智慧农业工作原理范例6篇

前言:中文期刊网精心挑选了智慧农业工作原理范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

智慧农业工作原理

智慧农业工作原理范文1

关键词关键词:物联网;感知层;实践教学体系;课程群

DOIDOI:10.11907/rjdk.162176

中图分类号:G436文献标识码:A文章编号文章编号:16727800(2017)001019703

引言

物联网可分为感知层、网络层、数据处理层和应用层。感知层位于系统的最底层,完成对现实世界信息的采集与汇聚,是物联网系统的核心[1]。目前,大部分高校针对感知层模块开设的课程多、时间跨度大,学生在学习这些课程时,困难多、兴趣低、动手能力和设计能力差。为了改变这种教学现状,对物联网工程专业实践教学体系进行模块化分解,将实践教学体系分为:认知实践教学模块、程序设计与算法分析实践教学模块、感知层实践教学模块、网络层实践教学模块、数据处理层实践教学模块和应用层实践教学模块。根据各模块的教学目的,有针对性地开展实践教学,强化学生的知识综合运用能力、动手能力和设计能力。本文主要介绍感知层实践教学模块。

1感知层主要技术

感知层一般包括数据采集和数据短距离传输两部分。感知层首先通过传感器、RFID等设备采集外部世界的数据,然后通过ZigBee、WIFI、现场总线等技术将数据传输给网关设备。感知层主要技术包括:传感器技术、RFID技术、嵌入式技术、ZigBee技术等[2]。传感器是一种检测装置,通过敏感元件将检测的信息按照一定规律变换成电信号输出。RFID是一种自动识别技术,它利用射频信号通过空间电磁耦合实现无接触信息传递并通过所传递的信息识别物体。嵌入式技术是让物体具有“智慧”的一种关键技术,是将计算机直接嵌入到应用系统中,融合了计算机硬件技术、软件技术、微电子技术和通信技术等。ZigBee是一种短距离无线通信技术,具有功耗低、网络容量大、网络自组织能力强等特点[3],在物联网中发挥着重要作用。

2感知层实践教学目的及内容

感知层实践教学的目的是能够根据实际需要,设计出科学合理的数据采集系统。一个完整的数据采集系统一般分为数据采集节点和嵌入式网关。数据采集节点负责数据采集,一般由传感器、单片机和无线通信接口组成。嵌入式网关是数据采集网络与外部网络的桥梁,负责数据的汇聚、处理和远程通信。从学生学习角度来看,主要掌握硬件开发技术和数据采集技术。信阳师范学院针对感知层开设的课程有:电子线路、数字逻辑、计算机组成原理、微机原理与接口、嵌入式系统、信号系统、传感器技术、无线传感网络、数据采集技术、 射频识别技术、ZigBee技术等课程。依据课程间的相互关系和实践教学目的,该模块实践教学可以细分为硬件课程群和数据采集课程群。

3硬件课程群实践教学实施方案

该课程群包括电子线路、数字逻辑、计算机组成原理、微机原理与接口和嵌入式系统5门课程,主要使学生掌握计算机硬件系统的结构和工作原理,使学生具有计算机系统硬件开发能力和针对具体硬件进行软件开发的能力。从知识体系结构上来看,电子线路和数字逻辑是基础知识层,让学生系统学习各类半导体器件、门电路、组合逻辑电路、集成元器件的基本原理和使用方法,使学生具备设计基本的放大电路、脉冲数字电路和运用现代电子技术设计数字电路的能力。计算机组成原理和微机原理与接口是基本原理层,主要让学生掌握计算机的组成原理、体系架构、指令系统、编程方法和接口技术,其中计算机组成原理侧重各个部件工作原理,微机原理与接口侧重于各个部件的应用。嵌入式系统是应用层,主要让学生掌握C51单片机、ARM微控制器的工作原理及使用,能够根据实际需要,设计出硬件电路,并针对硬件进行软件开发[4]。在以往的教学中,教师只注重本门课程知识的讲解,忽视了各门课程间的相互联系,以致于学生在学习基础知识课程时,不知道该门课程到底有何用处,在学习基本原理课程时,觉得上课内容枯燥乏味,以致学生基础不扎实,等到上应用课程时,又觉困难重重,教师不得不复习以前的基础知识和基本原理,导致课堂效率低、教学质量不高。为了改变这种现状,将这些课程作为一个系统并划分知识点,重新修改各门课程的教学大纲和实验大纲,对相互联系、交叉、重迭的教学内容进行优化整理,实现了课程间的无缝衔接,形成了一套前后衔接合理、重点突出、层次分明的课程体系。实践教学即要体现本门课程的教学重点,又要体现出该门课程在硬件课程群中的作用。为了培养学生的创新能力,每门课还增加了设计型和综合型实验。硬件课程群实践教学如表1所示。

VGA接口验通过采用CPLD芯片EPM240T100进行Verilog设计使学生熟悉Verilog设计、掌握各种接口的特性,弥补传统实验中设计能力锻炼不足的缺点嵌入式

系统验证型嵌入式软件开发基础实验、I/O接口实验、串口通信实验、看门狗实验、I2C实验、Nand Flash实验采用实际硬件电路,熟悉和掌握以S3C2410为代表的ARM基本编程和实际功能验证使学生了解ARM体系结构和工作原理,提升编程能力,熟悉嵌入式系统的工作方式和特性综合型

设计型逻辑分析仪设计

数码相框设计通过FPGA芯片EP1C3T144初步掌握嵌入式系统的设计方法和实际项目经验通过数据采集、VGA显示、SD卡读写、图片解码、SDRAM控制等实际应用场景,使学生对电路设计和Verilog的掌握更加深入,涉及的嵌入式知识更加全面4数据采集课程群实践教学实施方案

