前言:中文期刊网精心挑选了量子力学基本原理的内容范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
量子力学基本原理的内容范文1
Kaiseralautern,Germany
Introduction to Quantum
Mechanics
Schrodinger Equation and
Path Integral
2006,805PP.
Hardback,USD:98
ISBN:9789812566911
H.J.W.缪勒―克斯特恩 著
上世纪二十年代由薛定锷建立的波动方程,即薛定锷方程和四十年代末由费曼建立的路径积分方法,而今已经成为处理量子力学问题的两种同等重要的方法。由于数学形式上简单些,薛定锷方程有更广泛的应用,但在统计物理,特别是场量子化方面的重要应用,费曼路径积分起着同样的重要的作用。
本书力求通过解决量子力学的一些基本问题以及在各自主要的应用领域对这两种方法详细地进行比较,考查两者的应用能力。从一些非平庸的例子,作者明确指出:对求解分立谱,薛定方程要容易得出;而处理散射问题,路径积分方法更方便。
全书内容分为四大部分。第一部分是从第1-14章,介绍量子力学的起源、数学基础、基本原理和一些标准应用。各章的目录分别为:1.引言;2.哈密顿力学;3.量子力学的数学基础;4.Dirac的右矢量和左矢量;5.薛定锷方程和刘维尔方程;6.简谐振子量子力学;7.格林函数;8.时间无关的微扰论;9.密度矩阵和极化现象;10.量子理论:一般形式;11.库仑相互作用;12.量子力学穿透;13.线性势;14.经典极限和WKB方法。第二大部分包括第15-20章。主要处理微扰论的一些应用。它们分别为:15.!次势;16.屏蔽库仑势;17.周期势;18.非简谐振子势;19.奇异势;20.微扰展开数高阶行为。第三大部分包括第21-26章。介绍路径积分方法及其应用。各章内容分别为:21.路径积分形式;22.经典场位形;23.路径积分与瞬子;24.路径积分和在一条线上的弹跳;25.周期性经典位形;26.路径积分和周期性经典位形。第四大部分是本书的是后部分,它包括第27-29章,内容分别为:27.约束系统的量子化;28.量子―经典交义作为一种相变;29.结语。
本书叙述方法新颖,内容非常丰富,详细地给出了所有的计算。对于从事理论物理学习和研究的高年级大学生、研究生和教师以及相关的研究人员,本书都是一本很有价值的参考书。
丁亦兵,教授
(中国科学院研究生院)
量子力学基本原理的内容范文2
关键词 量子力学 教学改革 创新能力 研究性教学
中图分类号:G643.0 文献标识码:A DOI:10.16400/ki.kjdks.2015.07.017
Graduate Education Course Advanced Quantum Mechanics Teaching Reform
HU Ping, PENG Zhihua, GUO Ping, HU Jiwen
(College of Mathematics and Science, University of South China, Hengyang, Hu'nan 451001)
Abstract Postgraduate both the learning process to deepen the knowledge of the process is scientific ability, knowledge of scientific basis. From Graduate Teaching Mode existing problems, discusses the necessity of quantum mechanics graduate students in higher education, research teaching model introduced in the teaching process, improve the quality of teaching so that students master the basic principles of quantum mechanics, based on general ability, innovation ability has been greatly improved.
