前言:中文期刊网精心挑选了量子力学基础理论范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
量子力学基础理论范文1
关键词:问题式教学法;量子力学;教学
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2014)24-0102-02
随着高校教学改革的不断深入,多媒体技术的普及和任课教师专业水平的提高,使得教学内容和教学手段更加丰富多样。量子力学课程是核类专业的基础课,它对于学习和理解核类专业主干课程,如原子核物理学、原子核物理实验方法等具有十分重要的作用和意义。但由于其理论性强,思维方式与经典力学差异较大,量子力学现象在日常生活中比较少见。这样就使得核类专业特别是核类工科专业的学生在学习和理解该门课程时遇到了很大的困难,也使得学生对该门课程的学习没有积极性。因而在课堂上就经常出现这样的一幕:只有老师在讲,学生思考的少,气氛压抑。如何改变这一现状呢?怎么样来调动学生的学习积极性呢?这些都是急需解决的问题。基于此,在分析量子力学与经典力学相互联系的基础上,探究并实践了由经典物理学的问题来引入量子力学学科的问题。将问题式教学法应用于量子力学的实践教学当中。这样既可以活跃课堂气氛,提高学生积极性,又可以培养学生发散性思维,同时还可以巩固学生以前学过的经典物理学的相关知识,进而能提升教学质量。
一、问题式教学法概念
问题式教学(Problem-Based Teaching)是问题式学习(Problem-Based-Learning)的发展,它鼓励学生主动思考问题、自主寻找答案,是以问题为基础来展开学习和教学过程的一种教学模式,通过学生合作解决真实问题来学习隐含在问题背后的科学知识,形成解决问题的技能,并形成自主学习的能力。PBL最早起源于20世纪50年代的医学教育,并且已经被广泛应用于数学、会计、英语等众多学科。
二、量子力学与经典物理的联系及问题式教学法在量子力学课程中的应用
经典物理可以解释天体间的相互作用、电磁波的传播以及系统的热力学平衡等自然现象。20世纪初,当人们发现了放射性现象后,在解释分子原子尺度的物理现象时,经典力学往往无能为力。因此需要建立一个全新的理论,这就是量子力学。它是阐明原子核、固体等性质的基础理论,且在化学、生物学等学科和许多近代技术中得到广泛应用。在经典力学,做机械运动的物体简化为质点,位置可以用坐标系上的坐标表示。将坐标对时间求导、再求导,得到物体运动的速度■和加速度■。■=■(t) ■=■ ■=■ ①
经典物理中,描述物体运动的规律是牛顿三大定律。描述物体t时刻的状态用t时刻的位置矢量■,动量■。初始位置矢量、动量及所受到的力■知道,由牛顿运动定律就可以知道物体的运动状态。量子力学是用来描述微观粒子运动规律的一门学科。由于微观粒子运动的随机性,使得粒子的动量和位置不能同时确定。在实际的教学中就可以引入这样的问题:量子力学中是怎么样来描述粒子的状态及运动规律呢?这就要找到与经典对应的关系。这样就可以引入量子力学的波函数概念及其物理含义。波函数是描述微观粒子的状态,可以表示为如下的形式:
Ψ(x,y,z,t)=Ψ(p,r,t) ②
此时又引入一个新的问题:波函数遵循什么样的规律呢?与经典牛顿运动定律对于的定理或者定律又是什么呢?这个时候就可以用问题式的方法来引入薛定谔方程问题。
i?攸=■=-■?荦2Ψ+U(r)Ψ ③
上式子表示粒子在相互作用势为U(r)的势场中运动时,描述粒子运动状态波函数随时间的演化所满足的规律。同样,像以上这样利用问题式引入的方式来讲授量子力学课程的相关内容还有很多,如态叠加原理,表象变换等。对于态叠加原理,问题的引入:经典物理有波函数的概念,有波的叠加,那量子力学中描述物体状态的波函数是否也有叠加性,他们之间有什么异动呢?这样就可以将学生引入到量子力学中的态叠加原理的相关内容。
三、需要重视的问题
针对目前核类专业特别是核类工科专业量子力学课程的现状,我们除了将问题式教学法应用到教学实践中,还要从以下的几个方面来激起学生的兴趣,提高学生学习该门课程的积极性。
首先,需要激起学生的好奇心。其次,在解答习题中将问题式教学融入其中,要做到课堂知识和课后习题的问题式教学双覆盖。最后,需要学生知道处理量子力学问题的一般方法,同时适当鼓励学生。为了充分调动学生参与课程教学的积极性和主动性,必须在教学过程中把握学生对知识的掌握程度,对表现优异的学生进行表扬并登记,从心理层面激励其更加积极参与到教学互动中。本科阶段的量子力学是一门入门课程,是继续学习物理学的基础。只有让学生认识到了量子力学课程的重要性,才能达到预期的教学目标。
通过经典物理与量子力学的类比对应关系,在量子力学讲授相关知识时,用问题式的方式引入知识点。激发学生对该门课程的学习积极性。使用该教学方式以来,学生的学习积极性和教学质量都得到了提高,达到了教学改革的目的。
参考文献:
[1]唐晓雯,任艳荣.基于问题式学习教学模式的探索与实践[J].教学研究,2006,29(1):24-26.
[2]张建伟.基于问题式学习[J].教育研究与实验,2000,(3):55-60.
[3]刘梦莲.基于问题式学习(PBL)的设计[J].现代远程教育研究,2003,(1):39-43.
[4]蒋新宇,施树云,于金刚.问题式教学法在有机化学实验教学中的应用[J].光谱实验室,2012,29(4):2548-2550.
[5]周世勋.量子力学教程)[M].第二版.北京:高等教育出版社,2009.
量子力学基础理论范文2
关键词:工程教育;“材料计算与模拟”;实践教学工程教育教学方法。
一、课程目标及对毕业要求的支撑
(1)理解并恰当研究、分析材料科学与工程领域实际问题的基础理论与方法。“材料计算与模拟”专业课程主要内容为原子分子尺度的理论计算模拟,涉及的理论方法主要为量子力学和分子动力学方法。其中,量子力学方法较为深奥,分子动力学方法因与经典牛顿力学联系紧密,相比量子力学较为简单。考虑工程教育理念侧重工程实践能力的培养,故在基础理论方法部分将课程目标设置为了解基本理论方法的概念和基本计算流程。(2)针对复杂工程问题,能够有效地运用工程图学语言、计算机辅助设计工具,提出改进或解决方案。如何将工程实际中的复杂工程问题通过理论计算模拟提出改进或指导意见是本课程期望的终极目标。其中,如何培养学生通过思考和分析,将工程实际问题分解为理论计算问题并选择合适的计算方法、计算参数和条件,将是本课程最重要的课程目标。(3)能够正确运用现代工程工具、技术与资源对材料科学与复杂工程问题进行预测与模拟。工程教育背景下的课程侧重实践能力的培养,本课程的实践内容主要是利用计算服务器或集群进行材料科学领域的计算模拟。其中,如何使用国家超级计算中心集群(如上海超算、深圳超算)进行高性能计算,并利用科学计算软件进行结果分析,是本课程的重要课程目标之一。
二、教学方式的改进
本课程坚持理论与实践相结合的教学方式,不断提高实践教学的比重,目前理论教学与实践教学部分各占一半。承接自过去以教为主的教学理念,本课程目前的主要教学方式还是先讲授相关理论内容,然后进行上机实践操作和练习。在工程教育理念的背景下,实践能力的培养和提升成为课程教学的重点,同时还要兼顾实践练习与相关理论知识的衔接,本课程提出基础理论内容先行传授,其他内容采用先实践后理论的教学方式。首先,对于必需的相关课程基础理论采用课堂讲授的教学方式,在讲授期间有意识地向学生传递工程教育的理念。其次,以较为简单的实践案例先进行实践练习,使得学生简单上手并且产生对本课程的新鲜感和好奇感,结合基础理论讲解让学生对基本理论和操作流程有一定的了解。最后,从简单案例出发,不断深入,并向实际工程问题靠拢,引导学生不断深入思考,着重于引导学生了解和练习如何将实际工程问题分解为计算模拟可以解决的问题,并通过理论计算与模拟为指导和解决问题提供依据。作为持续改进、教研相辅的体现,“材料计算与模拟”课程所有实践案例定期根据最新文献报道进行更新,保持实践教学案例的时效性,同时不断开发新的实践案例及相应计算流程。考虑到实践练习与课程课时可能的矛盾或不足,本课程还将所有实践教学案例进行视频录像,同时将与实践案例相关的理论内容关键词以字幕的形式添加到录像中,便于学生随时翻看和熟悉。
量子力学基础理论范文3
1目前面临的形式
大学物理课程是高等职业学院各工科学生的公共基础课程。物理学是科研和各现代技术工程的基础。大学物理课程包含了大量的物理学知识和物理学原理,既是非常重要的基础理论课程也是科学素质教育不可或缺的组成部分。大学物理课程的学习不但有利于培养学生的职业能力和职业素养,更加为学生学习专业的技术能力打下了坚实的基础。因此对于高职学生来说大学物理课程的学习是非常重要的。然而在目前阶段,高等职业的大学物理课程的教学基本类似于普通的高等学校的教学模式,即更加重视基础的物理学知识和物理学原理的讲授,缺乏学生的动手实践能力的培养。另一方面,高等职业学院的学生普遍存在入学分数较低,物理学基础知识薄弱,理解接收新知识的能力有限,主动学习能力较差等特点[4]。在进行大学物理教学过程中,传统教学主要采用基础知识讲授、教师实验反复演示,一讲一练、课后再练的方式巩固知识。主要注重于传授知识、偏重于解题技巧和解题方法的训练。这对于课时充足时是可行的也是有效的,但是随着社会经济的发展,知识和信息的不断丰富,学校开设的课程不断增多,学生需要学习的知识更加广泛,同时大学物理和其它的课程一样,课时大大削减,再加上物理演示实验仪器的有限性与物理科学技术的瞬息万变形成了鲜明的对比,继续沿用原来的教学方法就造成了学生听不懂,教师教不会,学生听懂了不会灵活运用的结果。这些在一定程度上影响了大学物理教学质量的进一步提高。近几年各高职院校在大学物理教学的内容、方法上都有了很大的改进,出了一些比较优秀的教材,也制作了不少教学课件,本文综合这些成果,从教学的内容和方式方法上,提出了全面提高大学物理课程教学质量的一些措施。
2整合内容体现技术性
大学物理课程的教学内容主要包括力学、电磁学、光学、热学、量子力学和相对论等内容。在传统的物理教学中关于经典物理学内容即力学、热学、光学和电磁学中的理论知识是重要讲授的内容,同时对于近代物理学内容即量子力学和相对论也会做非常详细的讲授。但是对于高职教育中“必须够用”的原则,对于量子力学和相对论这样的理论知识内容来说,在讲授的过程中只需要简单介绍,使学生知道量子力学解决什么问题,相对论的主要内容是什么即可。应当将大量的课时用来介绍经典物理学的内容。在讲授力学、热学、光学和电磁学的过程中,应当联系实际的力学问题,向学生传授力学知识,对于一些理论性非常强而实际技术应用中较少的物理学原理的介绍要适当减少。例如,在力学中关于摩擦力的讲授可以分析摩擦力作为阻力时的实例和作为动力时的实例,让学生切实体会摩擦力的本质。在讲授光学中关于光线的波长和光的颜色时给学生分析,人眼对于光的不同颜色的敏感度是不同的,如交警和学生校服上荧光物质的颜色时草绿色,因为人眼对这种波长的光最为敏感,从而激发学生学习的兴趣,在学生感兴趣的基础上适当介绍光谱分析等技术。在讲授电磁学的过程中,结合电磁技术让学生明白理论与实践是如何联系的。通过这样的理论与实践结合的方式讲授,就可以避免理论知识的枯燥性,可以提高学生学习物理学的兴趣。在学生具有较高学习兴趣的基础上展开教学,教学效果可以显著提高。
3提高大学物理教学质量的手段
在上述学生具有对物理学较高兴趣的基础上可以从教学方法和教学手段两方面提高教学质量。在教学方法方面尝试进行下面的教学探讨:①通过教师对一些物理学原理的演示实验、对一些物理学现象进行多媒体视频资料播放等直观的教学,可以充分调动学生的学习积极性,同时加深学生对物理概念的理解。②通过进行读书指导,教会学生自学。通过给定学生某个知识点的问题,让学生带着问题去读书,去图书馆查阅相关资料,要求学生在自己读书的调研之后能够给出自学提纲,同时能整理出知识点;让学生通过对这些问题的讨论及改变问题中初始条件的变化来的结果学会举一反三,通过知识点间的联系学会触类旁通。这个方法的学习过程也是教会学生开展研究性学习的基础。③通过学生动手进行实验操作、完成实习作业等教学方法,增加学生主动参与教学活动的意识,促进学生积极思考。这些方法的使用在实际的教学过程中大大提高了学生学习物理学的兴趣,同时调动了学生的主动性、积极性和创造性,起到了较好的教学效果。