该课程群包括传感器技术、信号与系统、RFID技术、ZigBee技术、无线传感网络技术、数据采集与处理技术等课程,主要让学生掌握传感器的基本原理、信号处理、数据采集技术、Zigbee技术等,使学生具有设计和开发数据采集系统的能力。由于数据采集技术主要介绍数据采集与处理系统的原理、设计方法、分析方法,使学生掌握基本的专业思想,为学生将来设计、开发、维护、使用数据采集系统打好基础,所以教学模式以课堂讲授为主,没有单独开设实验课。无线传感网络技术是以Zigbee技术、传感器技术和数据采集技术为基础,所以主要开设的是综合型设计型实验。数据采集课程群实践教学内容如表2所示。

综合型温度、压力、流速等传感器的选择和使用根据实际要求,选择合适的传感器,并设计相应的电路,并用单片机测量、显示不仅让学生掌握传感器的选择和方法,而且能够结合数据采集技术、单片机技术,提高学生综合知识运用能力Zigbee

技术设计型Zigbee无线纹机硬件实验根据实验目的和开发版硬件原理图,查阅无线单片机使用手册,编写程序并调试提高学生自学能力、针对硬件的编程能力和综合知识运用能力验证型Zigbee协议栈和组网实验结合Z-Stack程序流程图,读懂与实验内容相关的程序代码,并调试提高学生程序阅读能力和动手能力无线传感

器网络综合型

设计型针对智能家居、智慧农业、智慧仓储等领域,开发数据采集系统针对自选的应用领域,设计出数据采集系统的结构,并完成数据采集节点的软、硬件开发。提高学生的动手能力、综合知识运用能力和创新能力RFID技术验证型高频、超高频、低频数据标签的读写对高频、超高频、低频数据标签的进行读写、设置密码、更改密码等操作掌握RFID数据标签的基本操作设计型设计一个RFID读写器任选一个频段,设计一个RFID读卡器,给出详细的硬件、软件设计方案提高学生的动手能力和综合知识运用能力

5感知层综合实践教学

感知层综合实践教学模块是在感知层所有相关课程学习完后开展的综合性实践教学活动,一般在第7学期开展。学生根据自己兴趣和就业方向,选择不同的模块开展实训。学生可以选择在校外实习实训基地完成,也可以在校内实训室完成。如果选择在校外,学生在校外实习基地的兼职教师指导下完成项目实训任务,如果选择在校内,则由专业教师指导完成实训任务。信阳师范学院在感知层方面提供智能家居、智能农业、智能水利等项目供学生选择,学生也可以根据自己的兴趣自选项目。

6结语

物联网感知层涉及电子技术、嵌入式技术、传感器技术、短距离通信技术等,知识面广、难度大,因此,大部分院校开设了大量与感知层相关的课程。为了提高教学效果,提高学生的动手能力和创新能力,信阳师范学院针对物联网工程专业开展了模块化实践教学体系研究,针对该模块开展有针对性的实践教学活动,增加了大量综合型设计型实验教学内容,着重培养学生的设计能力和创新能力,取得了良好效果,值得借鉴。

参考文献:

[1]王晓晔,温显斌,肖迎元.物联网专业感知层课程群的建设[J].中国轻工教育,2015(3):9092.

[2]王晓喃,钟珊,严海英.物联网工程专业人才培养的思考与探讨[J].常熟理工学院学报:教育科学,2011(12):1618.

智慧农业工作原理范文2

农业物联网平台适应于多种农业生产场景(植物种植、禽畜饲养、水产养殖等),覆盖农业产业链的种养、检验、销售采购、物流运输和安全回溯等多个环节。农业物联网平台由传感器系统和云控制服务平台构成。农业物联网传感器系统是由大量的传感器节点构成监控网络,采集环境温湿度、光照强度、土壤墒情、空气状态等信息,以帮助管理人员准确地发现定位问题,这样农业将逐渐地从以人力为中心、依赖于孤立机械的生产模式转向以信息和软件为中心的生产模式,从而大量使用各种自动化、智能化、远程控制的生产设备。

【关键词】农业智能 物联网

基于UHF抗扰加密技术的农业物联网传感器系统以先进的正交频分复用(OFDM)和时分复用(TDM)通信同步综合技术为核心,采用新一代软件无线电平台架构,创造性的使用射频信号分集收发、发射器功率泄漏对消、跳频通信抗干扰、时隙轮询握手交互、基于密钥分散和3DES算法的通信数据加密等领先技术,具备高速并行计算处理能力,能够适用300-348 MHz、400-464 MHz和800-928MHz等ISM频段及短距装置(SRD)频带实时双向通信。农业智能物联网应具备如下功能:

1 发射器功率泄漏对消软件自适应算法,有效提升通信传输距离

设备的泄漏对消机制是指从射频发射器前向射频信号中耦合获得参考信号,并根据参考信号产生对消信号,用于利用所述对消信号对所述泄漏信号进行对消处理,经对消处理后的泄漏信号的幅度小于原泄漏信号的幅度,使得射频反向通信干扰信号大幅降低。

2 软件无线电技术,同步综合使用OFDM和TDM技术,抗干扰能力大幅增强

系统基于软件无线电技术的DSRC基带信号处理引擎,独创的信号纠错、还原、再生处理算法,先进的分集接收技术和解码算法,提升了对低质量弱信号的识别能力。

系统使用OFDM和TDM同步综合技术。在物理层,实现多个设备集(以无线网关为核心)处于不同频段,一旦发生通信碰撞,设备集将使用跳频通信算法自动选择新的频段,避免不同频段(多个设备集间)的通信干扰;在应用层,一个设备集是以无线网关为核心的星形拓扑结构,网关和各个采集设备使用基于时隙轮询的握手算法,分时同各个设备单独通信,避免同频段设备(设备集内)的通信干扰。

