火法冶金的特点范例6篇

前言:中文期刊网精心挑选了火法冶金的特点范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

火法冶金的特点

火法冶金的特点范文1

关键词:有效元素;有色金属;回收

目前,世界上已探明的金属有86种之多,其中铁、铬、锰称之为黑色金属,其他金属都可统称为有色金属。冶炼工业中最常见的有色金属包括铜、镍、铅、锌、锡、铝、钨、钦等。这些有色金属在冶炼过程中由于冶炼工艺等原因除希望冶炼的元素外还会产生大量的其他元素,当前大多数有色冶金企业把这些有效元素当作了冶炼伴生的废渣进行了丢弃。丢弃的结果可想而之,既是对有效元素的浪费,又加重了当地的环境污染。因此,对“废渣”中的有效元素进行回收,二次利用,变费为宝,将会产生社会效益和经济效益的双赢。

1 有效元素回收方式

在有色金属的冶炼过程中产生的废渣元素种类很多,其中可回收,再次利用的有效元素也不少,可分为有效金属元素和有效的非金属元素,根据冶金的要求和用途,废渣中有效元素的回收方式也不相同。对于金属元素的回收,一般采用选冶、火法冶炼和湿法冶炼等技术,而非金属元素(如余热)的回收采用梯级利用法。有效元素回收的原则是减量化、资源化、无害化。

1.1选冶法

在冶金有效元素处理的初期,尾矿的选择上,需针对矿山物理表面的不同化学成分、性质,采用适合尾矿再选的选冶流程(螺旋溜槽-BL1500螺旋溜槽、浮选+尾矿氰化选冶联合流程、浮一重一磁联合流程、先铅后铜的优选浮选等),或通过新型药剂(如浸锌渣还原、浓缩脱液等),从粗精矿中直接选择出精矿。通过尾矿选治增加经济效益,避免因尾矿回收率低,引起的矿山企业开发、利用率积极性不高等原因引起的矿山的恶性开发,增强有色金属的综合利用,使矿山开发、有色冶金、回收利用良性循环、可持续发展。

1.2湿法冶金

湿法冶金是目前回收冶金过程中废渣有效元素最有效的方法和常用方式之一。它是通过酸、碱、微生物水溶液浸出方法提取所属金属元素,最后用电解水溶液的方法抽取金属。并且湿法冶金对冶金劳动条件要求不高,无高温和粉尘危害,况且排放的有毒气体极少,可以达到生产清洁的要求。所以,湿法冶金常作为复杂废渣冶金或尾矿再开发的新技术。

1.2.1湿法冶金步骤

在湿法冶金过程中分为三个步骤:(1)将矿石原料浸泡在水溶液中,这一过程简称原料浸出。(2)净化:再将浸取的溶液和残渣分离,进而通过溶剂萃取技术、离子交换技术、沉淀法、还原法将夹杂在冶金溶液与有用的金属离子洗涤回收。(3)金属抽取:采用电解法从净化液直接提取金、银、铜、锌、镍、钻等纯金属;而以含氧酸形式存于水溶液中的铝、钥、钨等金属,一般先进行析出氧化物,然后再还原得到有效金属。

1.2.2原料浸出

湿法冶金的浸出环节是冶金中的最重要的一步,由于废渣矿石中有效金属元素是呈硫化物、氧化物、硫酸盐、砷化物、碳酸盐、磷酸盐等形态存在,要想将有效金属从有害杂质中分离出来,需要谨慎的选择溶剂。浸出的方法也很多,要因材治宜,有酸浸出、碱浸出、盐浸出以及细菌浸出。可用HZSO4作为药物溶剂来处理含酸性的矿石浸出镍、锌、铜、钻等氧化物,回收率可高达99%以上,效果明显。用HCL处理含酸性的矿石浸出黄铜。用浓度巧%的HCL和浓度30%的HZSO4混合处理钨矿。用NH:处理含碱性的矿石浸出钻、镍、铜的硫化物;用Na多处理硫化锑、汞矿浸出HgS、53、SbZs3。NaCL处理含铅半产品的尾矿浸出PbSO4、PbCLZ。用NaCN处理金银矿、高铁盐作为氧剂使用浸出硫化铜、黄铜。用细菌、微生物作为水溶液浸出硫酸盐、氯化物等。

