前言:中文期刊网精心挑选了量子力学基本概念范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
量子力学基本概念范文1
关键词:量子力学;量子测量;偏振
中图分类号:O413.1 文献标识码:A 文章编号:1000-0712(2016)03-0005-03
量子力学是近代物理学的基础,并且其应用领域已延伸至化学、生物等许多交叉学科当中,这一课程已成为当今大学生物理教学中一个极为重要的组成部分.由于量子力学主要是描述微观世界结构、运动与变化规律的学科,微小尺度下的许多自然现象与人们日常生活经验相距甚远,量子力学的概念有悖于人们的直觉,难以被初学者接受.如果在教学中能够结合具体的物理实验,从现象到本质引导学生思考,就可以使抽象的量子概念落实到对具体实验现象的归纳总结上来.偏振光实验是一个现象直观而且学生容易操作的普通物理实验,在学生掌握的已有知识基础上,进行新内容的教学,符合初学者的认知规律.利用光的偏振现象来阐述量子力学基本概念已被一些国内外经典教材采纳,如物理学大师狄拉克所著的《量子力学原理》[1],费因曼所著的《费因曼物理学讲义》[2],曾谨言教授所著的《量子力学卷1》[3],赵凯华、罗蔚茵教授合著的《量子物理》[4]等教材.在本文中,笔者结合自己的教学体验,着重从可观测量和测量的角度来考虑问题,在以上经典教材的基础上,进一步整理和挖掘光子偏振所能体现的量子力学基本概念.从量子力学的角度对偏振实验现象进行分析,使同学们对态空间、量子力学表象、波函数统计解释、态叠加原理等量子力学概念有一个直观形象的认识,领会量子力学若干基本假定的内涵思想.最后,从量子角度分析了一个有趣的偏振光实验,加深学生对量子力学基本概念的理解,并展示了量子力学的奇妙特性.
1偏振光实验的经典解释
如图1(a)所示,沿着光线传播的方向,顺次摆放两个偏振片P1、P2.光束经过P1后变为与其透振方向一致且光强为I0的偏振光.两偏振片P1和P2的透振方向之间夹角为θ,由马吕斯定律可知,透过偏振片P2的光的强度为I0cos2θ.按照经典的光学理论,此现象可理解如下:在一个与光传播方向垂直的平面内选定一个xy平面直角坐标系,这里为了描述问题的方便,选定x轴沿P2的透振方向.如图1(b)所示,透过偏振片P1的光电场矢量E可分解为两个分量:沿x方向振动的电场矢量Ex和沿y方向振动的电场矢量Ey.偏振光照射到P2偏振片时,投影到y方向的电场矢量被吸收,投影到x方向的电场矢量透过,振幅增加了一个常数因子cosθ,因而强度变为原来的cos2θ倍,这正是马吕斯定律所给出的结果.
2偏振光实验体现的量子力学概念
下面我们由偏振光的实验现象出发,引出量子态、态空间等量子概念,并用量子力学的语言来描述单个光子与偏振片发生相互作用的过程,讨论在多个光子情况下的量子行为与马吕斯定律的一致性.
2.1量子态
从实验得知,当线偏振光用于激发光电子时,激发出的光电子分布有一个优越的方向(与光偏振方向有关),根据光电效应,每个电子的发射对应吸收一个光子,可见,光的偏振性质是与它的粒子性质紧密联系的,人们必须把线偏振光看成是在同一方向上偏振的许多光子组成,这样我们可以说单个光子处在某个偏振态上.沿x方向偏振的光束里,每个光子处在|x〉偏振态,沿y方向偏振的光束中,每个光子处在|y〉偏振态.假设我们在实验中把光的强度降到足够低,以至于光子是一个一个到达偏振片的.在图1所示的例子中,通过P1偏振片的光子处在沿P1透振方向的偏振态上,如果P2与P1透振方向一致(θ=0),则此光子完全透过P2,如果P2与P1透振方向正交(θ=π/2),则被完全吸收.如果P1与P2透振方向之间角度介于两者之间,会是一种什么样的情形,会不会有部分光子被吸收,部分光子透过的情况发生,但是实验上从来没有观察到部分光子的情形,只存在两种可能的情况:光子变到量子态|y〉,被整个吸收;或变到量子态|x〉,完全透过.下面我们用量子力学的语言来描述单个光子与偏振片发生相互作用的过程,引入量子测量、态空间、表象、态叠加原理、波函数统计解释等量子概念.
2.2量子测量、态空间、表象
单个光子与偏振片发生相互作用的过程,可以看成是一个量子测量的过程,偏振片作为一个测量装置,迫使光子的偏振态在透振方向和与其相垂直的方向上作出选择,测量的结果只有两个,透过或被吸收,透过光子的偏振方向与透振方向一致,被吸收光子的偏振方向与透振方向垂直,可见光子经过测量后只可能处在两种偏振状态,这正是量子特性的反应.在量子力学中,针对一个具体的量子体系,对某一力学量进行测量,测量后得到的值是这一力学量的本征值,我们称它为本征结果,相应的量子态坍缩到此本征结果所对应的本征态上,所有可能的本征态则构成一组正交、规一、完备的本征函数系,此本征函数系足以展开这个量子体系的任何一个量子态.很自然,我们在这里把经过偏振片测量后,所得到的两种可能测量结果(透过或吸收)作为本征结果,它们分别对应的两种偏振状态,此两种偏振状态可以作为正交、规一、完备的函数系,组成一个完备的态空间,任何偏振态都可以按照这两种偏振态来展开,展开系数给出一个具体的表示,这就涉及到量子力学表象问题.在量子力学中,如果要具体描述一个量子态通常要选择一个表象,表象的选取依据某一个力学量(或力学量完备集)的本征值(或各力学量本征值组合)所对应的本征函数系,本征函数系作为正交、规一、完备的基矢组可以用来展开任何一个量子态,展开系数的排列组合给出某一个量子态在具体表象中的表示.结合我们的例子,组成基矢组的两种偏振状态取决于和光子发生相互作用的偏振片,具体说来是由偏振片的透振方向决定.在具体分析问题时,为了处理问题的方便,光子与哪一个偏振片发生相互作用,在数学形式上,就把光子的偏振状态按照此偏振片所决定的基矢组展开,这涉及到怎么合理选择表象的问题.
2.3态叠加原理、波函数统计解释
以上简单的试验也可以作为一个形象的例子来说明量子力学中的态叠加原理.态叠加原理的一种表述为[5]:设系统有一组完备集态函数{φi},i=1,2,...,t,则系统中的任意态|ψ〉,可以由这组态函数线性组合(叠加)而成(1)另一种描述为:如果{φi},i=1,2,...,t是体系可以实现的状态(波函数),则它们的任何线性叠加式总是表示体系可以实现的状态.在我们的例子中,任何一个偏振片所对应的透振态和吸收态构成完备集态函数,任何一个偏振态都能够在以此偏振片透振方向所决定的基矢组中展开,参照图1所示,通过偏振片P1的偏振态可以在以偏振片P2透振方向所决定的基矢组{|x〉,[y)}中表示为(2)相反,|x〉、|y〉基矢的任意叠加态也都是光子可能实现的偏振态.量子力学还假定,当物理体系处于叠加态式(1)时,可以认为体系处于φi量子态的概率为|ci|2.从前面的分析我们知道,当用偏振片P2对偏振态|P1〉进行测量时,此状态随机地坍缩到|x〉偏振态或|y〉偏振态,坍缩到|x〉偏振态的概率为cos2θ,也就是单个光子透过偏振片的概率,多次统计的结果恰好与马吕斯定律相对应,这充分体现了波函数的概率统计解释.
3典型例子
在教学中我们可以引入一个有趣形象的例子,进一步加深对量子力学基本概念的理解.如图2(a)所示,一束光入射到两个顺序排列的偏振片上,偏振片P3的透振方向相对于偏振片P1的透振方向顺时针转过90°角,我们不妨在一个与光传播方向垂直的平面内选定一个xy平面直角坐标系,P1的透振方向沿x轴,P3的透振方向沿y轴.光通过偏振片P1后变成光强为I0的偏振光,偏振方向与偏振片P1透振方向平行,但与P3的透振方向垂直,则光完全被偏振片P3吸收,不能透过.下面我们将看到一个有趣的现象,在偏振片P1和偏振片P3间插入一个偏振片P2,其透振方向在P1和P3之间,这时光竟可以透过P3偏振片.对此试验,我们可由马吕斯定律给出经典的解释.我们不妨设P2的透振方向相对于P1顺时针转过45°角,通过偏振片P1后,变为光强是I0的偏振光,且偏振方向与P1透振方向一致;再通过偏振片P2后,光强变为I0/2,偏振方向沿顺时针转过45°角,与偏振片P2透振方向一致;最后通过偏振片P3后,光强进一步减弱为I0/4,偏振方向又沿顺时针改变45°角,与偏振片P3透振方向一致.可以看到一个有趣的现象,虽然介于偏振片P1和P2间的光束其偏振方向与偏振片P3的透振方向正交,但最后透过偏振片P3的光束其偏振方向却恰恰沿偏振片P3的透振方向,这正是中间偏振片P2所起的作用.下面用我们前面分析偏振光与偏振片相互作用过程中,所建立起来的量子概念给出具体解释.取直角坐标系xy,x轴沿偏振片P1的透振方向,基矢组为{|x〉,[y)};由偏振片P2的透振方向所决定的基矢组为{|x'〉,[y')},其透振方向沿x'方向,如图3所示,两组基矢之间的关系可表示为(3)由偏振片P3所决定的基矢组仍为{|x〉,|y〉},不过透过的光子处在|y〉基矢态.光子透过偏振片P1后,其偏振状态处在|x〉态,由式(3),此状态可以按P2的基矢组展开为(4)根据式(4),经过P2偏振片的测量,光子有1/2的概率坍缩到|x'〉态,光子透过P2,有1/2的概率坍缩到|y'〉态,光子被吸收.由式(3),|x'〉态在由偏振片P3所决定的基矢组同样展开为3的测量下,偏振状态发生改变,有1/2的概率坍缩到|y〉态,透过偏振片,有1/2的概率坍缩到|x〉态,被偏振片吸收,总体来说透过偏振片P1的光子有1/4的概率透过偏振片P3,与经典的马吕斯定律相一致.特别注意到光子透过偏振片P1后,状态为|x〉态,与|y〉态正交,没有|y〉态的组分,但光子透过偏振片P3后却正处在|y〉态,这充分体现了测量可以使量子态改变的量子假定,展示了量子测量的奇妙特性.
4总结
结合对偏振光实验的量子解释,我们分析了若干重要的量子力学概念.但严格说来,光子的问题不属于量子力学问题,只有在量子场论中才能处理.采用光子的偏振情形来讨论某些量子概念,理论上虽稍欠严谨,但如上文所述,确实能够直观形象地反映量子力学中的若干基本假定,使抽象的量子力学概念落实到对具体实验的分析中来,易于被初学者接受,我们不妨在学生开始学习量子力学时引入此例,有助于学生理解抽象的量子概念,领会量子力学的思维方式.
参考文献:
[1]狄拉克.量子力学原理[M].北京:科学出版社,1966.
[2]费因曼.费因曼物理学讲义[M].上海:上海科学出版社,2005.
[3]曾谨言.量子力学卷1.[M].北京:科学出版社,2006.
[4]赵凯华,罗蔚茵.量子物理[M].北京:高等教育出版社,2001.
量子力学基本概念范文2
量子力学不同于以往力、热、光、电这些经典物理,它有自己独特而全新的理论框架体系,初次接触该课程的学生很难接受,量子力学的创建者之一波尔就曾说过“如果谁在第一次学习量子概念时不觉得糊涂,他就一点也没有懂”。本人从2011年开始讲授《量子力学》课程,先后教过5届学生,对于如何教好普通地方工科院校的学生,有一些体会。
1 讲授量子力学建立背景很重要
对于任何一门课程,只掌握书本里相关的公式、定律,能熟练地做课后题是不够的,这些只能让学生知其然而不知所以然。更何况正如波尔所说,初次接触量子力学的人本身就很困惑,如果刚开学直接讲授物质波、波函数的统计解释、不确定性原理,用薛定谔方程计算能级和波函数,学生会一头雾水,不知道这些知识是什么,有什么用?如果我们回顾一下量子力学产生过程:开尔文的“两朵乌云”、普朗克解释“黑体辐射”、爱因斯坦解释“光电效应”(包括康普顿散射实验的验证)、波尔的氢原子理论,物理学的发展还是有规可循的,有这些前期成果作铺垫,德布罗意物质波理论、薛定谔方程、波函数的统计解释容易被接受,再告诉学生势阱看做简化的原子模型,得到的能级与原子发光机理相联系,学生学起来就会明白一些。这样适当增加量子力学建立背景,使学生明白它不是凭空产生的,是人类认识世界到了微观层次,由实验和理论相互促进的必然结果,教学效果会好很多。
2 讲授数学知识储备和课本的组织框架很重要
量子力学中微观体系的状态用波函数来描述,每一个状态可以看成数学中的希尔伯特空间的一个矢量,线性代数中所学的矢量运算法则(如矢量的加法、数乘、内积等)成了量子力学中基本运算。在矩阵力学中,态和力学量又可以用一个矩阵来表示,矩阵的运算法则及相关概念也是掌握量子力学所必须的。薛定谔方程本身就是一个偏微分方程,量子力学中的期望值也需要与概率相关的知识。《量子力学》课程一般开设在本科大三年级,所有数学知识都已学过,同时学生也有所遗忘,如果在正式授课前带领学生复习一下相关数学知识,不仅使学生学习更轻松,也有助于一些考研同学的复习,起到事半功倍的效果。
学生在接触一门新课时,随着学习的深入很容易陷入“只见树木不见森林”的困境,所以讲授一些书本的理论框架也比较重要。我们使用的是周世勋的《量子力学教程》,该书浅显易懂,逻辑清晰,适合普通地方工科院校的学生作为量子力学的入门课本。如果学生明白课本的安排,包括这么几部分:描述一个状态及状态随时空的演化法则、状态中物理量的获取、微扰理论、自旋及多体,外加一独立成章的矩阵力学,学习起来会清晰许多,明白自己的学习进度,前后章节的联系,教学效果自然会得到提升。
3 讲授名人轶事,联系学科最新进展
和其他理论课程一样,《量子力学》抽象难懂、推导过程复杂,讲授会枯燥乏味。所幸量子力学建立的年代是上世界物理学发展的黄金时代,英雄辈出,群星璀璨。量子力学的缔造者如普朗克、爱因斯坦、波尔、德布罗意、薛定谔、海森堡、狄拉克、泡利等人身上都充满了传奇,从他们身上不仅可以学到知识、启迪智慧,每一个物理规律发现背后的故事、名人之间的师承门派还可以作为调节课堂氛围的资料,让学生感受到量子力学也是有血有肉的活生生的诞生在现实社会中,而不是如天外飞仙那般突然现世。学生有了这种亲近感,学习起来也会有动力。
尽管量子力学理论框架于20世纪30年代已经基本建立,成功的解释了很多实验现象,也影响了诸如化学、生物、材料等诸多学科的发展,但围绕量子力学基本概念、原理、物理图像的理解一直争论不断,随着实验手段的进步,诸如量子通讯、量子计算、拓扑绝缘体、量子霍尔效应、外尔半金属等许多新成果不断涌现,成为当今世界一个又一个的研究热点,不断提升人类认识物质世界的高度和深度。课堂上介绍这些学科的前沿进展,让学生感受量子力学的魅力和生命力,能极大的促进学生学习的兴趣。
4 合理实用多媒体课件教学
随着网络和计算机应用的发展,多媒体课件丰富了教学手段和内容,为教学带来了诸多便利。在讲授氢原子的量子理论时,公式繁琐、推导冗长,如果一一板书讲授,学生很容易听到后面忘了前面,如果提前做好课件,推导过程以幻灯片的形式播放,重点讲授推导逻辑和几个关键点,这样学生学习起来会省力很多。还有如果把电子衍射图像形成过程用动画演示的方式播放,学生对波函数统计解释的理解会加深很多。
多媒体教学会加强课堂上教学的交流、提高学生信息获取量,激发学生学习的积极性,但事物都具有两面性,多媒体课件能为教学引入很多便利,也有一些不足。如过分的使用多媒体课件,一张张的过幻灯片,除了信息量太多,学生还会被课件中动画、视频所吸引,忽视其中公式推导,及和老师的交流,这样学习层次很容易流于表面,不能深入;反之如果教授板书讲授,物理过程仔细推导,关键处点评交流,学生有时间去思考和参与讨论,能够加深对知识的理解,有利于构建他们的知识体系。总之“尺有所短寸有所长”,只有传统板书教学与多媒体教学有机结合,才能达到提高教学效果这一根本目标。
《量子力学》在物理专业的课程体系中占有重要的地位,对学生的发展更为重要,让学生更容易的认识、接收、理解、应用相关知识,让学生在学习过程中加深对物理学的热爱,是我们教学的最终目标,也是我们教师的责任。希望这些粗浅的思考能为其他地方工科院校的教学提供一些参考。
【参考文献】
量子力学基本概念范文3
关键词:量子力学;经典科学世界图景;非机械决定论;整体论;复杂性;主客体互动
Abstract: As one of three revolutions of physics in 20th century, quantum mechanics has greatly transformed the world view of classical science in many aspects. Quantum mechanics breaks though the mechanical determinism in classical science, transforming it into nonmechanical determinism; it changes scientific cognitive process from the theory of reductionism to the theory of wholism; it shifts the way of thinking from pursuing simplicity to exploring the complexity; it also establishes the interaction between subject and object in scientific researches.
Key words: quantum mechanics; world view of classical science; nonmechanical determinism; wholism; complexity; interaction between subject and object
经典科学基本上是指由培根、牛顿、笛卡儿等开创的,近三百年内发展起来的一整套观点、方法、学说。经典科学世界图景的最大特征是机械论和还原论,片面强调分解而忽视综合。以玻尔、海森伯、玻恩、泡利、诺伊曼等为代表的哥本哈根学派的量子力学理论三部曲:统计解释—测不准原理—互补原理所反映的主要观点是:微观粒子的各种力学量(位置、动量、能量等)的出现都是几率性的;量子力学对微观粒子运动的几率性描述是完备的,对几率性的原因不需要也不可能有更深的解释;决定论不适用于量子力学领域;仪器的作用同观察对象具有不可分割性,确立了科学活动中主客体互动关系。[1]量子力学的发展从根本上改变了经典科学世界
图景。
一、量子力学突破了经典科学的机械决定论,遵循因果加统计的非机械决定论
经典力学是关于机械运动的科学,机械运动是自然界最简单也是最普遍的运动。说它最简单,因为机械运动比较容易认识,牛顿等人又采取高度简化的方法研究力学,获得了空前成功;说它最普遍,因为机械力学有广泛的用途,容易把它绝对化。[2]机械决定论是建立在经典力学的因果观之上,解释原因和结果的存在方式和联系方式的理论。机械决定论认为因和果之间的联系具有确定性,无论从因到果的轨迹多么复杂,沿着轨迹寻找总能确定出原因或结果;机械决定论的核心在于只要初始状态一定,则未来状态可以由因果法则进行准确预测。[3]其实,机械决定论仅仅适用于宏观物体,而对于微观领域以及客观世界中大量存在的偶然现象的研究就产生了统计决定论。[4]
量子力学是对经典物理学在微观领域的一次革命。量子力学所揭示的微观世界的运动规律以及以玻尔为代表的哥本哈根学派对量子力学的理解,同物理学机械决定论是根本相悖的。[5]按照量子理论,微观粒子运动遵守统计规律,我们不能说某个电子一定在什么地方出现,而只能说它在某处出现的几率有多大。
玻恩的统计解释指出,因果性是表示事件关系之中一种必然性观念,而机遇则恰恰相反地意味着完全不确定性,自然界同时受到因果律和机遇律的某种混合方式的支配。在量子力学中,几率性是基本概念,统计规律是基本规律。物理学原理的方向发生了质的改变:统计描述代替了严格的因果描述,非机械决定论代替了机械决定论的统治。