在相同通信频率和同一应用场景的情况下,针对多组通信距离,本系统设备通信成功率提高12.5%~75%。

3 通信数据使用3DES算法和密钥分散的软件加密机制,数据安全性显著提升

为了保证无线网关和采集器及控制器之间传输通道安全,系统设计了基于3DES加密算法和密钥分散的软件加密机制。3DES又称Triple DES,是DES加密算法的一种模式,它使用3条56位的密钥对数据进行三次加密。系统具备智能休眠和唤醒算法,实现性能和功耗的最佳平衡状态。

4 支持智能远程监控功能,对接云服务平台

完善的设备自检功能,多参数综合检测,故障快速定位及告警功能,方便工作人员及时掌握设备运行状态。支持智能化的远程监控技术,通过远程监视实现对设备系统的操作、升级、配置、查询、维护等操作。支持脚本化功能配置,灵活对接云服务控制平台。

智慧农业物联网系统是在与现有农业设施的机械、电气控制系统兼容的前提下,构建了一套功能完整、可裁剪、低成本农业生态信息远程监测控制物联网应用平台。该平台适应于多种农业生产场景(植物种植和禽畜养殖等),覆盖农业产业链的种养、销售采购、物流运输、安全回溯等多个环节。

从功能角度,农业生态信息智能化物联网应用系统由传感控制器网络系统和云服务控制中心构成。

传感控制器网络的核心部分是无线网关。该设备基于支持多天线超高频无线通信和有线通信模式,支持10M/100M/1000M以太网通信,支持WLAN/GSM/GPRS/3G无线通信。采集器和控制器可以使用有线或无线的方式连接到网关上,形成完整的农业现场传感器控制网络系统。

5 UHF无线通信技术

常用的无线通信包括3G/GPRS、蓝牙、WiFi、红外传输(IrDA)、ZigBee、SRD UHF等。这些通信方式各有特点,或基于传输速度、距离、耗电量等的特殊要求,或着眼于功能的扩展性,或符合某些单一应用的特别要求,或建立竞争技术的差异化等,相关技术比较参见表1-1。

6 正交频分复用技术OFDM原理

正交频分复用技术OFDM是多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道间相互干扰ISI。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。

7 跳频通信技术原理

跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。

近50年来,中国农业走过了一条高投入、高产出、高速度和高资源环境代价的道路。目前,我国农业水平和以生产效率高、经济效益好、技术密集与可持续发展等为主要标志的现代农业相比,存在较大的差距。2013年4月,国家农业部余欣荣部长视察天津农业工作时曾提出:“党的十提出了‘四化同步’发展战略,其中工业化是引领,城镇化是动力,农业现代化是基础,信息化是灵魂。”

智慧农业工作原理范文3

【关键词】初中历史;历史图片;学习兴趣

在传统的初中历史课堂教学当中,很多教师对于历史图片是不够重视的。他们在课堂教学当中往往只注重文字的说明,却忽略了历史图片的重要作用。这点对于有效激发学生的历史学习兴趣,提高课堂教学质量方面是非常不利的。作为一名初中历史教师,我认为在课堂教学中应该充分的借助历史图片的手段,不断提高初中历史课堂教学的有效性。那么,究竟如何有效运用历史图片来辅助初中历史课堂教学呢?结合自身的教学实践,下面我谈谈自己的几点看法。

一、运用历史图片化解教学重难点问题

初中历史教材中有很多重难点问题,这些问题如果依靠教师单纯的讲述学生是很难把握和理解的。这样一来,不仅耗费了大量的课堂教学时间,取得了效果也往往不尽人意。为了有效突破初中历史课堂教学中的重难点问题,我尝试运用图片来辅助教学。

例如,在执教《开运河 创科举》一课的时候,我说到隋朝运河的规模和分布,很多同学都无法理解。这点让我非常头疼。下课之后,我回去思索了很久,决定把《隋朝大运河》的地图搬到课堂教学中来,在第二课时教学的时候,我让同学们对这幅地图进行认真的观察,掌握隋朝大运河的中心和南北起止点在什么地方?大运河共分为几段?沟通了哪些水系等。经过我的指导,再结合地图,同学们很快掌握了隋朝运河的规模和分布。比我苦口婆心的讲述效果好了很多。看完这个地图之后,很多同学都感慨隋朝大运河工程的浩大,对隋朝统治者的施政有了一定的了解。

这里需要注意的是:运用历史图片化解教学重难点问题需要教师提前预设,把可能出现的教学状况早早的预设出来。提前准备好历史图片。这样在教学中才不会出现上述的尴尬场面。

二、运用历史图片加深学生对知识的理解

为了加深初中生对历史知识的理解,我也经常结合一些历史图片展开教学。这样的教学手段由于充分利用了历史图片,可以打破传统的枯燥的说教的教学方式,让初中生结合图片加深对知识的理解和把握。

例如,在执教《第一次世界大战》一课,说道:第一次世界大战爆发的根本原因的时候,我并没有直接进入正题,而是出示了一幅《德国向英国提出挑战》的漫画。如果直接观察这幅漫画,学生是很难理解第一次世界大战爆发的原因的。于是结合这幅漫画,我对图片进行了深入的解读:“经过第二次工业革命之后,德国的国家实力迅速的得到了提升,经济实力和军事实力都空前提高。当时的德国政府不满足于国家所占领的殖民地数量,于是向扩张自己的殖民地。而当时拥有殖民地最多的国家——英国,则成了德国的眼中钉、肉中刺,就埋下了德英之间矛盾的种子。这也就是第一次世界大战爆发的根本原因。”听到我这样说,同学们再看看漫画,会意的点点头。

为了有效加深初中生对知识的理解,结合图片辅助教学的确是一种有效的手段。在初中历史教材中的很多知识点都可以充分的结合历史图片进行教学。

三、运用历史图片让学生体会到历史存在

初中历史教材中的很多内容都是以文字的形式所呈现的。文字的说明虽然具有一定的说服力,但是如果再配以历史图片的应用,那么则可以让学生更加直观的体会到历史的存在,激发初中生学习历史的兴趣。