1.2.3 净化

经过原料的浸出后,会得到很高比例的有效金属,但仍然许多不需要的或有害的矿物质,它们随溶剂混合于想要抽取的有效金属中。净化的过程有两种,一是先从溶剂中析出待沉积的有效金属;另一种方法是先析出杂质,让有效金属保留在溶剂中。常用的净化方法有:溶剂萃取、离子沉淀、离子交换和还原法。

利用水溶液与有机溶剂分层液体相的原因而采用的溶剂萃取技术,再用稀释剂从有机相中分离金属离子离子。目前已有200余种萃取溶剂,其中有十几种是被广泛应用在工业冶金中的。对有机溶剂的选用上,还有非常大的进步空间,可利用现有的溶剂萃取液合成更加高效的、廉价的新型萃取液,并且,有机溶剂萃取的工艺上也有较的改善空间。

由于离子交换树脂合成简宜,并且不溶于其他酸碱盐溶液以及有机溶剂,所以在离子交换工艺中离子交换树脂是重要的转换物质。与溶剂萃取相比,离子交换技术具有操作方便、选择性好、性能稳定、容量大的特点。沉淀法也是一种最常用的净化提纯技术,可用于获得盐类、氧化物或金属产品。沉淀方法有硫化物沉淀法、水解沉淀法以及共沉淀法等。

1.3火法冶金

火法冶金是回收冶金过程中有效元素的最古老的方法,在昔日发挥了重要的作用,但由于其高耗能,对环境的污染大,在环保节能的今天,火法冶金逐渐要退出历史舞台。单纯使用高温进行火法冶金提取有效金属的方式基本上不再使用,但与湿法冶金相结合回收有效金属的混合技术仍有广泛的市场价值。24余热回收要充分合理地利用有色炉窑的烟气余热,就要根据烟气余热资源的数量、品质(温度)和用户要求,遵循能级匹配的原则,实现对其进行按质回收,温度对口的梯级利用。一般情况下具体的梯级利用原则如下。

优先考虑将烟气的余热回收利用于生产工艺过程本身。这样,将烟气中的余热直接带回生产工艺过程中,直接降低了生产工艺过程的能耗,比通过转换装置来回收烟温的余热更为经济和有效。其次,冶金过程产生的高温余热可应用于动力回收,使用水蒸汽进行循环发电,高温余热的热能转换成电能。最后,这部分的烟气余热最好直接应用于生产工艺本身,如加热物料、预热助燃空气等。如得不到以上利用时再考虑应用其冬季采暖,夏季制冷等其他利用方式。

火法冶金的特点范文2

1废旧线路板拆解

废旧线路板种类繁多、大小不一、结构组成也各不相同。合适的预处理拆解是无污染、低能耗、高效率回收的必要前提。拆解就是拆除线路板中的电池、电容、电阻、电感、二极管等元器件,拆下来的元器件经过性能检验,好的元器件还可以再次使用,坏的可以分类回收处理。拆解的手段有两种,最原始的方法就是人工拆解,先进的办法就是机械代替人工,自动拆解和检测系统,目前国内一般还采用人工拆除,效率比较低。日本NEC公司开发一套自动拆卸线路板上电子元件的系统,利用红外加热和两级去除方式(垂直和水平的冲击力)使穿透线路板和其表面的元件脱离,但不会对元件造成损害[4]。德国FAPS采用与线路板自动装配相反的方式自动拆除,先将线路板放于加热的液体中熔化焊元料,再用SCARA机械装置根据元件的形状分捡有用器件[5],现在线路板自动拆解技术还处于研究可行性阶段,还没大量投入生产当中,主要受技术和成本的制约。拆好的线路板表面的油漆可先进行脱漆处理,脱漆的办法主要有两种,一种有机试剂脱漆,一种碱性脱漆,经过脱漆后的线路板更有利于后续的回收处理,但由于利润不高,现在很多工厂没有经过脱漆就直接进行破碎处理。

