一个孩子高考考上清华、北大。关键是‘父母’基因强大,才修成正果。”
“找对了合作方比什么都重要”,西北工I大学领衔合作项目的中国工程院士院张立同更是情不自禁,“这让我们更加坚定了产学研合作自主技术创新的信心和决心。”
从2005年双方合作到2008年碳陶刹车盘装机首飞成功,再到荣获2016年国家技术发明奖。作为产学研主体的中航工业制动和西北工业大学同甘共苦,肝胆相照。在新材料研制领域,共同突破了世界制备技术的三大难题,形成了五个重大技术发明点,获得了19项国家专利。
科技的成色,产业的金色,成就了含金量十足的“中国颜色”。
飞机刹车盘从“跟跑”到“领跑”
翻开中国飞机刹车盘研制历史,这是一部布满荆棘的辛酸史,更是一部漫长且艰苦的奋斗史。
机轮刹车系统隶属机起降系统,主要承受飞机在地面的静动态载荷、冲击载荷、吸收刹车能量,并对飞机起飞、着陆、滑行、转弯、制动进行有效控制。据统计,飞机发生在飞机滑行和起降阶段的不安全事件占飞机所有不安全事件的60%以上。因此,作为刹车系统上起关键作用的刹车盘就显得尤为重要。欧、美、俄等航空工业强国,历来极为重视航空起降制动系统的发展。
目前,飞机刹车盘的制造材料发展经历了有机粘结剂刹车材料、粉末冶金刹车材料、碳/碳复合刹车材料和碳陶复合刹车材料四个阶段。有机粘结剂刹车材料是早期飞机使用的刹车材料,刹车温度低、寿命短、起落架次少,目前已基本淘汰。粉末冶金刹车材料在20世纪60年展起来,但存在高速摩擦系数低、高速制动力不足,以及使用寿命低等问题。
碳/碳复合刹车材料是上世纪70年代欧美发达国家率先使用的飞机刹车盘制作材料。长期以来,这项技术被美、英、法三国牢牢掌握。
1972年,中航工业制动发现和瞄准了这一尖端技术,向国家申请立项研制。1977年,研制出国内第一套扇形片结构的航空碳刹车盘;1987年,碳刹车材料制备工艺和防氧化技术获得成功;1993年,碳/碳复合材料刹车制备技术获得国家发明专利;1994年,碳/碳复合材料防氧化技术获得国家发明专利;1998年,碳/碳刹车盘在歼-10飞机上首飞成功;2003年,碳/碳刹车盘获得中国第一个TSOA技术标准批准书,并随着新舟-60飞机飞出国门,国际航线上终于有了中国产的碳/碳刹车。中航工业制动的这一创举,不仅彻底改变了西方大国对此技术的垄断局面,而且在全国范围内催生出10多个碳刹车企业,引领了中国碳/碳刹车材料产业的蓬勃发展。
有学者评价,如果没有碳/碳材料产业化的成功,就没有今天中国机轮刹车领先于世界的精“碳”一跃。碳/碳刹车盘最大的特点是对飞机减重效果十分显著,这对飞机来说无疑是最大的利好。
先进的成果必然承受更多异样的眼光。在中航制动攻关技术的过程中,遭到了很多所谓专家的反对。他们批驳和质疑碳/碳刹车材料的种种不是。然而,当碳/碳材料在国内大量军、民机上成功使用时,曾经的“反碳/碳”派专家,又开始想方设法地“临摹”这一新技术。
如今,在事实与业绩面前,流言无影无踪。
那么,为什么又要发展另一种新材料?因为飞机作业的环境复杂多变,不同的自然环境对刹车材料有不同的要求。碳/碳刹车盘的吸潮性强,在湿态环境会导致飞机刹车性能大幅度衰减,从而危及飞行安全。装备发展呼唤着一种新型刹车材料的问世。
产学研的根本是为了自立
2005年,中航工业制动与西北工业大学签订合作协议,提出以国防建设为需求,着眼航空产业发展中遇到的重大难题和难点,发挥彼此优势,立志打一场高科技的现代科学战。
合作的双方,一个是国内最早从事碳材料研究和产业化的“元老”,一个是陶瓷基复合材料研究的“新贵”。强强结合,优贽互补,强大的碳材料基因和高科技血统充分融合,就会诞生出“中国籍”的世界级产品。