例如,在执教《开元盛世》一课的时候,我滔滔不绝的向学生解说唐朝的时候农业是如何如何的发达,如此的卖力本来以为可以取得理想的教学效果,但是在学生的眼中我看到的却是质疑和不信。看到此种情况,我心中难免失落,幸亏我还准备了一手:出示了一个《筒车》的图片。图片展出之后,同学们的眼前一亮,注意力马上被这幅图片给吸引了过来。我说道:“这是一个唐朝时期筒车的图片,请大家从外形与结构方面对这个筒车进行认真的观察,然后根据你们的观察向大家说明这部筒车的构造特点。”任务布置下去之后,同学们显的非常兴奋,认真的对这个筒车图片观察起来。不一会儿就有同学站起来说道:“这个筒车是竹木立轮结构的。”有同学说道:“筒车的中间有一个横轴,立轮可以在上面自由转动。”还有细心的同学观察到这个筒车的立轮周围还有很多斜装的小竹筒,并且这些竹筒的口是上斜的。听到同学们如此回答,我欣慰的说道:“你们说的都很对,那么谁能告诉我这部筒车究竟是如何工作的呢?”这个问题又一次引起了同学们的探究欲望,经过集体的智慧,最终大家终于弄清了筒车的工作原理,不禁感慨古人的智慧。最终,我总结道:“筒车是唐朝农业发达的典型表现,这在当时世界上是非常先进的农业工具。接下来让我们接着对课文进行学习。”

在上述教学片段中,我通过《筒车》图片的展示,不仅让同学们了解了唐朝农业的发达,更激起了他们的学习兴趣。可谓是一举两得。

四、结语

总而言之,运用历史图片来辅助初中历史课堂教学是一种非常有效的教学方法,可以有效的激发初中生的历史学习兴趣。本文的写作希望可以起到抛砖引玉的效果,引导更多的初中历史教师参与到该问题的研究当中,充分利用历史图片来不断提高我们的课堂教学质量。

【参考文献】

[1]史春静;中学历史教学与学生创新能力培养[D];东北师范大学;2006年

智慧农业工作原理范文4

关键词: ZigBee;温湿度;无线采集;CC2530;DHT11

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2016)14-0229-03

Design of Indoor Wireless Temperature and Humidity Acquisition System Based on ZigBee

YANG Huai-de

(The Computer Engineering Department of Dongguan Polytechnic,Dongguan 523808, China)

Abstract:Aiming at the problems of complicated wiring, high construction cost and low measurement precision of traditional temperature and humidity acquisition system, this paper designs a wireless temperature and humidity acquisition system based on ZigBee. The program selects DHT11 chip to collect temperature and humidity information, select CC2530 to analyze the collected information, and realize the wireless monitoring of temperature and humidity information. The experimental results show that the system can realize the real-time acquisition and wireless transmission of temperature and humidity information, and has the advantages of flexibility, high accuracy, real-time and so on.。

Key words:ZigBee; temperature and humidity; wireless acquisition; CC2530; DHT11

随着物联网技术的发展,温湿度信息采集系统在安防监控、智能家居、智慧农业等领域的应用越来越广泛:人们可以根据获取到的温度信息来控制空调的风速,还可以根据获取到的湿度信息来调节除湿设备的工作参数[1-2]。传统方法大多采用有线连接方式,布线工作量大、维护困难,系统的成本高、灵活性差[3]。针对这一问题,本文设计了一种基于ZigBee技术的无线温湿度采集系统,该系统具有可快速部署、无人值守、功耗小、成本低等优点,十分适用于构建多点温湿度监测。

1 系统总体设计

1.1设计要求

在无线温湿度采集系统中, 对系统的功耗、 精确度、 实时性有较高要求。具体设计要求如下:

1)能对节点所处位置的温湿度进行采集,温度的检测范围为-50℃~50℃,误差允许范围为;±2℃,湿度测量范围为20%~90%RH,误差允许范围为±25RH[4]。

2)能通过无线传输的方式将节点采集到的温湿度信息传送到主控端。

3)当检测到数据超过阈值时,能进行自动报警。

4)能将采集到的温湿度数据通过LCD屏幕进行显示。

1.2设计方案

利用模块化设计思想, 将系统分为温湿度采集、 传输、 数据处理三个模块。系统的工作原理是: 温湿度采集模块对环境温度、湿度进行实时采集, 然后把采集到的温度、湿度信息交由传输模块组装成帧进行无线传输, 最后主控端对接收到的数据进行分析处理。其网络结构如图1所示,监测节点与主控端通过ZIGBEE无线网络进行数据通信。

2 系统硬件设计

为了满足系统设计要求,本系统选用CC2530作为本设计的主芯片。CC2530 是用于2.4-GHz IEEE 802.15.4、ZigBee 和RF4CE 应用的一个真正的片上系统(SoC)解决方案。它能够以非常低的总的材料成本建立强大的网络节点。CC2530 结合了领先的RF 收发器的优良性能,业界标准的增强型8051 CPU,系统内可编程闪存,8-KB RAM 和许多其他强大的功能[5-6]。CC2530 有四种不同的闪存版本:CC2530F32/64/128/256,分别具有32/64/128/256KB 的闪存。CC2530 具有不同的运行模式,使得它尤其适应超低功耗要求的系统[7]。

2.1温湿度采集模块硬件设计

温湿度采集模块采用DHT11作为核心芯片,DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器,包括一个电阻式感湿元件和一个NTC测温元件。本系统将C2530的P0_7用来连接DHT11的信号线PIN2进行数据传输,其电路设计如图2所示。

2.2 ZigBee无线传输模块硬件设计

无线传输模块采用CC2530内部集成的RF模块作为核心模块,实现无线组网、数据包寻找终端进行数据交换的功能。CC2530芯片具有地址配对的功能,只需要在写入程序时,设置配对终端的地址即可发送数据、接收收据、处理数据为主,实现信息的A/D转换及收发,因此这部分的主要工作是射频电路的设计。无线RF的电路连接与CC2530芯片有对应的引脚接口:引脚25对应RF_N,引脚26对应RF_P,其电路设计如图3所示。