经典统计力学虽然也提出了几率的概念,但未能从根本上动摇严格决定论,量子力学的冲击则使机械决定论的大厦坍塌了。量子力学揭示并论证了人们对微观世界的认识具有不可避免的随机性,它不遵循严格的因果律。任何微观事件的测定都要受到测不准关系的限定,不可能确切地知道它们的位置和动量、时间和能量,只能描述和预言微观对象的可能的行为。因此,量子力学必须是几率的、统计的。而且,随着认识的发展,人们发现量子统计的随机性,不是由于我们知识和手段的不完备性造成的,而是由微观世界本身的必然性(主客体相互作用)所注定。
二、量子力学使得科学认识方法由还原论转化为整体论
还原论作为一种认识方法,是指把高级运动形式归结为低级运动形式,用研究低级运动形式所得出的结论代替对高级运动形式的本质认识的观点。它用已分析得出的客观世界中的主要的、稳定的观点和规律去解释、说明要研究的对象。其目的是简化、缩小客体的多样性。这种方法在人类认识处于初级水平上无疑是有效的。如牛顿将开普勒和伽利略的定律成功地还原为他的重力定律。但是还原论形而上学的本质,以及完全还原是不可能的,决定了还原论不能揭示世界的全貌。
量子力学认为整体与部分的划分只有相对意义,整体的特征绝非部分的叠加,而是部分包含着整体。部分作为一个单元,具有与整体同等甚至还要大的复杂性。部分不仅与周围环境发生一定的外在联系,同时还要表现出“主体性”,可将自身的内在联系传递到周边,并直接参与整体的变化。因而,部分与整体呈现了有机的自觉因果关系。在特定的临界状态,部分的少许变化将引起整体的突变。[6]
波粒二象性是微观世界的本质特征,也是量子论、量子力学理论思想的灵魂。用经典观点来看,也就是按照还原论的思想,粒子与波毫无共同之处,二者难以形成直观的统一图案,这是经典物理学通过部分还原认识整体的方法,是“向上的原因”。可是微观粒子在某些实验条件下,只表现波动性;而在另一些实验条件下,只表现粒子性。这两种实验结果不能同时在一次实验中出现。于是,玻尔的互补原理就在客观上揭示了微观世界的矛盾和我们关于微观世界认识的矛盾,并试图寻找一种解决矛盾的方法,这就是微观粒子既具有粒子性又具有波动性,即波粒二象性。这就是整体论观点强调的“向下的原因”,即从整体到部分。同样,海森伯的测不准原理说明不能同时测量微观粒子的动量和位置,这也说明绝不能把宏观物体的可观测量简单盲目地还原到微观。由此我们可以看出,造成经典科学观与现代科学观认识论和方法论不同的根本在于思考和观察问题的层面不同。经典科学一味地强调外在联系观,而量子力学则更强调关注事物内部的有机联系。所以,量子力学把内在联系作为原因从根本上动摇了还原论观点。
三、量子力学使得科学思维方式由追求简单性发展到探索复杂性
从经典科学思维方式来看,世界在本质上是简单的。牛顿就说过,自然界喜欢简单化,而不喜欢用什么多余的原因以夸耀自己。追求简单性是经典科学奋斗的目标,也是推动它获取成功的动力。开普勒以三条简明的定律揭示了看似复杂的太阳系行星运动,牛顿更是用单一的万有引力说明了千变万化的天体行为。因而现代科学是用简单性解释复杂性,这就隐去了自然界的丰富多样性。
量子力学初步揭示了客观世界的复杂性。经典科学的简单性是与把物理世界理想化相联系的。经典物理学所研究的是理想的物质客体。它不但用理想化的“质点”、“刚体”、“理想气体”来描述物体,而且把研究对象的条件理想化,使研究的视野仅仅局限于人们自己制定的范围之内。而客观世界并不是如此,特别是进入微观领域,微观粒子运动的几率性、随机性;观测对象和观测主体不可分割性等都足以说明自然界本身并不是我们想象的那么简单。
在现代科学中,牛顿的经典力学成了相对论的低速现象的特例,成为非线性科学中交互作用近似为零的情况,在量子力学中是测不准关系可以忽略时的理论表述。复杂性的提出并不是要消灭简单性,而是为了打破简单性独占的一统地位。复杂性是把简单性作为一个特例包含其中,正如莫兰所说的,复杂性是简单性和复杂性的统一。复杂性比简单性更基本,可能性比现实性更基本,演化比存在更基本。[7]今天的科学思维方式,不是以现实来限制可能,而是从可能中选择现实;不是以既存的实体来确定演化,而是在演化中认识和把握实体。复杂性主张考察被研究对象的复杂性,在对其作出层次与类别上的区分之后再进行沟通,而不是仅仅限于孤立和分离,它强调的是一种整体的协同。
四、量子力学使科学活动中主客体分离迈向主客互动
经典科学思维方式的一个指导观念就是,认为科学应该客观地、不附加任何主观成分地获取“照本来样子的”世界知识。玻尔告诉人们,根本不存在所谓的“真实”,除非你首先描述测量物理量的方式,否则谈论任何物理量都是没有意义的!测量,这一不被经典物理学考虑的问题,在面对量子世界如此微小的测量对象时,成为一个难以把握的手段。因为研究者的介入对量子世界产生了致命的干扰,使得测量中充满了不确定性。在海森伯看来,在我们的研究工作由宏观领域进入微观领域时,我们就会遇到一个矛盾:我们的观测仪器是宏观的,可是研究对象却是微观的;宏观仪器必然要对微观粒子产生干扰,这种干扰本身又对我们的认识产生了干扰;人只能用反映宏观世界的经典概念来描述宏观仪器所观测到的结果,可是这种经典概念在描述微观客体时又不能不加以限制。这突破了经典科学完全可以在不影响客体自然存在的状态下进行观测的假定,从而建立了科学活动中主客体互动的关系。
例如,关于光到底是粒子还是波,辩论了三百多年。玻尔认为这完全取决于我们如何去观察它。一种实验安排,人们可以看到光的波现象;另一种实验安排,人们又可以看到光的粒子现象。但就光子这个整体概念而言,它却表现出波粒二象性。因此,海森伯就说,我们观测的不是自然本身,而是由我们用来探索问题的方法所揭示的自然。[8]
量子力学的发展表明,不存在一个客观的、绝对的世界。唯一存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够描述出自然“是什么”,而在于它能够明确,关于自然我们能够“说什么”。
参考文献
[1]林德宏. 科学思想史[M].第2版.南京:江苏科学技术出版社,2004:270-271.
[2]郭奕玲,沈慧君. 物理学史[M].第2版.北京:清华大学出版社,1993:1-2.
[3]刘敏,董华. 从经典科学到系统科学[J].科学管理研究,2006,24(2):44-47.
[4]宋伟.因果性、决定论与科学规律[J].自然辩证法研究,1995,11(9):25-30.
[5]彭桓武. 量子力学80寿诞[J].大学物理,2006,25(8):1-2.
[6]疏礼兵,姜巍. 近现代科学观的演进及其启示[J].科学管理研究,2004,22(5):56-58.
量子力学基本概念范文4
摘要:
物理概念作为物理学知识体系的支柱,对其理解和掌握的程度直接影响到教学质量。对物理概念教学的实施原则和方式进行了探讨:实施要求在知识传授过程中不仅仅停留在概念本身,更需要从物理概念的需求背景、本质内涵和外延、适用范围、缺陷和改进等诸多方面进行讲解,使学生形成一个完整清晰的物理图像。实施方式要求创造好的学习环境来激发学生的兴趣以及调动学生的主观能动性和创造力。通过有效启发学生的思考,并使其受到科学精神的感染,达到有效理解和掌握物理概念的目的。
关键词:
物理学概念;科学素质;科学精神;教学方法;教学效果
物理学是研究宇宙中存在的各种基本物质结构及其运动和相互作用规律的学科,是人类认识自然和改造自然的工具。大学开设的物理基础课,可培养学生的科学素质和品质,也为后续专业课程学习奠定基础[1]。物理基本概念用于概括、归纳、表述事物变化的基本规律,是学科基础,对其深入学习可培养学生物理学的研究方法和思维[2]。
1物理概念教学的意义
大学物理通过向学生传授基础物理知识,培养学生基本的物理思维能力、科学品质以及物理学研究方法[3]。物理学概念(包括原理、定理、定律)是针对学科发展需要,在实验和理论基础上,通过反复的概括、抽象和归纳得到的,体现了学科的思维和发展方向,相应的学习和掌握至关重要[2]。
1.1培养解决和分析问题的能力
物理概念是物理学发展的支柱,任何一门物理学分支的发展都离不开特有物理概念的引入。如力学的发展,离不开力、力矩、动量、能量等基本物理概念的支撑。为了描述阻止物体的力,引入摩擦力,根据物体运动方式不同,又分为滚动和滑动摩擦力;为了研究物体的形变特性,引入了压力、剪切力等概念[4]。
1.2培养物理学的辩证和统一研究思维
有些物理概念是矛盾的结合体,如光的本质,即“波粒二象性”,对其认识一波三折。最早笛卡尔、牛顿的微粒学说,成功解释了光的直线传播现象。波动学说起源于胡克,认为光是类似水波振动,惠更斯提出光是纵波。“牛顿环”体现了光的波动性,却以微粒和以太进行解释。随着托马斯•杨干涉、菲涅耳衍射、麦克斯韦电磁场理论研究,以及赫兹(Hertz)对光的电磁波本质实验证明,人们逐步接受了光的波动性。直到19世纪末,在光电效应研究基础上,爱因斯坦提出了光的“波粒二象性”[5],为新学说奠定了基础,如康普顿效应,德布罗意物质波、测不准原理、薛定谔波动方程等。
1.3培养融会贯通、触类旁通能力
很多物理概念会经历提出、实验或理论证实,逐步推广和深化,甚至扩展到其他领域的过程。这说明该概念的思维反映事物本质,精确描述了对象特征。如热学里“熵”概念,最先由克劳修斯(Clausius)基于描述热机循环状态的需要而提出,后来分子运动论将其解释为不可逆热力学过程是趋向于概论增加的态变化(波耳兹曼熵)。经过多年沉淀,又被控制论、数论、概率论、生命科学、天体物理等领域引入并应用,说明其思维方式被认同[6]。教学中可以把熵作为专题进行讲解,从不同学科集中阐述物理思维。
2物理概念教学的方法
大学物理学的教学目的如下:
1)通过掌握基础物理知识,为学习后续专业知识打好基础;
2)全面了解物理学研究方法、基本概念、物理图像以及历史渊源、发展等;
3)培养和提高大学生科学素质、思想、品质、精神等,通过了解科学发展的曲折和艰辛,科学研究的合作和乐趣等,培养学生科学思维方法、求真务实的科学品格,使其初步具备科学研究能力[1,7]。下面结合物理学特点以及教育理论和实践,对物理概念教学方法进行探讨。
2.1引入物理概念背景的教育需求
介绍物理学概念背景帮助学生充分理解概念引入的意义和作用。在此基础上,设计问题引导学生进行自我思考,如:若你们在此背景下引入新概念,应该采用什么概念来描述物质特性或规律,它与现有概念相比有哪些优缺点?通过学生的深入思考和讨论,使其充分认识和理解所引物理学概念的意义和重要性。这也是启发式教学的常用方式[8]。如讲解微粒比表面时,根据背景提问:对于一个物体而言,表面原子存在大量断键而很不稳定,表现为较强活性,是不是体积越大活性越强?通过讨论发现单纯的体积特征不合理,体积越大,内部包含原子数越多。进一步提问:如何描述微粒活性,并进行相应对比?这会激发学生的兴趣,出现类似单位质量的物质表面等答案。最后,指出微观粒子的尺寸效应最为重要,引出单位体积的表面积概念,即比表面积。
2.2讲清物理概念的本质内涵和外延物理概念的发展
体现在内涵不断丰富和外延在不同领域的扩展。温度概念的发展就体现了内涵的丰富,从表征“环境的冷热程度”到“分子平均平动动能的量度”,再到“物体内部分子的无规则热运动剧烈程度”,最后推广到“粒子集居数的反转现象”,也就是“系统处于总能量高于平均能量的状态”,并提出负温度的概念。折射率的概念则体现了其外延的扩展,最初表征不同材料之间的偏折,后表征传播速度。其实光传输的速度决定于材料原子之间电场的大小,也体现了原子结合力的高低,所以所承载的外延信息很多,包括光学、原子物理以及物质结构等不同学科。一些物理学概念是联系不同领域的纽带,如阿伏伽德罗常数是联系宏观与微观的桥梁,对其内涵的理解比单纯数值更有意义。
2.3循序渐进和系统性的教学
有些概念贯穿于整个物理学体系中,需要多学科的共同学习才能深入和系统地认识。以物理学中极其重要的“场”的概念为例,最先由法拉第(Faraday)基于电磁相互作用的超距观点提出并进行直观描述;随后麦克斯韦从数学上推导了电场和磁场强度的波动方程,深刻地阐述了电磁场能量的分布[9];列别捷夫(Lebedev)通过对光压的观测证明了电磁场动量特性;爱因斯坦狭义相对论的创立,证明场是物质存在的一种形式,具有能量、动量和质量;量子力学体现了场的“波粒二象性”;电磁场量子理论证明光子是电磁场的基本微粒,可与正负电子对相互转化,具有实物转化性,丰富了场的物理本质和内涵[10]。“场”在电磁学、力学、相对论、量子力学等领域都有体现。教学中要从“场”的基本特性、规律和共性出发,逐步深入:最初通过力学中重力(万有引力)引入重力场强、重力势能(引力场强、引力势函数),初步建立场的概念;电磁学或电动力学则通过电荷库仑力场引入库仑场强和库仑势,通过场矢量的通量分析和环流分析分别得到高斯定理和安培环路定理;相对论和量子力学通过波函数分析进一步加深对场的理解。
2.4引入必要的物理学史教育
物理学的发展过程是科学家为了解决自然界遇到的新问题而不断探索的过程,所提物理概念是对所描述对象的高度概括[11]。新概念的提出、完善和修正需要科学检验和论证,错误的被或修正,正确的被采用或推广,这体现了物理学思维方式。结合物理学史,对成功或失败的物理概念进行分析和对比,有助于培养学生理性思维。成功实例:原子物理中“紫外灾难”催生了普朗克(planck)的量子概念,后来爱因斯坦的光量子说,成功地解释了光电效应,开启了量子力学新篇章;描述基本粒子单元的夸克(quark)概念,被逐渐证实。失败实例:描述光传输的“以太”概念被实验否定。当前还有很多概念亟待进一步论证,波尔(Bohr)与爱因斯坦关于量子力学的著名论战就是一个很好的证明。这可以培养学生思辨的习惯、求实的精神和相互包容的优良品质。
2.5构建清晰物理图像
很多概念的提出都基于不同的研究思路和思维,需要建立完整清晰的物理图像再现其物理思维和描述意义[12]。以麦克斯韦方程组为例,它体现了电磁学基本研究思路:对电场和磁场进行曲面和曲线积分,得到相应的源。学科适用范围体现了不同思维,如电磁学规律是基于宏观的分析,量子力学是处理微观世界的规律,具有完全不同的研究思路和适用范围。以电磁波发射为例,电动力学基于LC振荡,量子力学电子跃迁。对比讲解对构建知识体系和正确应用很有益。形象化表述是构建物理图像的主要方法之一,如在光学中讲述菲尼尔圆孔衍射的光强空间分布规律时,可以采用半波带法、矢量图解法等进行分解,达到获得清晰物理图像的目的[13]。加强实验教学有助于构建物理图像,可分为重建性和探究性,通过实验再现物理知识或根据预设要求通过实验得到结果。
3教学措施和效果
为了有效开展物理概念教学,我们对教学方法进行了改革,主要涉及到:分组讨论式教学、改革考试方式、推行非标准化答案、重建基本概念、推荐内容丰富的教材和参考书、加强实验教学等。分组讨论式教学是创造机会使学生对物理概念的提出背景、必要性、可以解决的问题进行深入讨论,在争论中增强对概念本质的认识。典型问题有:物理概念需求背景、自我设想和构建、解决问题程度和预期目标、现有物理概念对比等。通过以上教学,学生在考试中对基本概念的描述正确率大大增加,平均得分率由72%提高到83%。非标准化答案旨在锻炼学生想象力和发散性思维,围绕物理概念进行问题设计,采用多种表述方式进行分析。采用撰写论文形式进行考试,要求学生通过文献查询、收集信息等方式来阐述物理概念的内涵和外延等,全面锻炼学生能力:信息查询、归纳总结以及写作表述能力等。考试成绩比重由原来的15%增加到30%,更能体现学生能力水平。随着学习不断深入,需要通过扩展物理概念的内涵或外延对新事物及其特性规律进行描述。如随着激光光强的增加,对材料的光电离会由单光子电离扩展到多光子电离,由线性光学扩展到非线性光学以及激光等离子体物理[14]。推荐内容丰富的教材和参考书也是一种很好的方式。如原子物理教学中可推荐杨福家的《原子物理学》[15],该书图文并茂,有很多经典故事,同时设计了很多启发式问题,使用者反映良好。光学教学中可推荐冯国英、周寿桓编写的《波动光学》[16],该书内容丰富,主要物理概念和定律后面附有Matlab应用实例,有利于学生学以致用和形象化理解物理概念。另外,美国学者ArtHobson编写的《物理学的概念与文化素养》等,都能为物理学概念的学习提供很好的参考。
4结语
物理学概念是物理学发展和前进的基石,体现了研究过程中遇到的新问题,反映了为了解决问题提出的新思维和方法,表征了物理学发展的趋势和方向。物理学概念学习主要体现在基础知识的掌握、科学品质和精神的培养、科学素质的锻炼等方面。从教学方法上需要从构建物理图像出发,结合物理学史的引入,激发学生主动性,达到全面掌握物理概念内涵和外延的目的。具体实施方式上,可以结合考试改革、非标准化答案、推荐优秀教材等来实现。
参考文献:
[1]包景东.理论物理教学应在培养学生批判性思维能力上发挥作用[J].大学物理,2014,33(1):1-5.
[2]张玉峰,郭玉英.围绕学科核心概念建构物理概念的若干思考[J].课程•教材•教法,2015,5(35):99-102.
[3]秦吉红,梁颖.在大学物理教学中应加强科学素养的案例剖析:纪念黄祖洽先生[J].大学物理,2015,34(2):15-18.
[4]乔通.科学教育中重要概念教学的国际比较研究:以“力学”概念教学为例[J].全球教育展望,2015,5(44):118-124.
[5]甘永超.波粒二象性研究中的历史学与方法论思考[J].湖北大学学报(哲学社会科学版),2002,29(3):90-95.
[6]孙会娟.熵原理及其在生命和社会发展中的应用[J].北京联合大学学报(自然科学版),2007,21(3):1-4.
[7]濮春英,周大伟.大学物理教学中学生创新素质的培养[J].南阳师范学院学报,2014,13(3):47-48.
[8]吴波.物理概念教学的改革与发展研究[J].上饶师范学院学报,2003,23(6):23-28.
[9]杨振宁,汪忠.麦克斯韦方程和规范理论的观念起源[J].物理,2014,43(12):780-786.
[10]雷蒙德•塞尔维,克莱门特•摩西.近代物理学[M].3版.北京:清华大学出版社,2008:65-106.
[11]申先甲,李艳平,刘树勇,等.谈谈物理学史在素质教育中的作用[J].大学物理,2000,19(11):36-40.
[12]李明.对加强和改进大学物理教学中多媒体技术的探讨[J].大学物理,2005,24(12):48-50.
[13]吴颖,徐恩生,罗宏超.振幅矢量法与半波带法分析光栅衍射的比较[J].沈阳航空工业学院学报,2005,22(1):70-73.
[15]杨福家.原子物理学[M].2版.北京:高等教育出版社,1985:218-219.
量子力学基本概念范文5
关键词:热力学与统计物理学;国家精品课程;统计热力学体系
“热力学与统计物理学”(简称“热统”)是我国高等院校本科物理专业的一门必修课程,是研究物质有关热现象(即宏观过程)规律的理论物理课,也是普通物理“热学”的后续课。内蒙古大学“热统”教学组在20多年教学实践中,不断更新教育观念,探索课程教学体系的改革,逐步建立了以微观理论为主线的教学体系,建设了首门“热统”国家精品课程(2004年)——“统计热力学”,陆续出版了配套教材[1]和学习辅导书[2]。
一、关于“热统”教学体系的思考
关于热现象的理论包括两部分,即宏观理论——“热力学”和微观理论——“统计物理学”。我国目前的“热统”课程由早年设置的 “热力学”和“统计物理学”两门课程合并而成,一直沿袭“热”、“统”相对独立的“一分为二”教学体系[3-5]。教学内容安排大体以学科发展历史和认识层次为序,由唯象到唯理,由宏观到微观。这种体系十分成熟,在多年教学实践中获得很大成功。随着科学技术和人类现代文明的飞速发展,人们认识世界的条件、增长知识的方式和获取信息的渠道发生了质的变化:昔日深奥难解的名词,今天已可闻之于街巷;诸多科学概念的理解,逐渐变得不很困难。在这种知识氛围和学习环境下,从中学到大学的物理教学内容均在不断地改革和深化。同时,现代科学成就在高新技术中的广泛应用向21世纪人才培养提出更高的要求。这一切,催动着大学物理课程改革的进程,也激发起我们对传统体系的思考。
从“热物理”系列课程改革现状来看,一方面,普通物理“热学”课程的内容已进行了必要的深化和后延,原有“热统”课程与现行“热学”课程内容出现较多重复。仅以汪志诚著《热力学 · 统计物理》[5]和秦允豪著《热学》[6]为例,二者内容重叠约为1/3。过多重复造成学习时间与精力的浪费,甚至引发学生的厌学情绪,使学习效益降低。另一方面,飞速发展的高新技术拉近了基础理论与应用技术的距离,就热物理而言,无论实际工作中的应用,还是继续深造时的基础,都对“热统”课程教学提出更高的要求。增加课程的统计物理比重,深化微观理论的系统理解势在必然。此外,改革开放以来,我国高等教育从学制到专业及课程设置均有较大幅度的变动,“热统”课教学时数多次削减(1208672、64),课堂教学的信息量和效益问题变得更加突出。面对这种形势,各校对“热统”课程的内容进行了不断的改革,逐步增加统计物理比重,努力减少和避免与“热学”的重复。然而,由于没有触动“一分为二”的体系,大量的简单重复难以避免,“热力学”内容仍然偏多,实际教学中统计物理的系统性难以保证。
针对上述问题,我们从体系结构着眼,对“热统”课程进行了较大力度的改革[1]。我们的改革思路是:打通“热物理”宏观与微观理论的壁垒,融二者为一体,削减学时、充实内容,有效地避免与普通物理的简单重复,提高教学效益;以微观理论为主导,确保统计物理体系的完整性与系统性,增加课程的先进性与适用性。在上述思想指导下,构建了“热统”课程的“统计热力学”体系。新体系从根本上解决了热物理课程中理论物理与普通物理之间层次交叠、内容重复的问题;大幅增加统计物理比重,使其理论及应用内容在总学时中占到3/4以上。
二、统计热力学体系的特色
统计热力学教学体系的主要特色是:热物理学以微观理论为框架;微观理论以系综理论为主线;系综理论以量子论为基础。体系知识结构框如上图所示。
1.以微观理论为框架,融微观与宏观一体
“统计热力学”以微观理论——统计物理为主导,建立了从微观到宏观、完整自恰的理论体系。
在传统的“一分为二”体系下,学生往往将过多精力用于热力学计算,不能很好地理解统计物理的理论体系,容易将热现象的宏观和微观理论割裂开来。本体系从微观理论出发,用统计物理理论导出热力学基本定律,讨论体系热力学性质,给出统计物理概念与宏观现象的对应,融热现象的微观、宏观理论于一体,结束了两种理论割裂的传统教学格局,提高了认识层次。同时,使理论物理与普通物理的分工更趋合理,便于解决传统体系难以避免的“热统”与“热学”过多重复问题。
本体系按照统计物理学的知识框架,将主要知识点划分为孤立系、封闭系和开放系等三个模块(参见上图)。各块均首先给出相应的统计分布,进而引入热力学势(特性函数),导出热力学基本定律,再用微观和宏观理论相结合的方法研究具体系统的热力学性质。例如:在孤立系一章,从等概率基本假设出发,引入统计物理的熵,导出热力学第一、第二定律,进而研究理想气体的平衡性质。在讨论封闭系时,从正则分布出发,引入热力学势——自由能,给出均匀系热力学基本微分式,进而导出麦克斯韦关系,介绍用热力学理论研究均匀物质宏观性质的方法,再具体讨论电、磁介质热力学、焦-汤效应等典型实例。同时用正则分布研究近独立子系构成的体系,导出麦-玻分布,介绍最概然法;进一步导出能均分定理,介绍运用统计理论研究半导体缺陷、负温度、理想和非理想气体等问题的方法。对于开放系,首先导出巨正则分布,再引入巨势,给出描述开放系的热力学微分式,研究多元复相系的平衡性质,讨论相变和化学热力学问题;用量子统计理论导出热力学第三定律,讨论低温化学反应的性质。另一方面,考虑全同性原理,用巨正则分布导出玻色、费密两种量子统计分布,给出它们的准经典极限——麦-玻统计分布,并运用获得的量子统计分布分别讨论电子气、半导体载流子、光子系的统计性质和玻色—爱因斯坦凝聚等应用实例。
2.以系综理论为主线,完善统计物理体系
与国内现流行体系不同,“统计热力学”的统计物理以“系综理论”为基础,具有更强的系统性。
现流行体系为便于学生理解,大多先避开系综理论,讲解统计物理中常用的分布和计算方法,如近独立粒子的最概然分布、玻耳兹曼统计、玻色统计和费米统计及其应用等,而在课程的最后介绍系综理论有关知识[5]。这种体系除内容不可避免地出现重复外,还在一定程度上牺牲了统计物理的系统性。在实际教学中,为了阐明有关分布和统计法,往往不可避免地运用如等概率假设、配分函数、巨配分函数等系综理论的基本概念,难免出现生吞活剥、“消化不良”的弊端。从体系实施现状来看,不少院校因学时有限,在热力学和基本统计方法的教学之后,对系综理论的介绍只能一带而过,学生难以完整掌握统计物理理论。
我们多年采用系综理论为主线的教学实践表明,“统计分布”与“系综”的“分割”是不必要的。本体系首先引入“系综”概念,将整个“统计热力学”的基础建立在系综理论之上,从一个基本假设——等概率假设(微正则系综)入手,渐次导出各种宏观条件下的系综分布,建立配分函数、巨配分函数等基本概念,给出相应的热力学势和热力学基本微分公式;同时,顺畅地导出如最概然分布、玻耳兹曼统计、玻色统计和费米统计法等常用分布和计算方法,并用于实际问题。在教学过程中,力求循序渐进地阐明统计物理的基本理论,使学生准确、清晰地掌握统计物理的基本概念,对热物理理论有完整系统的理解,能够全面、灵活地运用,为进一步学习更高深的知识和了解物理学的最新成果奠定扎实的基础。
3. 以量子理论为基础,认识微观运动本质
为使学生准确认识微观运动本质,“统计热力学”将系综理论建立在量子论的基础上,而经典统计则作为量子统计的极限给出。
传统体系多从经典统计入手,然后进入量子统计。我们教学实践的体会是,物理学历史上由经典论到量子论的认识过程没有必要在统计物理教学中重演。通过现设“普通物理学”课程的学习,学生已理解微观运动遵从量子力学规律,并具备了一定的量子论知识基础,在量子论基础上建立统计物理理论顺理成章。事实上,微观运动的正确描述须用量子理论,而量子统计与经典统计就统计规律性而言并无本质区别,经典统计只是量子统计的极限情形而已。以量子论为基础构建统计物理体系,更有利于学生尽快认识事物的本质,迅速进入对前沿科学的学习。
三、关于体系的兼容性——几个共同关注的问题
“统计热力学”以系综理论为主线,以量子论为基础,大幅提高统计物理比重,适当地增加了课程深度。在课时缩减,招生规模扩大的形势下,实施上述改革更有一定风险和难度。另一方面,新体系能否与流行体系兼容,也是国内同行普遍关注,需要在优化改革方案过程中解决的问题。为化解难度,提高兼容性,在体系建立和教学实践中,我们着力解决了以下几个问题:
问题之一:量子理论与系综理论理解困难问题。如前所述,学习本体系前应具备一定的量子论知识。目前国内物理专业的“热统”课程多排在“量子力学”之前。这就不可避免地出现了“前量子力学”困难。为解决这一问题,我们在课程引论中安排了量子论基本知识的讲授,介绍量子态、能级、简并、全同性、对应关系等概念。如此处理,再结合普通物理“原子物理学”中学到的量子力学初步知识,学生就能够较好地接受“量子统计”有关概念。此外,我们将“量子态”和“量子统计法”两个初学者较难理解的概念做分散处理:分别在第1章引入“系综”概念之前和第6章巨正则系综概念之后讲授,既分散了难点,又使概念和运用衔接紧密,有利于及时消化。
系综理论是统计物理中最核心、最抽象的内容,也是统计物理教学的难点。国内流行体系将系综理论与常用统计分布及计算方法分离,安排在课程最后集中单独介绍。我们实践的体会是,这种处理将多个难点(三种系综及相应热力学关系)集中,增加了学生的理解困难;加之系综概念孤立于基本统计方法和应用之外,更显抽象枯燥。学生学后或觉不知所云,或难纵观全局,终致应用乏力。鉴于此,我们遵循由表及里、由浅入深、循序渐进、层层推进的认识规律,将系综的基本概念和三个系综分散在七章中穿插讲授、逐步深入,并及时运用理论对相应系统的性质加以讨论。这样做,可分散认知难点,并及时结合应用,实现宏观微观的交错,避免枯燥无味的困惑,既保证了热物理理论的系统性和完整性,又解决了系综理论为主线的教学困难。
问题之二:关于最概然法与麦-玻统计问题。最概然(可几)法与麦克斯韦-玻尔兹曼(麦-玻)统计法,是统计物理中应用较广的两个方法。采用系综理论为主线的教学体系,是否会影响这两种方法的学习和运用?这也是国内同仁关注的问题之一。在新体系课程改革和教材编写中,对这两部分内容均给予充分的注意。在第三章(封闭系)导出正则分布和相应热力学公式之后,用两种方法导出麦-玻分布:一是作为近独立子系的平均分布,由正则分布导出;二是从微正则系综出发,用最概然法导出。同时还由麦-玻分布给出热力学公式,并讨论几种分布之间的关系,给出分布的应用实例。实践表明,这种处理模式能全面深化学生对最概然法与麦-玻分布的理解,以致在应用中得心应手;还能强化对系综理论和统计物理体系的理解。
问题之三:热力学基本方法掌握问题。热力学作为一种可靠的宏观理论,从基本定律出发,通过严格的数学推演,系统地给出热力学函数之间的有机联系,将其用于实际问题。深入理解热力学定律的主要推论和热力学关系,熟悉它们的应用,掌握热力学演绎推理方法,是“热统”课程不可或缺的内容。“统计热力学”体系以微观理论为框架组织教学,是否会削弱学生在热力学理论的理解和应用方面的训练?对这个问题,国内同行关注有加,各见仁智,也是我们在课程改革中始终注意的问题。我们的处理模式是:打通热物理宏观与微观理论的壁垒,针对不同宏观条件,在相应章节给出各种系综分布,然后导出热力学公式,并插入相应的热力学理论训练内容,确保足够篇幅讨论平衡态的热力学性质。例如:在建立封闭系的正则系综理论后,插入“均匀物质热力学性质”一章,集中讲授麦克斯韦关系、基本热力学函数和关系、特性函数等概念,介绍热力学基本方法和对典型实例的应用。建立开放系的巨正则系综理论后,又集中介绍与之相关的相平衡、化学平衡等问题的宏观理论。事实上,热物理的微观和宏观理论相得益彰、不可分割。在学习运用统计物理研究宏观过程的规律时,势必也会反复地运用热力学函数、公式和相应方法,使学习者得到相应训练。此外,再提供一定数量的习题,辅之以课外练习,以达到“学而时习之”的效果。这样,新体系虽然大量削减纯粹“热力学”内容,并未削弱对热力学理论的理解和方法的训练,相反可使其得到加强和升华。
内蒙古大学“热统”教学组近20年的课程改革和教学实践证明,用“统计热力学”体系组织本科物理专业“热统”课教学是可行的。采用同样的体系和教材,适当取舍内容,在应用物理和电子科学技术专业组织2学分“统计物理”教学,亦取得一定的经验,其效果令人欣慰。毋庸置疑,笔者主张统计热力学体系,丝毫无意否定“热统分治”的传统教学体系。两种体系,各有千秋,互补互鉴。究竟采用何种体系组织教学,还应视培养目标、师资力量、学生状况等,因地制宜地选择。
参考文献:
[1] 梁希侠,班士良. 统计热力学[M]. 呼和浩特:内蒙古大学出版社,2000.
梁希侠,班士良. 统计热力学(第二版)[M]. 北京:科学出版社,2008.
[2] 梁希侠,班士良,宫箭,崔鑫. 统计热力学(第二版)学习辅导[M]. 北京:科学出版社,2010.
[3] 王竹溪. 热力学简程[M]. 北京:高等教育出版社,1964.
[4] 王竹溪. 统计物理学导论[M]. 北京:高等教育出版社,1965.
量子力学基本概念范文6
Mirco A.Mannucci The University of Queensland,Australia
Quantum Computing for
Computer Scientists
2008, 384pp.
Hardcover
ISBN 9780521879965
N.S.扬诺夫斯基等著
量子计算是计算机科学、数学和物理学的交叉学科。在跨学科研究领域中,量子计算开创了量子力学的许多出人意料的新方向,并拓展了人类的计算能力。本书直接引领读者进入量子计算领域的前沿,给出了量子计算中最新研究成果。该书从必要的预备知识出发,然后从计算机科学的角度来介绍量子计算,包括计算机体系结构、编程语言、理论计算机科学、密码学、信息论和硬件。
全书由11章组成。1.复数,给出了复数的基本概念、复数代数和复数几何;2.复向量空间,以最基本的例子Cn空间引入,介绍了复向量空间的定义、性质和例子,给出了向量空间的基和维数、内积和希尔伯特空间、特征值和特征向量、厄米特矩阵和酉矩阵、张量积的向量空间;3.从古典到量子的飞跃,主要内容有古典的确定性系统、概率性系统、量子系统、集成系统;4.基本量子理论,主要有量子态、可观测性、度量和集成量子系统;5.结构框架,主要包括比特和量子比特、古典门、可逆门和量子门;6.算法,包括Deutsch算法、Deutsch-Jozsa算法、Simon的周期算法、Grover搜索算法和Shor因子分解算法;7.程序设计,包括量子世界的程序设计、量子汇编程序设计、面向高级量子程序设计和先于量子计算机的量子计算;8.理论计算科学,包括确定和非确定计算、概率性计算和量子计算;9.密码学,包括古典密码学、量子密钥交换的三个协议(BB84协议、B92协议和EPR协议)、量子电子传输;10.信息论,主要内容有古典信息和Shannon熵值、量子信息和冯•诺依曼熵值、古典和量子数据压缩、错误更新码;11.硬件,主要包括量子硬件的目标和挑战、量子计算机的实现、离子捕集器、线性光学、NMR与超导体和量子器件的未来。最后给出了5个附录,附录A量子计算的历史,介绍了量子计算领域中的重要文献;附录B习题解答;附录C 使用MATLAB进行量子计算实验;附录D 了解量子最新进展的途径:量子计算的网站和文献;附录E选题报告。
本书适合计算机科学的本科学生和相关研究人员,也适合各级科研人员自学。
陈涛,硕士
(中国传媒大学理学院)
Chen Tao,Master