例如机电1班的同学在物理讨论课后谈到:“为了解决老师在课堂上提出的问题,我不仅看了课本,在网上查阅了相关的文献资料,还去图书馆看了许多资料,…”在教学手段方面,采取传统的教学手段,教师课堂演示、网络教学辅导系统、学生实验等丰富多彩的立体化教学手段。在课堂讲授时大量使用演示实验、多媒体课件和计算机动画插播等手段,使学生直观的了解到相关的实验现象,以及发生这些现象所要求的条件。随后通过启发、课堂讨论和学生互动实验等方式,提高课堂教学效果。课后通过布置学生作业、督促学生使用网络资源、要求学生完成某一小论文和以寝室为单位的学生自学讨论交流,帮助学生进行自主式、互动式、研究式学习。同时积极搭建教师备课平台,有效支持教师充分恰当利用电子教案、电子讲稿、素材库等现代化教育技术手段进行个性化教学,使得一些不容易用语言描述的物理过程和概念一目了然,有效地提高教学效率,激发学生学习的兴趣,扩大信息量。
4结束语
量子力学基础理论范文4
量子密码应运而生
量子计算的原理与传统计算机采用的原理有很大不同,传统计算机采用单路串行操作,而量子计算机采用多路并行操作,它们运算速度的差异就如同万只飞鸟同时升上天空与万只蜗牛排队过独木桥的区别。
20世纪70年代,英国和美国最早开始对量子计算的研究。近年来,量子计算的理论和实践都相继取得重大进展,产生了多种新的量子算法,研制了多种量子计算机原型。
科学家预测,未来10~20年将研制成功103~104量子比特的大型量子计算机,其运算能力可以在几分钟内破译现有任何采用非对称密钥系统生成的密码。
面对量子计算未来可能随时“秒杀”传统密码的危险,科学家致力于寻找不基于数学问题,能有效抵抗量子计算攻击的新型密码体制。解铃还须系铃人,同样基于量子信息技术的量子密码应运而生,成为对抗量子计算的“神器”。
又一个可能的“技术差”
二战中,英国破译德军ENGMA密码,获知其即将轰炸考文垂市,但为保守德军密码已被破译的秘密,英国断然牺牲考文垂这个重要工业城市,不发出防空警报任由德军轰炸;美军在中途岛海战的胜利,以及击落山本五十六座机等影响战争进程的重大事件,与其成功破译日军“紫密”有直接关系。一些专家们甚至估计,盟军在密码破译上的成功至少使二战缩短了8年。
当前,战场网络已成为连接人与武器、武器与武器的技术纽带,构成了信息化军队的神经中枢。侦察预警、指挥协同、武器控制、后勤保障等作战活动均离不开网络的支持。安全可靠的战场网络是保证自身作战体系稳定,在体系对抗中谋取胜势的重要前提,而战场网络的安全又十分依赖于网络通信密码提供的“安全屏障”。
一个国家的军队一旦率先实现量子密码和量子计算的武器化,并在战争中投入使用,将与对手形成巨大的“技术差”,在保持自身网络通信绝对安全的同时,可随时破译对方网络通信密码,洞悉对手的一举一动,从而占据绝对信息优势,甚至可以直接瘫痪和控制对方网络,由此将置作战对手于极为被动的不利地位,战局可能出现“一边倒”的情况。
以超常措施推进军事应用
意大利军事家杜黑指出:“胜利只向那些能预见战争特性变化的人微笑,而不是向那些等待变化发生才去适应的人微笑。”面对量子信息技术的机遇与挑战,只有未雨绸缪,尽早规划,提前部署,才能在未来战争中占据先机和主动,避免对手利用技术突然性陷我于被动。
目前,量子密码已经从实验室演示性研究迈向实际应用。发达国家军队已把量子信息技术作为引领未来军事革命的颠覆性、战略性技术。例如,美国防高级研究计划局专门制定“量子信息科学和技术发展规划”、研发量子芯片的“微型曼哈顿”计划等。美国正加速推进量子信息技术的实际应用,美国白宫和五角大楼已安装量子通信系统并已投入使用。英、法、德、日等国军队也相继制定实施一系列发展量子信息技术的计划。
量子力学基础理论范文5
随着计算机的普及和利用,多媒体教室普遍存在,并被广泛使用。多媒体教学手段的利用,有助于学生对固体微观结构的理解。例如,可以通过视频或PowerPoint文件,可以直观地展示晶体的微观结构、原胞的选取、原胞的形状等。与传统板书相比,利用多媒体呈现并分析固体的微观结构以及晶体的结构特征,对教师而言,更加省时、省力;几何关系的表达也更为准确,便于学生的理解。此外,若能结合三维的原子实物模型,那么,固体的微观结构将能更为直观地展现在学生眼前。多媒体与三维模型的应用对于学生理解固体的微观结构、晶格的周期性、原胞、晶体的对称性等基础概念很有好处。当然,多媒体教学也存在着一定的局限性。例如,在公式的推导、基础概念的讲解等方面,板书其实更受学生的欢迎。与多媒体教学相比,板书的节奏慢,师生间可以有较多的互动;学生相对容易跟上教师思考问题、解决问题的步伐,学生也能有较充分的时间来理解各个知识点、梳理要点以及做笔记等。因此,多媒体教学还需适当地与传统板书相结合才能达到较好的教学效果。
二、教学内容的取舍
由于固体物理学融合了普通物理、热力学与统计物理、量子力学、晶体学等多学科的知识,其知识面广、量大,在有限的学时里,不可能面面俱到地讨论固体物理学所涉及的所有知识点。因此,实际教学中可以结合本专业的特色,有选择地取舍部分教学内容。例如,侧重固体热学性质的专业可以考虑以晶格振动等内容为主;而侧重微电子的专业则可以考虑以能带理论、半导体中的电子等内容为主。当然,一些多个领域都涉及到的基础知识也应是这门课程不可缺少的一部分内容。固体的微观结构和结合方式是固体物理学的基础,因此,晶体的结构和晶体的结合等知识点应是这门课程的基础知识之一。考虑到理想晶格由原子实和电子组成,晶格的运动主要在晶格振动等部分讨论;而电子的运动主要在能带理论等部分讨论,具体还可以分为金属中电子的运动和半导体中电子的运动等部分。尽管这原子实和电子的运动实际上相互联系,但很多时候,可以分别侧重讨论。此外,实际晶体也并非理想晶体;实际晶体除了有边界之外,也常含有缺陷。但在许多情况下,晶格的振动、电子的运动和缺陷的影响依然可以依据实际情况分别讨论,并得到与实际较为符合的理论结果。因此,晶格振动、能带理论和缺陷等知识点之间相对独立,或可根据各专业的实际情况取舍部分教学内容。在许多固体物理学的教材中,例如黄昆等的《固体物理学》教材和阎守胜的《固体物理基础》教材,密度泛函理论并没有被提到。事实上,密度泛函理论是一个被广泛使用的基础理论,它是凝聚态物理前言研究的有效手段之一,也是材料设计的一种有效方法。教学过程中,教师可以结合各专业的实际情况介绍一些密度泛函理论的基础知识。同时,还可以介绍一些最新的相关研究进展,以拓展学生的知识面、提高学生的学习兴趣。
三、模块化的教学形式
如前所述,固体物理学中的许多知识点间相对独立;基于这门课程的特征,教师在教学过程中可以考虑模块化的教学形式,以子课题的形式将相应内容呈现给学生。可能的模块如:讨论晶体的结构和晶体的结合方式的基础模块———晶体的结构与结合;讨论晶体中原子实运动的模块———晶格振动;讨论晶体中电子运动的模块———能带理论;讨论实际晶体中可能存在的缺陷的模块———晶体的缺陷等;其中,能带理论部分还可分为:近自由电子模型、紧束缚模型、赝势方法等数个部分。这样做首先有利于教学内容的取舍;其次,有利于学生对各知识点的理解、有利于学生梳理清楚各个知识点之间的关系。此外,固体物理学是凝聚态物理前沿研究的基础之一;其基础知识、理论推导、实验背景以及处理问题的方式方法等,都是开展凝聚态物理研究的基础。而模块化教学,以课题研究的形式提出问题、解决问题,将教学内容以问题为导向呈现给学生,这有助于培养学生的学习能力和解决实际问题的能力。而且,课题研究的教学模式,既是在教授学生知识,也是在开展科研,有助于提高学生对科研的认识、有助于培养学生的科研能力。这种课题研究的模块化教学形式还可以结合基于原始问题的教学来开展。
四、基于原始问题的教学
所谓原始问题,可简单理解为:现实生活中实际存在的、未被抽象加工或简化的问题。于克明教授、邢教授等人详细探讨了原始物理问题的诸多方面;此外,周武雷教授等人还讨论了原始物理问题含义的界定等相关问题,并呼吁将基于原始物理问题的教学实践引入大学物理的教学中。这应是个值得提倡的建议,毕竟现实生活中遇到的具体问题都是原始问题。与传统的习题不同,原始问题未被抽象、加工或简化。学生处理实际问题的第一步便是将问题适当简化,这也是学生需要学习的一种能力。事实上,合理的模型简化是各种理论的基础,也是实际应用或科研必不可少的一种能力。例如,讨论晶格热容的爱因斯坦模型和德拜模型,尽管模型简单,但它们数十年来是我们讨论、分析相应问题的基础。今天,那些被写进教科书的基础理论,在当时、在理论刚被提出时,都是为了原始问题的解决。下面以晶体热容为例,稍加详述。问题的背景:根据经典的热力学理论,晶体的定体摩尔热容是个与温度无关的常数。实验发现晶体的热容在高温下确实接近于常数,但是晶体的热容在低温下并不是个常数,其与温度的三次方成比例关系。问题的提出:理论预言与实验观测为何不相符?如何解释实验现象?20世纪初刚刚发展起来的量子力学是否能解释这个实验现象?这些问题在爱因斯坦的年代应该都是前言的科研问题。问题的简化:(1)不考虑边界、缺陷、杂质等的影响,将实际晶体抽象为理想晶体;(2)基于绝热近似,不考虑电子的具体空间分布,将原子当作一个整体,原子—原子间存在相互作用;(3)基于近邻近似,只考虑近邻原子间的相互作用;(4)基于简谐近似,将原子间的相互作用势在原子的平衡位置作泰勒级数展开,并保留到二阶项。问题的解决:基于上面的模型简化,写出描述原子运动的牛顿第二定律,并求解方程组,这些方程组与相互独立的简谐振子的运动方程组相对应。结合量子力学,得到体系的能量本征值;写出晶格振动总能的表达式,继而给出由晶格振动贡献的晶格热容的表达式。由于晶格热容的表达式复杂,很难直接与实验结果对比,因此引入进一步的简化和近似———爱因斯坦模型或德拜模型。这种提出问题、分析问题、解决问题的方式与做前言科学研究的方式相接近,既能提高学生对科研的认识、培养学生的科研能力,又能培养学生理论联系实际、解决实际问题的能力。
五、小结
量子力学基础理论范文6
(一)简介材料计算模拟软件Materialsstudio是美国Accelrys公司为材料科学领域开发的一款科学研究软件,用于帮助用户解决当今材料科学中的一些重要问题。MaterialsStudio软件包集成了Visual-izer、CASTEP、Dmol3、Reflex等二十几个计算模拟模块,是一款强有力的计算模拟工具。用户可以通过Visualizer可视化模块进行一些简单的界面操作来建立材料分子的三维结构模型,之后通过软件包中相应的计算模块,对材料分子的构型优化、性质预测、X射线衍射分析及量子力学方面进行计算。通过计算得到的结果可以对各种晶体、无定型与高分子材料的性质及相关过程进行深入的分析和研究,其计算的结果精确可靠。CASTEP是CambridgeSequentialTotalEnergyPackage的缩写,最早由英国剑桥大学的一个凝聚态理论小组开发,是广泛用于计算周期性体系性质的一个先进量子力学程序。它可用于金属、半导体、陶瓷等多种材料的相关计算,可研究晶体材料的光学性质(折射率,反射率,吸收及发射光谱等)、缺陷性质(如空位、间隙或取代掺杂)、电子结构(能带及态密度)、体系的三维电荷密度及波函数等。