2.3 温湿度信息显示模块硬件设计

温湿度信息显示模块的核心是显示屏,本系统采用ST7735。ST7735是一款单芯片控制器/驱动器262K色,图形型TFT-LCD。该芯片接受串行接口(SPI),8位/ 9位/ 16位/ 18位并行接口。显示数据可以存储在片上显示数据为132 x 162×18位RAM.它可以执行显示数据RAM读/写操作,没有外部操作时钟以使功耗最小。ST7735与CC2530之间的电路连接设计如图4所示。

3 系统软件设计

系统采用IAR集成开发环境进行开发,软件设计尽量采用模块化、标准化的设计思想、分段编程、分段调试;各个功能模块相互独立,尽量使它们松散耦合,便于将来进行维护和功能增强。总之,在整个系统的软件设计中,充分发挥了硬件的特性,控制流程简洁精确,反应灵敏,优先级控制使用得当,并且在软件控制中充分发挥了中断和定时功能,使整个系统反应更加及时灵敏。

系统软件主要由主框架模块、DHT11模块、LCD显示模块三个部分组成。主框架模块使用TI的Z-STACK模型,运行于OSAL操作系统之上。 OSAL (Operating System Abstraction Layer)是一种支持多任务运行的系统资源分配机制,实现了类似操作系统的某些功能,但并不能称之为真正意义上的操作系统。其工作原理是基于事件驱动,当有一个事件发生的时候,OSAL负责将此事件分配给能够处理此事件的任务,然后此任务判断事件的类型,调用相应的事件处理程序进行处理。为此,需要注册新的温湿度采集的任务,并完成该任务的初始化函数和事件处理函数的编写,具体流程如图5所示。App_Send_P2P_MSG函数中通过DHT11模块提供的借口获取温湿度信息,利用Z-STACK协议栈的无线发送接口向主控端发送获取到的温湿度信息。App_MSBCB函数利用Z-STACK协议栈的无线接收接口对收到的温湿度信息进行处理,并调用LCD显示模块进行显示。

DHT11模块提供温湿度信息采集的接口,使得应用程序可以方便的获取节点所处环境的温湿度信息。DHT11信号线工作电压时序如图6所示。总线空闲状态为高电平,主机把总线拉低等待DHT11响应,主机把总线拉低且必须维持18毫秒以上,保证DHT11能检测到起始信号。DHT11接收到主机的开始信号后,等待主机开始信号结束,然后发送80us低电平响应信号。主机发送开始信号结束后,延时等待20-40us后, 读取DHT11的响应信号,主机发送开始信号后,可以切换到输入模式,或者输出高电平均可, 总线由上拉电阻拉高。

LCD显示模块提供写LCD的接口,使得应用程序可以输出信息到LCD屏,方便人机交互。本系统将CC2530的UART1设置成SPI工作模式,从而使用SPI传输协议来和LCD进行通信。本系统采用的显示模块是ST7735,在正常使用之前需要按照其时序要求对其进行正确的初始化。LCD模块提供中文写接口_和英文写接口,支持中文和英文显示。 英文写LCD接口的伪代码如下所示:

LCD_write_EN_string(unsigned char X,unsigned char Y,uint8 s)

{ while (*s)

{写一个字符

s++;

if(超过每行最大显示字符数){

return;}}

return;}

中文写LCD接口的流程与英文写LCD接口类似,不同之处是,中文写流程中需要去字模库中查找字模,如果能搜索到对应的字模就可以正常显示该字符,否则显示空白。

3 结论

本文着重研究了基于ZigBee的无线温湿度采集系统的设计,给出了系统的设计框架图,并详细讨论了系统的硬件和软件实现方案,本文设计的温湿度采集系统适用于大多数无线温湿度监测系统的需求,对后续功能的完善和开发具有很好参考价值。

参考文献:

[1] 李灏,杨海波. 基于ARM的物联网温湿度采集节点设计与实现[J].现代电子技术,2014(14):132-134.

[2] 赵懿琨,李长友,卿艳梅,等. 基于μC/OS-Ⅱ的粮仓多点温湿度无线采集系统的设计与测试[J].华南农业大学学报, 2015(2):95-99.

[3] 董静薇,李会乐,郭艳雯,等.基于Zigbee的粮仓温湿度监测系统设计[J].哈尔滨理工大学学报,2014,19(2):120-124.

[4] 冯禹,孔祥金,林语,等.基于CC2530的无线温度采集系统设计[J].电子技术,2013(7).

[5] 廖建尚.基于CC2530和ZigBee的智能农业温湿度采集系统设计[J].物联网技术,2015,5(8):25-29.

智慧农业工作原理范文5

关键词:物联网;导论;层次结构;教学内容

作者简介:吴治海(1981-),男,安徽亳州人,江南大学物联网工程学院,副教授。(江苏 无锡 214122)

基金项目:本文系江南大学本科教育教学改革研究项目“物联网新专业实验实践性环节设置策略研究”(项目编号:JGB2011057)、“物联网新专业人才培养与产业结合模式研究”(项目编号:JGB2011053)的研究成果。