Key words Quantum Mechanics; teaching reform; innovative ability; research teaching
自上个世纪80年初期恢复研究生教育,我国的研究生教育进入了蓬勃发展的时期。①随着我国高等教育的发展,研究生教育规模的也迅速扩大,研究生教育质量已成为一个全社会关注的焦点问题。我国研究生的素质关系到国家的未来发展,研究生教育是为国家培养现代化建设、发展科技培养高水平、高层次人才;研究生教育是我国站上世界知识经济高点的重要支持;同时也是高校实现由教学型向研究型转变的重要基础。研究生教育不同于本科生教育,研究生教育不仅包含课程教学,同时包含了社会实践、学位论文等诸多环节。②然而作为科研能力、自主创新能力发展的基础――课程教学不仅要传授知识,更重要的是要指导研究生思考,是提高研究生培养质量的根本。
研究生教学质量是整个研究生教育的一个重要部分,如何合理利用现有教学资源条件,使得研究生教学质量能够稳步提高,则成为研究生管理的首要解决问题之一。自上个世纪80年代以来,高等教育改革逐渐兴起,其主要目标就是培养创新型人才,教育界越来越多地关注教学方法创新研究。首先,研究性教学,是一种能有效引导学生主动探究、培养学生创新能力的教学方式,引起全世界各地的教育及其相关部门的关注。目前,教育部实施研究生科研创新项目研究计划, 现在全国已有100多所大学参加这项计划。其次,在过去的几十年中,国内外在总结以前高等教育成果与不足的基础上,以培养创新型人才为教育主要目标,对原有的传统高等教育模式进行了改革。
自从20世纪50年代美国施瓦布教授首先提出学生的学习过程和科学家的研究过程是一致的以来,研究性学习引起了人们的广泛关注,提出了各种相关的理论。③④⑤ 然而,现在国内的高校课堂教学大部分都是基于传统教学模式:教师教学――课堂讲授为主的教学模式。而研究性学习,则主要是以研究问题为基础、由学生主动提出问题、并设计解决方案、解决问题,并在这一过程中获得知识、培养相应的能力,基于此中方式来展开教学与研究的教学模式在国内现有的教学理念与教学资源条件下,应用并不广泛。尤其是在相对较为抽象难懂的理工类课程如量子力学课程教学中应用更是甚少。⑥研究生教育主要是培养学生的科研能力与素养,首先要在“研究”的培养上下功夫,而研究生课程教学正好提供了这一平台。在本文中主要以高等量子力学课程教学为主要研究内容,探讨如何进行课堂教学改革。
自1978年国内恢复研究生招生制度以来,高等量子力学就被列为物理系各专业研究生必修的学位课程之一,同时高等量子力学也是报考博士研究生的考试科目之一,在原来本科阶段“量子力学”的基础上进行深化和拓展,主要是提供学生在后学研究工作中要用的一些知识和方法。量子理论已经成为解决物理学、生命科学、信息科学和材料科学等理论问题的关键。
量子力学作为一门微观物理课程,与经典物理学相比,有一个很明显的差异:其中很多理论很难与日常生活和经验对应,涉及的理论、概念非常抽象,同时涉及非常多的数学知识,如(线性代数、Hilbert 空间、群论、数学物理方法和复变函数等),内容繁多,知识结构广泛,使得学生理解起来有非常大的困难,同时容易诱使学生陷入复杂繁琐的计算,而失去对量子力学学习的兴趣。目前,从我校物理系硕士研究生的实际情况来看,学生的量子力学知识水平参差不齐,有的学生以前没有学习过量子力学,有的学生学量子力学学时非常短,同时每个研究方向对量子力学的需求也不尽相同。 因此,量子力学成为教师公认难教的课程、学生公认难学的课程。 高等量子力学的教学效果将直接影响学生以后的科学研究创新能力与论文水平。为了培养研究生日后的科研能力,我们主要从教学内容和教学方法上进行了改革探讨。
在教学内容上,结合本校教学时限(48学时)和本校学生的特点、学生的研究方向,主要目标是将量子力学的知识应用到其它领域,避免冗长的理论计算,激发学生的创新热情。重点学习量子力学的形式理论、微扰理论、对称性和守恒定律、量子散射理论等。