(二)教学环节设计1.知识点的设置。在材料科学的专业课中,如晶体物理、固体物理、半导体物理学、硅材料科学与技术等课程中,都会涉及材料的晶体结构,能带结构,带隙的分类,X射线衍射、缺陷,掺杂等知识点,也会涉及到材料的反射率、折射率、介电常数等材料的光学或化学性质。在完成这些基础知识点的讲解后,可以利用Mate-rialsStudio软件进行计算和演示,为这些基础理论给出直观形象的解释,把材料的宏观性质与微观机理衔接上,这样学生对材料科学的知识体系就会有一个整体的认识和了解。2.密度泛函理论及波函数的介绍。密度泛函理论是一种研究多电子体系电子结构的量子力学方法,其本质是以电子密度分布函数为变量代替波函数中的自变量来求解薛定谔方程,使求解复杂体系波函数的本征值成为可能。目前,密度泛函理论已广泛应用于物理、化学及材料相关领域,特别是用来研究分子和凝聚态的性质。目前密度泛函理论DFT(DensityFunctionalTheory缩写)被广泛应用到计算模拟软件中来求解薛定谔方程,可对材料的结构、性质、光谱、能量、过渡态结构和活化势垒等方面的进行计算研究。在与分子动力学结合后,在材料设计、合成、模拟计算等方面有明显进展,成为计算材料科学的重要基础和核心技术。3.软件的操作及相关内容的演示。MaterialsStudio程序包中的二十多个计算模块是通过Visualizer这个可视化核心模块整合在一起的,用户可以很方便地应用Visualizer模块构建有机、无极、聚合物、金属等材料分子、及周期性的晶体材料、表面、层结构等模型,通过鼠标控制这些分子构型,可从不同角度查看并分析体系结构,容易形成直观的概念。MaterialsStudio自带的数据库中的晶体结构可以用于教学演示,如在硅材料科学与技术和半导体物理等课程的教学过程中,需要用到单晶硅的晶体结构,可以很方便地从MaterialsStudio软件的Structures/semiconductors数据库文件夹中导入Si这个晶体数据文件,在课堂上为学生们演示,从(100)、(110)、(111)不同的晶面来进行展示(如图1),以说明硅单晶的晶体结构。也可以通过Visualizer模块中的菜单选项Build->Sym-metry->Supercell建立n×n超胞结构,通过调整角度,可以从不同晶向观察晶体的晶面,通过超胞结构也可以演示各种晶体的密堆积结构。这样就给学生一个生动、形象、直观动态的概念,使其易于在头脑中建立空间模型,理解所学知识点。通过Visualizer模块对硅单晶的元胞进行演示,我们可以知道每个硅原子至多与另外四个硅原子相连,借此可以说明硅原子的共价键取向及硅晶体属于金刚石型结构,源于硅原子的sp3杂化,形成了四个共价键。通过CASTEP模块对硅单晶的元胞进行计算,可以得出其能带结构和态密度,通过对计算结果的分析,可以得出硅单晶材料的带隙特点。在稀土化学的教学过程中,可以通过CCDC英国剑桥晶体数据库及WebofScience网站来获取稀土配合物的晶体结构,然后通过MaterialsStudioVisualizer读出晶体结构,用于课堂演示,有助于学生理解复杂的稀土配合物结构。在固体物理教学过程中,可以利用MaterialsStudio中的Re-flex模块模拟粉晶体材料的X光、中子以及电子等多种衍射图谱,可用于验证实验结果及演示教学。4.知识点的拓展。