中图分类号:G642.421 文献标识码:A 文章编号:1007-0079(2013)31-0070-02

最近几年,物联网(Internet of Things,IOT)概念的提出及其技术的飞速发展引起了世界各国的广泛关注,被称为继计算机与互联网之后世界信息产业发展的第三次浪潮。为了能在这一技术领域占据重要位置,许多国家提出了相应的物联网发展战略。如美国的“智慧地球”、日本的“u-Japan”、韩国的“u-Korea”、欧盟的“欧盟物联网行动计划”、中国的“感知中国”等。发展物联网技术的基础与核心是培养物联网方向的专业人才,为此,国内各大高校相继开设了物联网工程专业并开始招收第一届本科生,如哈尔滨工业大学、华中科技大学、西北工业大学、北京科技大学、江南大学、南京邮电大学等。然而,物联网工程的新专业属性,决定其人才培养方案的制订、课程的设置以及教学方法的实施等,目前仍处于“摸着石头过河”的探索性阶段。但是,国内目前已开设物联网工程专业的大部分高校,都将“物联网技术导论”作为本专业的第一门课程,旨在向学生整体介绍物联网的概念、内涵、关键技术、发展现状以及主要应用等,以激发学生的学习兴趣,并使学生树立学习的信心。因此,“物联网技术导论”课程的讲授成功与否关系到物联网人才培养的质量,进而影响到中国物联网技术发展的进程。

一、物联网的概念及内在层次结构

目前,关于物联网的定义有多种,但是被大多数学者认同的一个定义为:物联网,即通过射频识别、红外感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息的交换与通讯,以实现智能化的识别、定位、跟踪、监控和管理的一种网络。简而言之,物联网就是“物物相连的互联网”。使用通俗的语言,可以这样表述物联网的内涵:使用传感器获取物理对象的信息、使用网络传输信息、使用计算机处理信息、使用控制器设计反馈控制策略、利用执行器对物理对象进行控制与管理等各类操作。由此可以绘制出物联网中的信息流(如图1所示)。因此,从控制学科的角度来说,物联网是一个典型的网络化控制系统(Networked Control Systems,NCS)。从物联网的定义以及图1中展示的物联网中的信息流向,可以概括出物联网的层次结构:感知层、网络层、处理层与控制层(如图2所示)。其每层的功能分别为信息的获取、信息的传输、信息的处理与信息的反馈。这四层结构的划分是对传统的物联网三层结构,即感知层、网络层与应用层的进一步细分,本质上是一致的。从这四层结构的划分不难看出,物联网技术涉及信息技术领域的四大一级学科,即电子科学与技术、信息与通信工程、计算机科学与技术以及控制科学与工程。因此物联网是一个多学科交叉的技术,这使得物联网的内容极为丰富。但另一方面,这种交叉性也增加了“物联网技术导论”课程的讲课难度,对教师的专业素质提出了更高的要求。因此,如何选择讲课的重点,既让学生感受到物联网技术的重要性,激发他们的学习兴趣,又使他们面对繁杂的内容而不畏惧,树立学好物联网技术的信心,具有重要的意义。

二、“物联网技术导论” 教学内容选择

目前国内已出版发行的“物联网技术导论”教材有十多本。[1-12]通过浏览这些教材的目录,不难发现物联网内容极其庞杂,主要涉及传感器技术、无线传感器网络、射频识别技术、短距离无线通信技术、远程通信技术、无线单片机、嵌入式系统、云计算技术、机器学习、模式识别、数据挖掘、智能信息处理技术、物联网控制技术、物联网安全技术、物联网技术标准、物联网应用等。依据物联网的四层结构,可以将上述内容进行如下层次归类:感知层包括传感器技术、无线传感器网络与射频识别技术;网络层包括短距离无线通信技术与远程通信技术;处理层包括云计算技术、机器学习、模式识别与数据挖掘;控制层包括物联网控制技术;物联网安全技术、物联网技术标准与物联网应用横跨物联网的四层结构。但另一方面,作为一门导论课,一般来说讲课时间会限制在20课时以内。试图在较短的时间内把上述内容完全彻底讲一遍是不现实的,因此需要选择重点内容进行讲解,目标是让学生对物联网的整体架构、关键技术有一个整体上的清晰认识。那么如何选择主要内容呢?以江南大学已经实施两年的“物联网技术导论”课程教学方案为例,结合物联网的四层结构,来分配每讲的主要内容。目前江南大学“物联网技术导论”课为16课时,除去最后一次考核占用的2课时,还有7讲14课时。下面,结合物联网的四层内在结构,详细叙述每讲的主要内容。

第一讲——绪论。介绍物联网的基本定义、内在结构、研究现状、发展动态、主要应用领域。重点讲解物联网的基本定义与内在结构,讲解时应播放一段物联网应用案例的视频,增加学生对物联网内在结构的整体认识。

第二讲——感知层技术一。介绍智能传感器技术,包括传感器技术、微控制器接口、无线单片机、嵌入式系统。重点介绍传感器工作原理、比较CC2430和CC2530功能差异、嵌入式智能传感器的一般结构、标准接口与串行接口。

第三讲——感知层技术二。介绍无线传感器网络。由于无线传感器网络具备了一个简单的物联网系统的架构,对本讲内容的讲解可以大大提高学生对物联网内在结构的认识。主要讲授无线传感器网络的定义、体系结构、特征、协议栈结构、主要支撑技术,如定位技术、时间同步、数据融合、安全技术等。可以结合无线传感器网络在智能农业当中的应用来讲解本部分内容。

第四讲——感知层技术三。介绍射频识别技术。由于射频识别技术也具备了一个简单的物联网系统的架构,所以对本章内容的讲解可以进一步增强学生对物联网内在结构的认识。主要讲解射频识别的组成、分类、工作原理、技术标准、与传统自动识别技术的区别以及安全问题。可以结合射频识别技术在门禁系统当中的应用来讲解本部分内容。

第五讲——网络层技术。介绍短距离无线通信技术和远程通信技术。重点介绍Zigbee技术、WiFi技术、蓝牙技术、超宽带技术和3G无线远程通信技术,简单介绍多路访问技术和多路复用技术。应结合具体的应用来讲解Zigbee技术、WiFi技术和蓝牙技术。

第六讲——处理层技术。主要介绍云计算技术、机器学习、模式识别与数据挖掘。重点介绍它们的含义、基本结构和主要方法。在介绍基本结构时应画出结构方图,使其技术原理清晰明了。