在教学方法上,根据学生的知识基础和教学内容的特点,改变传统的教学方式,采用学生为主的教学方式。传统的教学方式主要是以教师讲授为主的灌输式、填充式,由于量子力学本身的特点,这些教学方法对量子力学的教学实效非常有限。一方面,一个主角的表演使得本身比较枯燥的量子力学课堂毫无生气,学生面对复杂繁琐的数学推导,思维跟不上教师的节奏,学生的学习热情下降。另一方面,学生本身的角色没有改变,自主学习、自主思考没有可锻炼的平台。教师考虑到自然科学的特点,一定要从知识的传承角度出发,这样教师要去贯彻启发式的教学方式。学生学一门课,学的是前人从实践中总结出来的间接知识。一个好的教师,应当引导学生设身处地去思考,自己是否也能根据一定的实验现象,通过分析和推理去得出前人已认识到的规律?自然科学中任何一个新的概念和原理,总是在旧概念和原理与新的实验现象的矛盾中诞生的。⑦作为教师,要充分利用新旧理论的矛盾提出问题,让学生思考问题,并设计一套完成的解决方案。在量子力学的课堂教学中,笔者结合实际情况,主要采取的是学生讲授为主、教师辅导的方式。尽管学生对量子力学知识的理解有限,但是一方面可以促使学生在课前预习;另一方面学生为了准备一堂课,要查阅相关资料,这样就可以极大地提高学生查找资料的能力,拓展学生知识面。作为教师,从学生讲授中也可以得到一些启发,诸如学生对一个问题理解的切入点与教师理解的不同,从而教师可以调整日后的课堂教学,使得课堂教学的内容从抽象化为通俗。
将科学研究融入到课堂教学,也是实现课堂教学改革的有效方式之一。研究生不仅要学习知识,更要的是做科学研究,寓教于研同样可以提高教学效果。在课题教学中,针对一个主题,在讲授基本知识的同时,更多的引入与之相关的前沿知识,并要求学生设计相关的问题,展开调查研究,以论文、学术报告的方式提交研究成果。通过此种方式,研究生的科学研究能力得到锻炼,创新思维能力得到培养,符合我们培养创新型人才的目标。
本文结合本校研究生的实际情况以及量子力学学科特色,我们主要从从教学内容、教学方法两方面探讨高等量子力学课程的教学改革。随着我国高等教育的发展,研究生课程教学改革还有待进一步地深化,这样才能提升我国研究生教育的整体水平,为祖国的发展培养更多的人才,日益增强国家的综合国力。
本文得到南华大学教学改革研究课题,2014XJG49;南华大学研究生教学改革研究项目 资助
注释
① 周萍.量子力学研究性教学[J]. 中国科教创新导, 2011(17): 89-90
② 高芬.美国高校研究生教学中的“教”与“学”――以美国马萨诸塞大学阿默斯特分校教育学院为例[J].学位与研究生教育,2011(3):73-77.
③ 沈元华.设计性、研究性物理实验介绍[J].物理实验,2004(2):33-37.
④ 顾沛.把握研究性教学、推进课堂教学方法改革[J].中国高等教育研究,2009, (7) :3 1-33 .
⑤ 陈兴文,白日霞,李敏.开展研究性教学培养大学生创新能力[J].黑龙江教育:高教研究与评估,2009(1):123-125.
量子力学基本原理的内容范文3
【关键词】中学 化学教学 量子空间论
【中图分类号】G633.8 【文献标识码】A 【文章编号】2095-3089(2013)10-0154-01
(小叙):课篇第一章节细读、研读、探透性知识点。
1.寻找研究方法 2.课题的研究内容
3.课题研究的一些成果 4.巩固建筑语录
【序言】
化学是在分子、原子层次上研究物质性质、组成、结构与变化规律的科学。化学不断地发展着,目前,人们发现和合成的物质已有几千万种,其中很多是自然界中原本不存在的;这极大地改善了人类的生存和发展条件,丰富了人们的生活。
例如:
1.纳米铜(1nm=10?9m )具有超塑延展性,在室温下可拉长50多倍而不出现裂纹。
2.用隔水透气的高分子薄膜做的鸟笼。
3.单晶硅为信息技术和新能源开发提供了基础材料。
4.用玻璃钢制成的船体。
总之,作为实用的、富于创造性的中心学科,化学在能源、材料、医药、信息、环境和生命科学等研究领域以及工农业生产中发挥着其他学科所不能替代的重要潜质作用。近年来,“绿色化学”的提出,使更多的化学生产工艺和产品向着环境友好的方向发展,化学必将使世界变得更加绚丽光彩。
【寻找研究方法】
第一单元 走进化学世界;
1.物质的变化和性质
2.化学是一门以实验为基础的科学
3.走进化学实验室
第二、三单元 我们周围的空气与自然界的水;空气、氧气(氧气的制取)、水的组成、分子和原子、水的净化。“爱护水资源”。
第四、五单元 物质构成的奥妙、简单统计应用;原子的构成、元素、离子、化学式与化合价 :
如何正确书写化学方程式”?利用化学方程式的简单计算?
第六、七单元 C与C的氧化物燃料及其利用;
分析:金刚石、石墨和C60 (1.CO2 的制取? 2.CO2 与CO的区别、联系?)
应用:燃烧和灭火?燃料和热量?
环保问题:“燃料对环境的影响”
自留田地:“石油和煤的综合利用?”
第八、九单元 金属与溶液的问题;
熟记、认识:金属、金属材料、金属的化学性质;
金属资源的利用和保护、溶液的形成;
溶解度、溶质的质量分数。
第十、十一、十二单元 酸与碱 、盐与化肥 、“化学与生活”。
生活中常见的:1.酸与碱
2.酸与碱之间会发生什么反应
3.盐
4.化学肥料
人体:1.人类重要的营养物质
2.化学元素与人体健康
3.有机合成材料
学生自认化学常用仪器。学习“附录”相关记录 。
【课题的研究内容】
无机化学中量子(分子、原子)力学论
量子化学(Quantum chemistry)是理论化学的一个分支学科,是应用量子力学的基础原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互碰撞和相互反应等问题。
量子化学是理论化学的一个分支学科,是应用量子力学的基本原理和方法,研究化学问题的一门基础科学。
1927年海特勒和伦敦用量子力学基础原理讨论氢分子结构问题,说明了两个氢原子能够结合成一个稳定的氢分子的原因,并且利用相当近似的计算方法,算出其结合能。由此,使人们认识到可以用量子力学原理讨论分子结构问题,从而逐渐形成了量子化学这一分支学科。
【课题研究的一些成果】
生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构,设计并合成人工酶;可以揭示遗传与变异的奥妙,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。
【巩固建筑语录】
化学中常见“离子反应”包括:“酸、碱、盐在水溶液中的电离”和“离子反应及其发生的条件”两部分。
无机化学中最关键的是要有实观性:基础高层次的“化学方程式”们。
其次,稀土元素中的各种化学量变、质变及各种物理、化学性反应。
再次,金属的利用、及高等积存用途。
还有,就是气体的大力层存在行式。如同:水、陆、空,人类的生活方式。
参考文献:
[1]初中九年级化学上、下册课本,人民出版社出版,2011年版。
量子力学基本原理的内容范文4
在信息时代,网络安全是一个严峻的问题。信息安全已经得到了各国政府的高度重视,一方面要保护自己的安全,另一方面要攻击对方,信息保护的升级刻不容缓。
1 现代密码学
现代密码学的基本思想是发送方使用加密算法和密钥,将要保密的信息变成数字发送给接收方。密钥是随机数0、1,将其与要传送的数字明文放在一起,用加密算法把它们变成密文,密文就是传送的信息。接收方使用事先定好的相应的解密算法,反变换将明文提取出。
密码体制分为两类:一类叫对称密钥(非公开密钥),它的加密密钥和解密密钥相同,通信双方需要事先共享相同的密钥,关键在于如何安全地传递密钥。其中有一种一次一密(one time pad)的密码,用与明文等长的二进制密钥与明文异或得密文,并且每个密钥使用一次就销毁,根据香农的证明一次一密是无法破译的。
另一类叫非对称密钥(公开密钥),加密密钥和解密密钥不相同,加密密钥公开,发送者发送密钥与明文混合之后的密文,接受者使用不相同的密钥解出密文。从公开的加密密钥推导出解密密钥需要耗费极巨大的资源,虽然原则上可破解,但实际做不到,所以,在当今社会受到广泛使用。
一旦量子计算机研制成功,它可以更快速的破解数学难题,公开密钥就面临了严峻挑战。
2 量子密码
无论采用哪种方法,都无法避免“截取-重发”的威胁。为了应对强大的量子计算机,需要无条件安全的一次一密的加密方案;但必须解决密钥分配的安全性,可以借助于量子信息作为密钥传输的工具。一次一密不可破译加上密钥传输不可以窃听,从理论上就可以做一个“绝对安全”的量子保密通信。
量子密码是利用信息载体(例如光子等粒子)的量子特性,以量子态作为符号描述的密码,它的安全性是由量子力学的物理原理保障的。
①测量塌缩理论:除非该量子态本身即为测量算符的本征态,否则对量子态进行测量会导致“波包塌缩”,即测量将会改变最初的量子态。②不确定原理:不能同时精准测量两个非对易物理量。③不可克隆原理:无法对一个未知的量子态进行精确的复制。④单个光子不可再分:不存在半个光子。
3 量子通信
量子通信,广义是指量子态从一个地方传送到另一个地方,内容包括量子隐形传态、量子纠缠交换、量子密钥分配;狭义上是指量子密钥分配或基于量子密钥分配的密码通信。本文讲述的是狭义的量子通信。
3.1 单光子的偏振态
本文介绍采用BB84协议实现的量子通信,在发送者和接收者之间用单光子的偏振态作为信息的载体。有两种模式:一个是直线模式,光子偏振态的偏振方向是垂直或者水平,如图1所示;一个是斜线(对角)模式,光子偏振态的偏振方向与垂直线称45 ?觷角,如图2所示。
3.2 基于BB84协议下的“制备-测量”
依照惯例,密码学家称发送者为Alice,接收者为Bob。Alice随机用直线模式或对角模式发出光子,并记录下不同的指向。Bob也随机决定用两种模式之一测量接收到的光子,同时记下采用检偏器的模式和测量结果值。传送结束后,Alice与Bob联络,Bob告诉Alice他分别采用哪种模式测量,然后Alice会告诉Bob哪些模式是错误的,这一过程无须保密。之后他们会删除使用错误模式测量的光子,而正确模式测量出的光子按照统一规定变成0、1码后,就成为量子密钥。
3.3 发生窃听
根据“海森堡测不准原理”,任何测量都无法穷尽量子的所有信息。因此,窃听者想要复制一个完全相同的光子是根本不可能的事情。同时,任何截获或测量量子密钥的操作都会改变量子状态,窃听者只得到无意义的信息,而信息合法接受者也可以从量子态的改变,知道存在窃听者。
密码学家通常称窃听者为Eve,同Bob一样只能随机选择一种测量模式,当她采用错误的测量方式对某一光子测量时,由于波包塌缩,光子的偏振态会改变。比如,Eve使用对角模式测量直线模式下的光子态,光子态会塌缩为对角模式。之后即使Bob选择了正确的测量模式测量该光子,Bob可能会得到不符合编码信息的测量结果,这就产生了误差,具体通信过程如图3所示。
Eve窃听一个光子采用错误测量模式的概率是50%;采用错误模式时,信息可能变成0,也可能变成1,他有25%的概率被发现。但密钥并非一个光子组成,光子数越多被发现的概率就会越高。当误码率低于阈值,就可以称这个密码是安全的;当误码率超过阈值,就称密码被窃听,重新再制备新的密钥,一直检查到密钥在建立过程中没有窃听者存在,接下来进行一次一密的传送。通过这种方式能保证密钥本身安全,并且加密密文不可破译,这就是量子通信的安全性所在。
3.4 量子信道与经典信道
发送方通过量子信道传送量子态光子,接收方用两种不同类型的检偏器测量,检测出0、1组成的量子密钥,还需要一个经典信道。因为是采用一次一密方式,所以经典信道需要定时传送同步信号。
4 量子通信现状
由于量子通信技术的各种优势,国际上的一些国家,特别是美国、日本、欧盟都投入了大量的人力物力,进行量子通信的理论与实验研究。2002年美国BBN公司,哈佛大学和波士顿大学开始联合建造DARPA网络。2010年日本在三个政府机构之间使用量子密钥分配技术,并与2010年10月在东京演示了一个城域量子保密通信网。2010年西班牙马德里建成欧盟第一个城域QKD网络。我国也在量子通信技术的道路上不断发展。2012年“金融信息量子通信验证网”是世界首次利用量子通信网络实现金融信息的传输。2012年党的“十”期间在部分核心部位部署量子通信系统。2013年量子保密通信“京沪干线”正式立项,打造广域量子通信网络。
5 结 语
量子通信还有一些技术难题未攻破,例如信道的干扰,设备的非理想特性,身份验证、密钥存储等技术需要进一步改良等等。虽然理想情况量子密码不可破,但在实际中还有一些漏洞需要考虑。在未来几年,相信我国在中央、地方政府及相关部门大力支持下,通过相关科研团队的努力,量子通信技术会不断完善,量子通信产业也必将取得飞速发展。
量子力学基本原理的内容范文5
在霍尔效应发现约100年后,1980年,德国科学家冯・克利青发现了“整数量子霍尔效应”,并于1985年获得诺贝尔物理学奖。1982年,美籍华裔物理学家崔琦、美国物理学家施特默等发现“分数量子霍尔效应”,不久由美国物理学家劳弗林给出了理论解释,并且他预言存在带有分数电荷的准粒子,该预言在1997年得到了实验证实。他们三个人共同获得1998年诺贝尔物理学奖。
1988年,美国物理学家霍尔丹提出可能存在不需要外磁场的量子霍尔效应,这一点对量子霍尔效应的实际应用有极为重要的意义。但是多年来一直未能找到能实现这一特殊量子效应的材料体系和具体物理途径,使得这种“量子反常霍尔效应”的探索成为多年来该领域的一个的极具挑战性的任务。最近,中国科学家在这方面取得了一些突破性进展,引起了国内外广泛的关注。
量子霍尔效应是凝聚态物理中一种非常奇特的现象,它是一种典型的宏观量子效应,是微观电子世界的量子行为在宏观尺度上的一个完美体现。它不仅深刻地反映了物理学的基本原理,也使物理学乃至数学的拓扑研究中一些现代概念得到了具体的实现,同时还提供了实现凝聚态物理与粒子物理交叉的难得的机会。作者认为它值得做为物理学所有相关专业的研究生修习的一门课程。
本书是以服务于教学为宗旨的一部教科书,对于量子霍尔效应涉及的各方面知识和最新发展起来的一些新概念给出了启发性的、全面而自成系统的阐述。本书的第1版于2000年出版,7年之后考虑到该领域在理论与实验方面取得的许多新的进展,作者于2008年出版了该书的第2版,对第1版进行了全面修订,不仅增加了一些章节,有的部分被完全改写了。(对于第2版的评介,请参考本刊2008年第8期。该书于2012年底由北京大学出版社影印出版。)这里评介的是2013年出版的第3版。
与第2版相比,第3版内容由原4个部分扩充为5个部分,由32章扩充为41章。第1部分 量子场论,包括第1-8章:1.量子力学;2.量子场论;3.正则量子化;4.自发对称性破缺;5.电磁场;6.Dirac场;7.拓朴孤子;8.任意子。第2部分为单层量子霍尔系统,包括第9-22章:9.单层量子霍尔系统概述;10.兰道量子化;11.量子霍尔效应;12.准粒子与活化能;13.复合粒子场论;14.复合玻色子和半经典分析;15.量子霍尔铁磁体;16.自旋结构;17.分数量子霍尔状态的阶梯;18.边缘效应;19在更高阶兰道能级中的带和泡;20.石墨烯中的量子霍尔效应;21.聚硅烷(Silicene)中的量子霍尔效应; 22.拓扑绝缘子和无兰道能级的量子霍尔效应。第3部分为双层量子霍尔系统,包括第23-29章:23.双层量子霍尔系统概述;24.SU(2)赝自施结构;25.双层锁定态;26.层间相干与约瑟夫森效应;27.有公度相与非公度相; 28.SU(4)量子霍尔铁磁体; 29.υ=2的双层量子霍耳系统。第4部分 微观理论,包括第30-34章:30.微观理论概述;31.非对易几何学;32.兰道能级投影;33.非对易孤子;34.交换相互作用和等效理论。第5部分 最新的实验进展,包括35-41 章:35.新的实验进展概述; 36.量子霍尔态的实空间观测; 37.整数与分数量子霍尔系统的集团激发;38.量子霍尔区的超精细相互作用; 39.微波诱导非平衡现象; 40.电子双层超流现象;41.ZnO中的量子霍尔效应。
书末有一个附录,收集了16项书中提到的数学知识的介绍,并分别给出了简明扼要的证明。对于使用全文有很大帮助。
本书内容非常丰富、新颖,论述异常深入细致,适用于凝聚态物理、粒子物理、理论物理及数学物理的研究生做为教材,对相关领域的研究人员也是一本很重要的参考书。
量子力学基本原理的内容范文6
在量子的世界中,对于一个微观的粒子,测量过程本身将不可避免的给我们要测量的物体造成一个显著的扰动,而且即使在原则上,我们也完全没办法把这一扰动减小到零;另一方面,观测行为本身又会破坏粒子原来的状态,让你永远不可能知道粒子本来的状态是什么。这就是量子不可克隆原理:你不能够复制一个未知的量子态,而不改变量子态本身。量子不可克隆原理是量子加密的基础。如果我们把想要保密传输的信息,加载到一个个不可能被准确观测和复制的量子态上,而任何的窃听行为都会改变原本传输的数据。那么最后我们取一部分数据出来,检查原本传输的信息是否被破坏,就能够检测到窃听者是否存在。
整个量子通信中,具有短期内真实的应用潜能的就是量子保密通信,其中最有用的部分就是量子密钥分发。经典通信使用最广泛的公钥密码,是假定一些数学难题,最典型的是假定大型数据分解的数学难题。但是,随着计算能力的不断提高,特别是未来量子计算机如果实现的话,这种数学难题的复杂性就迎刃而解了,换句话说,经典保密通信基于的数学方法不能获得严格的数学证明。在这个背景下,量子保密通信最大的卖点就是它的安全性获得了严格的数学证明,这也可以从其量子力学的基本原理来解释。
量子通信另一个核心内容是隐形传输,是利用了光子等基本粒子的量子纠缠原理来实现保密通信过程。纠缠是一种诡异的超距离相互关联的现象:两个纠缠在一起的粒子,即使被完全隔离,当观测一个粒子的状态时,另一个粒子的状态也会发生瞬时的改变。换言之,两个粒子的量子状态是完全关联的。量子物理让人最不可思议的地方在于,事物的状态并不是唯一确定的。对于宏观的硬币而言,只可能存在两种状态:正面朝上或是反面朝上。但对于一枚量子硬币,它可以既是正面朝上又是反面朝上。对于两枚纠缠在一起的量子硬币,如果发现其中一枚是正面朝上,另一枚也一定是正面朝上;当发现一枚是反面朝上,另一枚也一定是反面朝上;如果发现一枚既是正面朝上又是反面朝上,另外一枚也一定既是正面朝上又是反面朝上。因此,纠缠所包含的关联性,要比我们通常理解的宏观上的关联性强得多。
事实上,纠缠的两个粒子尽管可以在很远的距离上一个影响另一个,但它们无法传递任何信息。以密钥为例,当双方共享同一套密钥时,并没有发生信息的传递,直到加密的文本传来,密钥才有意义。量子通信和传统通信的唯一区别在于,量子通信采用了一种新的密钥生成方式,而且密钥不可能被第三方获取。
向全球的量子通信网迈进
发展量子通信技术的终极目标是构建广域乃至全球范围的绝对安全的量子通信网络体系。通过光纤实现城域量子通信网络连接一个中等城市内部的通信节点、通过量子中继实现邻近两个城市之间的连接、通过卫星与地面站之间的自由空间光子传输和卫星平台的中转实现遥远两个区域之间的连接,是实现全球广域量子通信最理想的路线图。
在这一路线图的指引下,欧洲、美国和中国等在过去几年中均进行了战略性部署,投入了大量的科研资源和开发力量,进行关键技术攻关和实用化、工程化探索,力争在激烈的国际竞争中占据先机。光纤量子密码技术目前正从点对点量子密钥分发的初级阶段向实现多节点网络内的量子安全性方向深入发展阶段,全球各地正在加紧进行量子通信系统的实用化和工程化建设。
由美国国防部高级研究署(DARPA)支持, BBN公司(具有很强的军方特色)技术部联合波斯顿大学与哈佛大学共同开展了量子保密通信与IP 互联网结合的五年试验计划。该计划主要内容是以BBN技术部、波斯顿大学和哈佛大学作为三个节点以构建融合现行光纤通信网、互联网和量子光通信的量子互联网,并在此基础上实现保密通信。
在欧盟的《量子信息处理和通信:欧洲研究现状、愿景与目标战略报告》中给出了欧洲未来五年和十年量子信息的发展目标,例如将重点发展量子中继和卫星量子通信,实现1000公里量级的量子密钥分配。欧洲空间局计划到2018年将国际空间站上的量子通信终端与一个或多个地面站之间建立自由空间量子通信链路,首次演示绝对安全的空间量子密钥全球分发的可行性。欧盟在2008年9月了关于量子密码的商业白皮书,启动量子通信技术标准化研究,并联合了来自12个欧盟国家的41个伙伴小组成立了SECOQC工程。
实用化进程:与经典通信的融合
从目前的实际应用来看,将量子通信网络与现有网络进行融合是最优的发展战略。互联网在设计时并没有深入地考虑安全性,这造成当今的网络安全问题十分突出。量子通信是人类能掌握的最保密的通信技术,量子通信和经典通信网络的融合研究对于提升未来网络的安全性具有重要的意义。
量子通信和经典网络的融合需要解决物理层和组网技术、中继技术和通信应用技术等几个方面的融合问题。对于未来网,应当从基础设施的建设和利用上就考虑和量子通信的融合。由于传统的光通信可能在很长一段时间内仍然是主要通信技术手段,在光通信网络上实现量子通信网络,将是融合的基础。
实际的量子通信中,量子通信与现有通信的融合是一个相互取长补短的过程,量子通信不会完全替代现有的通信技术,而是在现有的技术上在物理层、网络层、应用层将两者进行了融合。
从物理层来说,可以从光源、探测器和信道方面考虑。在光源方面,利用单光子源或者单离子源,或者将激光光源衰减到单光子量级应用到实际工程中;在探测方面,因为是单光子信号源,需要特测器有单光子量级特征,对量子密钥分发中的连续变量进行测量;在信道方面,对于不同的光源用不同波长的商用光纤即可满足条件。
从网络层来说,一方面我们可以采取独立的信道和统一的网络结构,也可以用一根光纤既传递量子信号又传递经典信号;除了光纤技术,还需要采取例如基于纠缠交换的量子中继技术来解决量子通信的远距离传输这一核心问题;此外,在组网的往来上,可以采取电路交换或者波长复用技术,并且增加量子路由器来进行控制。
从应用层来看,我们可以跟现有的互联网安全协议结合,用量子密码来替换现有协议中的初始密码,这样既可以得到更高的安全性也可以保持实际的通信速率。现在实际用到的量子保密分发的方法都是用诱骗态量子密钥分发的方法。而一旦用量子的方法产生密钥,则必须与后继的经典通信结合才能实际应用。比如,我们用量子密码生成种子密钥,然后用经典的方法进行扩张,这样既保证了种子密钥的安全,同时也有很高的通信效率。
量子通信在中国
量子信息因其传输高效和绝对安全等特点,被认为可能是下一代IT技术的支撑性研究,并成为全球物理学研究的前沿与焦点领域。基于我国近10年来在量子纠缠态、纠错、存储等核心领域的系列前沿性突破,中科院于2011年启动了空间科学战略性先导科技专项,力争在2015年左右发射全球首颗“量子通讯卫星”。
中国科学技术大学教授潘建伟、彭承志、陈宇翱等人,与中科院上海技术物理研究所王建宇、光电技术研究所黄永梅等组成联合团队,于2011年10月在青海湖首次成功实现了百公里量级的自由空间量子隐形传态和纠缠分发。实验证明,无论是从地面指向卫星的上行量子隐形传态,还是卫星指向两个地面站的下行双通道量子纠缠分发均可行,为基于卫星的广域量子通信和大尺度量子力学原理检验奠定了技术基础。
如果应用量子通信这项高科技,中国军方能瞬间传送军事信息而又确保万无一失。通过这项保密力度极强的科技的应用,能大幅度提升军队的指挥和控制能力,使得中国在信息战能力方面超越美国。
发射量子通讯卫星早就被中国科学界列为一项核心任务。早在2011年9月,中国科学院院长、党组书记白春礼在谈到中国能否抓住第六次科技机遇时透露,中科院计划在未来十年发射五颗科学卫星,其中,量子通讯卫星的卫星发射将列为重中之重。
由于量子信号的携带者光子在外层空间传播时几乎没有损耗,如果能够在技术上实现纠缠光子再穿透整个大气层后仍然存活并保持其纠缠特性,人们就可以在卫星的帮助下实现全球化的量子通信。这样一来,这种世界上最为保密的通信手段将会覆盖世界任何角落。