对于缺陷、杂质掺杂、空位等对晶体材料的影响,可以通过MaterialsStudio中Visualizer模块建立相应的模型,然后通过CASTEP计算模块进行计算。通过对计算结果的分析,说明这些因素对半导体材料性质的影响。MaterialsStudio软件同样可以计算材料的折射率、反射率、介电常数等性质。其计算的结果数据和图表可以与教科书或文献上的数据图表进行对比,来说明计算方法的正确性,以此为支点,采用同样的计算方法,我们可以尝试设计更多的新型材料并进行计算。通过这些详实的计算实例我们可以更生动地说明教学中的知识点,学生可以根据自己的兴趣爱好,尝试进行材料分子模型的设计并进行模拟计算。通过计算结果的对比,可以初步探讨晶体中缺陷、杂质、空位等因素对材料性质的影响,在此过程中增加了学生的学习自主性和兴趣。
二、GaussianView和Gaussian软件在教学中的应用
(一)简介Gaussian是一个功能强大的量子化学综合软件包。应用它可以计算分子能量和结构、过渡态的能量和结构、化学键以及反应能量、分子轨道、热力学性质、反应路径等等,功能非常强大。计算可以模拟气相和溶液中的体系,模拟基态和激发态,进而通过含时密度泛函研究材料分子体系的激发态,算出吸收和发射光谱。Gaussian扩展了化学体系的研究范围,可以对周期边界体系进行计算,例如聚合物和晶体。周期性边界条件的方法(PBC)技术把体系作为重复的单元进行模拟,以确定化合物的结构和整体性质。而GaussianView是一款为Gaussian设计的配套软件,其主要作用有两个:1.构建Gaussian的输入分子模型,2.以图形显示Gaussian程序的运算结果。
(二)知识点的设置1.在材料科学有机电致发光材料及稀土化学课程的教学过程中,会涉及到有机或稀土发光材料的吸收及发射机理。通过把Gaussian软件教学过程,我们可以很好结合这些算例讲解三重态,单重态发射过程,给出与发射过程相关的分子最高占据轨道HOMO和最低非占据轨道LUMO的电子密度图,这样就可以很形象地解释发射过程中的电子转移过程,对低能吸收和发射过程的电子跃迁性质进行判断。2.软件的操作及相关内容的演示。(1)通过CCDC晶体数据库或者WebofScience网站获得相应的配合物或者稀土配合物晶体的晶体结构(通常为cif文件)。(2)应用Mercury软件或者MaterialsStudio软件读取相应的晶体结构,转存为GaussianView程序可以读取的格式(一般选用*.cif、*.pdb、*.mol2格式),通过Gaussian-View转存为Gaussian输入程序(*.gif-Gaussianinputfile)。(3)采用Gaussian程序进行计算。(4)通过GaussianView程序读入Gaussian03/09计算结果,通常为log文件,或者fchk文件,GaussianView可以很方便地读取Gaussian的计算结果并且以图形的形式显示出来,并可应用它对计算结果进行分析。(5)通过GaussianView对计算结果的进行处理,通过它显示出发光材料的分子轨道电子云密度分布情况,吸收光谱,发射光谱等情况,结合这些图形信息,我们可以对有机电致发光材料或者稀土发光材料的发光机理进行教学。3.知识点的拓展。GaussianView是由Gaussian公司开发的一款非常好的分子建模及显示工具,学生可以通过对它的使用,很方便地进行分子设计并输入到高斯程序中进行计算。可以安排学生在基础发光材料分子的基础上,在分子配体的添加取代基或者改变配体,进行尝试,进行配合物分子的设计,增强其动手能力,为今后走进实验室进行有机合成做准备。
三、预期的效果