第七讲——控制层技术。重点介绍控制的思想,即反馈。可以结合具体的例子来讲解,如倒立摆的控制,让学生主观感受反馈的作用,但要避免复杂的数学公式。也可以适当介绍控制学科的前言问题,如网络化控制系统与多智能体系统,让学生深刻感受到控制技术在物联网技术当中的地位。

以上七讲基本包含了物联网技术的主要内容。通过这七讲的学习,学生基本上对物联网架构和关键技术有了一个整体上的认识。由于不同高校开设物联网工程专业的院系有所不同,教师的专业背景也有所不同。但是,确保学生正确认识物联网技术的一个基本要求是教师向学生完整地介绍物联网的四层结构。任何一层的缺失都将导致学生对物联网概念和内涵认识的不准确,影响其以后的学习效果。

三、结语

本文在阐述物联网内在层次结构的基础上,结合“物联网技术导论”课程课时短、内容多的特点,详细介绍了如何在有限的课时内分配主要的物联网技术的知识点。由于“物联网技术导论”是一门新的课程,目前还没有成熟的课程教学方案,因此,本专业的高校教师要善于结合自己的专业知识和教学经验,编写符合中国国情的“物联网技术导论”教材,探寻一条符合中国学生的“物联网技术导论”课程教学方法,进而培养出基础扎实、技术熟练的物联网专业人才,推动“感知中国”战略的进程。

参考文献:

[1]刘云浩.物联网导论[M].北京:科学出版社,2010.

[2]曾园园.物联网导论[M].北京:中国铁道出版社,2012.

[3]张凯,张雯婷.物联网导论[M].北京:清华大学版社,2012.

[4]张翼英,杨巨成,李晓卉.物联网导论[M].北京:中国水利水电出版社,2012.

[5]张飞舟.物联网技术导论[M].北京:电子工业出版社,2010.

[6]王汝传,孙力娟.物联网技术导论[M].北京:清华大学出版社,

2011.

[7]桂小林.物联网技术导论[M].北京:清华大学出版社,2012.

[8]黄东军.物联网技术导论[M].北京:电子工业出版社,2012.

[9]王志良,石志国.物联网工程导论[M].西安:西安电子科技大学出版社,2011.

[10]吴功宜,吴英.物联网工程导论[M].北京:机械工业出版社,

2012.

[11]暴建民.物联网技术与应用导论[M].北京:人民邮电出版社,

智慧农业工作原理范文6

关键词:单片机;温度;湿度;光照度

中图分类号:TP274 文献标识码:A

1 引言(Introduction)

温室大棚是设备农业的一种形式,国产温室每年都在以新增100―150万公顷的面积快速地发展[1]。温湿度和光照度是农业温室生产中非常关键的测量参数,它们的准确、及时测量将会对农业生产和研究带来非常大的帮助。温室环境测量技术运用计算机辅助系统测量温室中的温度、CO2浓度等环境因子,以达到对温室内环境的测控要求[2]。智能温室的大力推广,对于我们运用科学技术服务“三农”、建设美丽中国具有非常重要的意义。

针对我国的现代化温室智能控制水平相对落后的现状,结合某公司的智慧农业项目,我们采用单片机技术和虚拟仪器技术设计了该温室环境监测系统。由于本系统遵循了操作简便、较高可靠性、便于维护和性价比高的设计原则,因此对于实际应用到工农业环境因子监测方面也会有优异的效果。

2 总体方案设计(The overall program design)

本系统的下位机是由STC89C52RC单片机系统为控制中心,加上DHT11、DS18B20、BH1750三个传感器模块以及按键控制数码管显示和声光报警等模块组成的;上位机是由美国国家仪器(NI)公司的软件LabVIEW[3]为基础开发的一个用户图形接口。要求达到的技术指标:测温范围:0―50℃;测湿范围:20%―90%RH;测光范围:1―65535lx。

本系统的工作原理是:上电后,STC89C52RC单片机首先完成初始化工作。然后,系统自动采集温湿度、光照度传感器数据,最后通过单片机的串行口和RS-232总线通信协议将采集的数据传送到上位机显示、处理,上位机对报警参数进行设计并控制相应声光报警电路报警,同时通过三个不同按键控制相应数码管显示。整个系统采用单总线技术和I2C总线控制技术,单片机采用C语言编程,PC机采用G语言编程。

3 温室环境测量系统的硬件电路设计(The

hardware circuit design of greenhouse

environment monitoring system)

3.1 环境因子采集电路的设计

传感器作为温室设备准确控制的首要条件,它的正确选取是进行自动控制的关键环节。我们根据本文要求的技术指标,选择具有长期稳定性且性价比的数字式传感器。

(1)温度采集电路的设计

大部分温室环境控制设备如供热设备、遮阳布等都与温度控制相关,因此,温度测量是温室环境控制的关键。本文选择达拉斯公司生产的DS18B20单总线数字温度传感器[4]。DS18B20数字温度传感器体积小、精度高、使用寿命长,适用于本文需要高可靠性的系统。单片机和DS18B20之间仅需一条连接线(加上地线),可使用单片机的一般I/O口P2.0。它的测温范围满足本文0―50℃的测温需求。

(2)湿度采集电路的设计

为了使湿度传感器与单片机的通信更加方便,也为了增强系统的抗干扰性能,我们在此选用DHT11数字温湿度传感器[5]测量本系统的湿度数据。DHT11设置了校准参数,所以测得的数据十分可靠。它采用单线制串行接口,这样使得电路的设计更加简单,并且它的体积超小、功耗极低。DHT11可测湿范围为20%―90%RH,测湿精度为±5%RH,满足本文测湿要求。