2线路板回收处理

线路板最原始的处理方式就是填埋或者直接焚烧,这样不仅污染环境,也是资源的重大浪费,政府现在也明令禁止这种落后处理方式。以下介绍一些比较成熟的处理经验和还在试验阶段的新工艺,如:机械物理法、火法冶炼、湿法冶金、热解法、生物法、超临界法、微波法等。

2.1机械物理法

机械物理回收工艺首先通过机械破碎,再利用物料之间的物理特性的差异进行分选,经过预处理、破碎、分选,最后得到金属富集物和非金属混合物。对于该工艺,破碎是关键,将金属和其他组分充分剥离是成功分选的前提。

2.1.1线路板的破碎由于线路板主要由强化树脂、覆铜组成,硬度高、韧性强,不好破碎。只有采用具有剪、切作用的破碎机才有好的分离效果。一般采用两步破碎,先采用剪切式破碎机粗碎(切碎机、旋转破碎机),将有韧性的线路板剪碎,避免金属成团,再利用冲击式破碎机(锤碎机)或者挤压式破碎机(锤磨机)细碎。破碎机直接决定破碎的效果和能耗,这也推动破碎设备的不断更新,采用高硬度、耐磨的新材料,如陶瓷研磨材料。破碎有两种方式:干法破碎和湿法破碎。干法破碎过程中,在强大外力和摩擦的作用下会局部产生高温,当温度达250℃以上时,线路板中的有机成分会发生热解,产生有毒有害气体,造成环境污染,同时干法破碎也会产生大量粉尘。为解决这些问题,在破碎的过程中采用新办法、新工艺、新设备,采取通风或者吸收装置对有害物质吸收、收集;采取超低温冷冻破碎技术避免局部过热,德国DaimberBenzUlmResearchCenter采用液氮冷冻破碎技术[6],清华大学邹亮也对液氮冷冻粉碎线路板作了试验研究[7],此方法降低破碎时局部高温,提高粉碎效果,获得较好的表面性质和解离度。湿法破碎可以避免局部高温和粉尘问题,湿法破碎就是在破碎的过程中引入水,由于水的存在,既可降解粉尘,也可避免局部过热,但同时产生废水,实现水循环使用和达标排放,必然会增加回收成本,但其有不可替代的优越性。江西铭鑫冶金设备有限公司采用湿法破碎———水力摇床分选[8];清华大学精密仪器系段广洪等开发湿法喷淋破碎———重力分选回收工艺[9];赵跃民对线路板的破碎专门进行了基础性研究[10]。

2.1.2分选分选就是利用破碎后的线路板粉中各组分的物理性质(磁性、电性、密度、颗粒大小及表面特性等)差异分选,物理法分选有很多优点:二次污染小,成本低,金属和非金属分离效果好,各种成分综合回收率高。物理法在处理废旧线路板回收中占有主导地位,化学法可作为物理处理后续辅助处理办法。物理分选可分为磁选、电选、重选。磁选就是利用磁选机将有磁性的金属分选出来;电选就是利用电流力分选出金属和非金属物质,有涡流电选机和静电电选机,特别适合轻金属与比重相近的塑料之间的分离,但要求进料颗粒形状规整、粒度不能太小;摇床技术主要用于选矿行业,也叫重力分选,现在已成功用于废旧线路板的分选,利用破碎后的线路板金属和非金属之间的密度差异,在摇床的震动下,粉末松散、分层、分带,在风力或者水力作用下,按照运动速度差异进行分选,摇床技术有风力摇床技术和水力摇床技术,现在国内使用水力摇床技术处理比较普遍。北京航空航天大学开发的处理废旧线路板的专利就是将破碎后的线路板粉利用风力将金属粉与非金属粉分离;陈鹏采用一种新的分选装置,以空气为介质,通过“双旋涡”旋转气流从线路板中分离金属[11];丁涛对线路板金属分选进行研究[12];胡利晓对静电分选作了基础性研究[13];张若昕采用多级破碎+磁选、重选、静电选相结合的处理方法[14]。

2.2火法冶金

火法冶炼将废线路板直接进炉,以焦炭为原料,添加石灰、二氧化硅等熔剂,线路板中玻璃纤维同时起造渣熔剂作用,根据熔液中各组分的比重差异,比重大的贵金属及铅进入炉缸,中间合金为粗铜锭,比重小的贱金属钙、镁等形成炉渣硅酸盐。粗铜可直接电解成纯铜,炉渣可做建材原料,不过此法会产生有毒气体,资源没有最大化综合利用,塑料被燃烧掉,多种金属损失严重。火法冶金工艺有:焚烧溶出、高温氧化熔炼、电弧炉烧结、浮渣技术等。通过改进炉子和工艺,可以消除二恶英产生,同时利用塑料燃烧的热量。

2.3化学处理法

化学处理法就是使用酸(硝酸、王水、硫酸)、碱、强氧化剂、络合剂或几种试剂混合溶解线路板中的金属,把金属转为液相,与非金属等物质分离,然后采取置换、电解、浮选、沉淀、离子交换、蒸馏结晶等工艺回收提纯金属。金的浸取最早是氰化法,但毒性大,可以采用如下几种方法湿法浸取金:硫脲法[15]、硫代硫酸法[16]、次氯酸法[17]、碘化法[18]、硫氰酸盐法[19]等;铜的浸出有酸浸法(多用硫酸)[20]、氨浸法[21]。湿法产生废液多。

2.4热解法

热解技术也叫干馏,在缺氧、真空或惰性气体保护和高温条件下(通常是350~900℃)[22],高分子有机物分子断裂,生成热解油(冷凝)或者热解气,干馏后渣可以直接熔炼。热解在无氧状态下反应,避免有毒气体二恶英、呋喃产生,在真空情况下更有利于高分子的裂解和气相的扩散,文献[23-25]对线路板的热解处理做了大量的研究,如热解条件温度、压力的控制和热解产物的分析等。文献[26]对目前热解法处理线路板非金属进行了综述。

2.5生物法

生物浸取这种新技术是利用微生物活动产生弱酸剥离金属,生物浸取环保节能,但菌种有限,也难培养,周期长,浸取时间也比较长,还处于试验阶段,应用少。

2.6超临界法

超临界就是在有氧化剂存在的高温、高压超临界流体中,迅速分解有机物。超临界水氧法依靠高于374℃临界温度和2.21×107临界压力下的水,在这状态下,水是有机物良好溶剂,线路板中的有机物与超临界水中的氧反应,分解成二氧化碳、氮气、水及盐类[27]。线路板在超临界二氧化碳中,在270℃,36MPa,80mL条件下,经过31h,大分子量树脂分解成苯酚、溴苯酚等[28]。

2.7其他处理工艺

微波是一门新型的热处理工艺,微波湿频率为300MHz~300GHz的电磁波,热效益显著,升温快,方便控制,现在也应用于处理线路板[29],在处理线路板时,先将破碎的线路板放入微波炉加热30~60min,其中有机物先挥发,然后升温至1400℃,物料溶化,冷却后,金属以颗粒状分离。中国科学院等离子研究所研发出利用150kW电弧等离子体在无氧状态下热解线路板技术,线路板在等离子高温无氧状态下分解成气体、玻璃和金属[30]。

3非金属循环利用

约占线路板60%的非金属因为回收经济效益低,处理困难,资源化程度比较低,以前研究比较少,随着研究的深入,回收的价值越来越突出。非金属主要组分是树脂和玻璃纤维。树脂的循环利用主要通过热解法[31]、超临界流体解聚法、水热解聚法、溶剂分解法等[32]。主要用于建筑材料[33]、复合材料[34]。杨二桃等以印刷线路板非金属分离物为前驱体,经热解、成型、碳化和水蒸气活化制备粒状活性炭[35],邱军[36]、蒋英[37]和庄燕[38]分别概述了目前废弃线路板中非金属材料的回收和利用。

4线路板检测技术

线路板的检测主要是金属含量的检测,采用先焚烧再酸溶或者微波消解溶解金属,再以原子吸收[39]或者等离子发射光谱[40]测定其中的金属元素。

5结语与展望

5.1加大设备的研发和投入,如:自动智能化的拆解和检测系统开发;破碎机的升级换代;重选、电选、磁选、火法冶炼炉子灯设备的研发。

5.2各种不同的处理方法,都有一定的优缺点,把握各种处理方法的特点,综合使用这些处理方法可取得更好的效果。工艺的评价可以从经济效益、资源利用率、环境的二次污染3方面综合考虑,目前机械物理处理有绝对的优势,不要加热也不需要添加试剂,不改变单体的性质,处理简单,能耗低,二次污染小,随着设备和技术的进步,电选、磁选应该有很大的发展空间。

火法冶金的特点范文3

对于专门课中的主干课程适当综合化就是把原来两门或两门以上的课程重新调整内容与框架,构成一门新的课程。如将电气自动化技术专业原大专的《晶闸管交流技术》、《自动控制原理》、《自动控制系统》三门课程进行一定的调整、删节、补充后,综合为一门课程,即《直流调速技术》。

一、为什么要实行课程综合化

高等职业教育是针对职业岗位群,培养生产、服务、管理第一线的高级实用型人才。毕业生要具有一定的岗位针对性和适应性,“主要从事成熟技术的应用和运作”,也就是说能将常规的成熟技术转化为生产力,并具有一定的运用高新技术的能力和一定的横向扩展能力,为此必须加强实践性教学环节,要求专业实践课和专业理论课的比例达1:1左右。实践课的加强,会使专门课的课堂教学时数相应减少。将相关的两门或两课程综合为《轧钢工艺及设备》后,在不降低原有理论深度且引进了部分新内容的前提下,对课程结构进行了调整,节约了48课时;钢铁冶金专业将《钢铁冶金原理》和《物理化学》综合为《钢铁冶炼技术》,节约了62课时;有色金属冶炼专业将《重金属冶炼》、《轻金属冶炼》、《稀有金属冶炼》、《有色冶金原理》四门课程内容按工艺流程进行重组,综合为《火法冶金》、《湿法冶金》、《电冶金》三门课程,使之更利于专业实践能力的

培养。

二、课程综合化应遵循的原则

课程综合化不是学科型教材简单地加加减减,通过课程综合化,将相关知识材料有机地重新组合,并引进一定的新材料、新工艺、新设备等新知识。课程综合化应遵循的基本原则是:以教学计划为依据,以培养目标为主线,按职业能力结构调整课程内容,突出重点适度地多设接口。

三、如何实施综合课的教学

实施综合课教学,要做好以下几方面的工作。

1.编制一个能满足课程要求的教学大纲

在编写专门课教学大纲的过程中,应将重点放在综合课大纲上。每门综合课教学大纲应组织三到五人的编写小组,由担任该课程的任课教师负责执笔,其他则为相关课程的任课教师。编写小组在收集信息、阅读资料的基础上,经集体讨论确定该课程的功能与框架,由执笔者写出课程基本要求,并据此写出课程教学大纲初稿。每次审稿,必须由审稿者签署书面意见,作为执笔者修改的依据。我校的综合课教学大纲巳经由湘钢、株冶、601厂、23冶等企业的专家组成的专家顾问委员会审稿,并已修改定稿。

2.按教学大纲的要求选编教材或讲义

目前综合课教材还是以“选”为主,逐步向“编”过渡。有些课程难以选到合适的教材,须由任课教师写出讲义,并打印给学生作为教材,如钢铁冶金专业、金属压力加工技术专业、冶金机械专业都编写了部分综合课讲义。大部分选用的教材,难以达到综合课教学大纲的要求,要求教研室组织人员写出补充讲义。从试行情况看,写补充讲义以完善现有教材的不足,是一个较好的办法。

3.对任课教师必须提出更高更新的要求

综合课内容面广、量大,突出了对学生专业实践能力的培养,这一方面要求教师具有更丰富而全面的知识,另一方面又要求教师本身必须有较强的专业实践能力,也就是说综合课的教学质量要由“双师型”教师队伍来保证。因此,任课教应多下实验室、实训室锻炼自己。我校已采取了有关措施,鼓励教师下实践教学现场,对缺乏实践经验的教师,则要派到生产现场进行锻炼。此外,还应聘请有关生产单位的技术人员担任兼职教师,定期或不定期地到学校来介绍新技术、新工艺、新设备。

4.必须开发新的教学方法

课程综合化属于课程内容的改革,内容改变了必须有新方法与之适应,包括教的方法与考核的方法。对于专门课要改变一张试卷定优劣的做法,要探索新的考核方法,要加强实践能力的考核,在能力培养上要强调过程控制与目标控制相结合的方法,可实行厂校联合,工厂、企业除提供现场教学的场地、设备外,还可派出有关技术人员与专家参与教学指导,并对学生进行考核考查。

5.应成立学生助教小组

综合课是主干专业理论课,具有较强的实践性。如电气自动化技术专业的《直流调速技术》涉及到SCR电路原理、自动控制理论、系统理论以及SCR元件的使用调试和控制系统的接线、测试、波形分析、故障检修等操作技术。为提高学生的学习兴趣,减轻教师负担,切实保证课程要求的职业能力准确到位,充分发挥学生的个性特长,根据自愿原则,每门综合课均可在班级内挑选几名成绩优秀、热情高的学生组成课外助教小组。教师利用课外时间对助教小组的学生进行强化训练,使之成为课内外教学活动的辅导力量,参与理论和实践教学活动的辅导。学生助教小组成员的表现记入学生成绩单的特长栏内。如实用电工技术课外实践活动小组,经教师强化训练后,既可参与理论教学课外辅导,又可帮助实验室、实训室检修仪表、准备实验等,还可让他们在实验课或实训课中协助老师参与指导。

火法冶金的特点范文4

>> 呼和浩特市地区超贫磁铁矿资源的特征、利用现状及勘查开发建议 承德市超贫(钒钛)磁铁矿的综合利用分析 超贫钒钛磁铁矿综合回收铁钛试验研究 超贫钒钛磁铁矿预选工艺流程试验研究及推广前景 浅谈钒钛磁铁矿的综合利用 承德地区超贫钒钛磁铁矿矿石特征 浅议滦平县铁马矿区超贫钒钛磁铁矿地球物理特征 攀枝花钒钛磁铁矿资源综合利用方向的思考 河北省承德县头沟—三家一带超贫钒钛磁铁矿矿床地质特征 超贫磁铁矿选矿研究 钒钛磁铁矿直接还原工艺探讨 攀西地区钒钛磁铁矿选矿试验分析及工艺研究 会理石头沟钒钛磁铁矿床地质特征及找矿前景 浅析广东霞岚钒钛磁铁矿矿区的矿床成因类型 内蒙古呼和浩特市地区超贫磁铁矿资源特征 哈业胡同超贫磁铁矿矿石加工技术性能的研究 基于3DMine的某超贫磁铁矿三维建模研究 超贫磁铁矿的地质特征与找矿模式 红格南矿区钒钛磁铁矿选铁尾矿选钛试验研究 高精度磁测在四川某钒钛磁铁矿中的应用 常见问题解答 当前所在位置:"等矿床,后者有红格、新街HYPERLINK"http:///view/1106895.htm"等矿床。总的来说,两种类型的地质特征基本相同,前者相当于后者的基性岩相带部分的特征,后者除铁、钛、钒外,伴生的铬、钴、镍和铂族组分含量较高,因而综合利用价值更大。 钒钛磁铁矿不仅是铁的重要来源,而且伴生的钒、钛、铬、钴、镍、铂族和钪等多种组份,具有很高的综合利用价值。在这样的背景下, 我国铁矿资源的开发利用出现了一种新的类型——超贫钒钛磁铁矿, 主要分布在我国河北承德、赤峰宁城、辽宁北票等地区, 超贫钒钛磁铁矿规模巨大, 为含磁铁矿的基性、超基性岩浆岩侵入体, 承德地区共出露大小超贫钒钛磁铁矿成矿岩体、岩株磁性异常区近180 个, 为岩体型矿化, 矿体厚大。

2 钛矿的生产及市场情况分析

我国的钛矿采选非常分散, 据不完全统计, 有80多家经营钛矿的采选厂, 每年只生产约7×105t~8×105t 钛精矿。现在造成钛矿分散经营的原因, 一是体制问题, 另一个原因是没有发现大型钛砂矿床,不便于集中开采。这种钛矿分散经营状况,对钛和钛白生产的大型化是不利的。

目前国内市场对钛矿的需求量约5×105t(以矿中TiO2计),因为国内天然金红石生产量很少, 全部用钛铁矿约需1×106t。国内年产钛铁矿精矿约为8×105t,在钛白生产大幅度增产的情况下,已发生过供不应求的局面,从澳大利亚进口天然金红石和钛铁矿,也从越南和朝鲜进口钛铁矿。

3 钒钛磁铁矿综合回收现状分析

3.1 现行流程只实现了铁、钒和钛的回收,其它有益元素如:镓、钪和锌等未实现回收,造成了资源的浪费。经分析高炉烟筒灰中含有锌,含量已达到回收利用的价值,有些企业未对该废资源进行回收,采用外卖方式消耗掉; 经检测生产钛白粉所产生的废酸中含钪,也达到了富集回收的价值,现行工艺也未对该有益元素进行回收。

3.2 铁和钒得到了大部分的回收,钛的回收率偏低。采用高炉冶炼钒钛磁铁矿,铁和钒大部分还原进入铁相,形成含钒铁水,最终从钢碴中提钒的技术已比较成熟。钛绝大部分以TiO2的形式留存于高炉渣中,由于高炉渣中TiO2含量偏低仅为22%左右,并且高炉渣中含钛物相多且分散、粒度细小,从高炉渣中回收该部分钛存在较大的技术难度。目前,从高炉渣中提取回收钛的技术大致可分为三种,一是传统的酸浸流程,可采用废酸或低浓度进行处理,用于制取富钛料或钛白粉,由于生产成本和产品质量问题导致该技术路线未实现产业化;二是“高温炭化,低温氯化”处理工艺,以高钛型高炉渣为原料,采用火法冶金处理方法,在高温下首先进行高炉渣的炭化,将其中的TiO2转变为TiC 和TiN,然后在较低温度下氯化,将TiC 和TiN 转变为TiC14,通过进一步的精制,获得氯化法钛白的优质原料。三是高炉渣“再冶再选”工艺技术,针对高炉渣中含钛物相多且分散、粒度细小的特点,通过冶金方法促进高炉渣中的钙钛矿长大,然后通过选矿方法选出其中的钛,达到钛富集的目的。

3.3 硫钴精矿进行深度开发不足。副产品硫钴精矿可作为制取硫酸和提炼钴、镍、铜等有色金属原料,还可以作搪瓷密着剂,比纯氧化钴镍搪瓷密着剂的成本低40%。目前产品因销路不畅,暂时没有回收利用,作为尾矿丢掉。

3.4 钛精矿主要用于硫酸法钛白的生产,对环境污染较重。

3.5 该钛精矿目前主要用于硫酸法生产钛白粉, 每生产1t钛白约产生浓度为20%左右的废酸6~8t, 副产7 水硫酸亚铁2.5~4t。废物(硫酸亚铁、稀废硫酸和酸性废液)排放量大,废酸的排放对环境造成有较大污染,在一定程度上限制了硫酸法钛白的健康发展[6]。为了减少硫酸法对环境的污染, 科技人员采用还原法对钛精矿进行富集生产高钛渣, 由于攀枝花钛精矿中MgO+CaO 含量达7%左右,使得高钛渣中TiO2的品位达不到沸腾氯化制备TiCl4的要求,限制了攀枝花钛精矿在氯化法钛白中的应用。

3.6 未对选钛尾矿中有价元素进行回收。企业钒钛磁铁矿中含有丰富的钪,选矿过程中分别富集在钛精矿和电选尾矿的辉石中,含钪分别达101.0g/t和128.0g/t。由于钛尾矿含钪品位低,其所属的辉石是一种性质极其稳定的硅酸盐结构,与锆英石类同。如何较好地利用钪资源成了难题。

4 钒钛磁铁矿开发与利用分析

4.1 超贫磁铁矿采选生产能力

超贫磁铁矿的开发利用通过磁法选矿工艺, 回收岩体中磁性铁组分, 选出的铁精矿品位TFe 63%左右, 选矿比8~20。由于该类含铁岩石易采、易碎、易磨、易选, 采选生产成本较低, 取得了较好的经济效益。

4.2 超贫磁铁矿的开采方式

目前已生产的各种成因类型的超贫磁铁矿山全部为露天开采, 而且多为山坡露天开采。开采深度一般未超过50m, 少数建矿较早、开采强度较大的基性-超基性岩型超贫磁铁矿矿山开采的最大深度达到了50m以上。沉积变质型超贫磁铁矿床的开采深度, 受含矿层位的厚度、产状、风化深度及其它开采技术条件的制约, 开采深度一般未超过30m。正规设计开采的超贫磁铁矿生产矿山, 其露天采场的结构要素包括: 阶段高度一般为10m, 最大为30m; 设计开采最低标高以开采范围内最低侵蚀基准面为限; 最终坡面角一般小于70°;最终边坡角一般小于50°, 个别达60°;安全平台宽度一般为3~5m, 最大为10m。

4.3 超贫磁铁矿选矿

(1) 选矿技术条件及选矿技术指标。超贫磁铁矿选矿全部采用磁法选矿方法。由于其含有较低的磁性矿物(mFe在4-8%左右),要求其较传统的磁铁矿有较高的选矿回收率。不同成因类型的超贫磁铁矿其选矿技术条件不同, 根据矿石性质、磁铁矿物结晶粒度及其与脉石矿物的结构形式, 选择不同的磨矿粒度指标。基性、超基性岩型超贫磁铁矿, 磁铁矿物一般结晶粒度较小, 要求磨矿粒度较细, 其磨矿粒度一般-200目为70%~80%, 铁精矿品位可选至TFe 65% , 磁性铁选矿回收率可达80%以上。沉积变质型超贫磁铁矿磁铁矿物一般结晶粒度较大, 其磨矿粒度一般-200目为60%~70% , 铁精矿品位可达TFe 65%以上, 磁性铁选矿回收率可达85%以上。

(2) 选矿工艺流程。选矿工艺流程为: 原矿破碎磨矿磁选,超基性岩型超贫磁铁矿多采用两段破碎、两段磨矿、三段或四段磁选工艺。超基性岩型超贫磁铁矿多采用两段破碎、两段磨矿、两段或三段磁选工艺。沉积变质岩型超贫磁铁矿一般采用一段破碎、一段干磁选、一段磨矿、两段湿式磁选工艺。其选出的精矿品位均可达TFe65%左右。

总结:铁矿开发利用是国民经济和社会发展的支柱产业。超贫钒钛磁铁矿是我国铁矿地质找矿和开发利用的历史性突破, 是合理开发利用贫矿资源的成功典范, 对我国都具有战略意义。在目前的铁矿市场条件下, 铁矿市场有需求, 超贫钒钛磁铁矿资源存在着巨大的开发潜力, 强化超贫钒钛磁铁矿的开发利用, 将为我国经济社会发展带来一个良好的发展机遇, 为提高我国铁矿资源的供应保障做出重要贡献。

参考文献:

[1]马建民、陈从喜.我国铁矿资源开发利用的新类型———承德超贫钒钛磁铁矿.中国金属通报2007年.20