(3)光照度采集电路的设计

在合适的条件下增加光照度,能够增强高纬度缺光地区温室内作物的光合作用,提高光照度不足的地区农作物的产量。温室中主要使用光照度传感器检测棚内的光照度,然后采取适当的措施增加或减少光照度。本文采用日本罗姆半导体公司生产的BH1750光强度传感器。BH1750是一种基于I2C的数字型光强度传感器集成电路[6]。它能以较高的探测分辨率分辨很大的光强度变化区间(1lx-65535lx),并且接口电路非常简单,BH1750只需将SCL和SDA分别接单片机的P2.2和P2.3即可。如果系统中有多片BH1750相级联,则每两片IC可以并用这两个I/O端口,然后其中一片IC的ADDR接低电平,另一片的接高电平即可[7]。

3.2 单片机的设计

本系统采用的STC89C52RC单片机是宏晶科技推出的新一代高速、低功耗、超强抗干扰的增强型8051单片机[8],它的时钟晶振电路用于产生时钟信号,来控制单片机内部的各种微操作,本文我们设计晶振为11.0592MHz。复位对单片机来说,是准备工作,此时程序还没开始执行。STC89C52RC单片机及其连接的晶振电路和复位电路如图1所示。

3.3 其他电路的设计

(1)按键控制电路

单片机组成的各种硬件电路中,按键是最常见的人机交互输入方式。本文通过三个触发式按键一对一的连接单片机的三个输入口,实现对温湿度和光照度数码管亮灭一对一的控制。具体的控制过程我们需要通过用C语言编程来实现。

(2)MAX7219数码管驱动显示电路

MAX7219是一种集成化的共阴极显示驱动器,它连接单片机和7段共阴极数码管显示。MAX7219可以通过编写控制码对数码管进行亮度控制。另外,本文我们选用三个四位一体的共阴极数码管[9]来显示实时采集到的温室内的亮度和温湿度。

(3)声光报警电路

声光报警电路模块由蜂鸣器报警电路和发光二极管报警电路两部分构成。当室内的温湿度和光照度传感器测量的数据在正常范围内时,发光二极管处在熄灭的状态,蜂鸣器也不会发出响声;但是当温湿度和光照度不在设定值范围时,三者对应的发光二极管会被点亮,蜂鸣器也会发出嘀嘀的声响,以此来提醒用户采取相关措施。

4 系统的软件设计(The system software design)

4.1 主程序流程图和串口处理流程图

主程序是系统运行的总体框架[10],它规定了单片机按照怎样的操作步骤进行有序运转。串口处理程序表明上位机与单片机之间约定好的通信方式,通过此程序可以实现上下位机之间数据的互联互通。如图2所示为本系统的主程序流程图和串口处理流程图。

communication

4.2 测量系统程序设计

DS18B20通过单总线协议跟单片机进行数据传递。测温子程序运行时,首先初始化DS18B20,此时显示温度为+85℃,然后对单片机进行写数据操作,在进行温度转换后将温度数据读出来,最后通过按键控制在相应数码管上实时显示温度数据。

单片机通过单总线协议对DHT11进行读写。测湿程序开始后,先延时180ms,然后将总线拉高40us,主机设为输入模式等待从机响应。当从机变为低电平时,完成数据的接收、检验和处理,然后结束子程序。

BH1750可以通过I2C总线协议跟单片机进行数据通信。本文设定BH1750工作在连续高分辨率模式,测量开始后,先对BH1750初始化,然后延时180ms,接着连续读取数据并进行处理。程序的执行严格按照读写时序进行。

4.3 上位机程序设计

(1)数据采集模块

LabVIEW通过VISA串口驱动程序与单片机进行通信。将串口设置成符合系统要求的参数,为了界面的布局将串口通信部分隐藏。系统的通信模式为上位机为主,下位机为从。报警限设置用于设置温湿亮度的上下门限值,上位机有三个报警控件,默认为绿色,报警时显示红色。当从串口接收的数值超过设定的报警门限值时,上位机向单片机发送数据,启动报警。每路均设有报警指示灯,用来提醒系统管理者注意。数据显示存储用于提取从串口传输的数据,并以文本和曲线图的形式显示。图3为上位机采集图。

(2)数据分析和管理

这两个模块主要应用到是LabVIEW中数据工具包,利用SQL实现了与数据库Access的融合,能完成采集数据的存储、查询、删除和分析。数据分析模块用于对选择的日期进行分析计算,得出最大值、最小值、均值和超限次数。数据管理用于查询数据库中的表格:设定的参数、温湿度和光照度数值,对这些表格进行查询、删除或导出。

5 结论(Conclusion)

经实验验证,基于STC89C52RC单片机的温室环境多功能测量系统测量精度高,测量偏差在要求范围内,系统运行稳定可靠,通过串口协议实现上下位机间的通信,再加上上下位机软件编程能够实现温室内的温湿度、光照度情况的实时就地监控和网络监测和管理。将此系统应用于现代温室大棚中,对作物的科学生产具有很好的使用价值,并且提高了农业技术人员的现代化管理水平,具有良好的推广价值。

参考文献(References)

[1] 方玉鑫.基于单片机的温湿度控制系统的研究与应用[D].哈

尔滨工程大学硕士学位论文,2012.

[2] 苏全义,等.基于PIC单片机的智能温室环境控制系统[J].农机

化研究,2009(12):186-188.

[3] 陈树学,刘萱.LabVIEW宝典[M].北京:电子工业出版社,2012.

[4] DS18B20中英文资料[Z].广州奥松电子有限公司,2009.

[5] DHT11数据手册[Z].广州奥松电子有限公司,2009.

[6] BH1750中文数据手册[Z].罗姆半导体有限公司,2010.

[7] 王建,毛腾飞,陈英革.基于BH1750芯片的测光系统设计与实

现[J].常熟理工学院学报(自然科学),2011(2):117-120.

[8] STC89C52RC单片机用户手册[Z].深圳宏晶科技有限公司,

2013.

[9] 郭天祥.新概念51单片机C语言教程――入门、提高、开发

[M].北京:电子工业出版社,2009.

[10] 李星沛.基于Web的温室远程监控的设计[J].微型机与应用,

2013(19):4-6.

作者简介: