相对论和量子力学的关系范例6篇

前言:中文期刊网精心挑选了相对论和量子力学的关系范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

相对论和量子力学的关系

相对论和量子力学的关系范文1

关键词:科学史;近代物理;教学改革;高等教育

中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2014)50-0072-03

近代物理是高等学府物理类、化学类和电子类学科的一门必修课,通常放在讲授完大学物理之后。大学物理的内容主要是理论力学、电动力学、热力学和统计物理。近代物理的内容主要是相对论量子力学。由于相对论和量子力学离我们的日常生活经验比较远,所以学起来比较晦涩难懂。本文介绍了笔者如何通过讲授近代物理知识和对应的近代物理科学史相接合,来提高同学们对近代物理的理解和兴趣。

一、近代物理科学史简介

近代物理的科学史是一部十分生动活泼的历史,时间跨度大概是从1900年到现代。这段时间可以说是十分不平凡和波澜壮阔的一百多年。这期间发生了人类历史上仅有的二次世界大战,其中涌现的具有极高才华和贡献的科学家数量差不多抵得上人类历史上前五千年的科学家数量总合。而人物传记作家也多对他们的人生经历极为感兴趣,出了很多关于他们的传记[1-3]。另外这些近代物理学家们很多本身也颇博学多才,具有良好的文学才能和修养,因此很多人他们自己也出自传。这些传记和自传都能给《近代物理》课堂上的科学史教学提供丰富的素材和参考。相对论和量子力学的理论和公式虽然比较高深难懂,但是它们解释的现象由于跟人们的日常经验相悖,所以还是会引起人们广泛的兴趣。比如时间和空间是不可分的,物体的动量和时间不能同时精确测量,光速是宇宙中最快的速度,这些一般人凭经验的确很难理解。进而人们也会对提出和发现这些理论的科学家们(如爱因斯坦)感兴趣。图1为作者按照时间顺序出场依次在课堂上介绍的量子力学史上各个重要的历史人物。这些科学人物大多数彼此交往比较密切,在学术上好像切磋和影响,进而也加速了思想火花的碰撞和创新性理论的诞生。

在课堂上讲述近代物理科学史的过程中,还可以帮助同学们了解在学术研究过程中需要注意的问题。比如搞科研不能囿于自己的私密空间,而要鼓励多做学术交流。学术交流的好处是:(1)可以了解最新的研究动态;象在近代物理史上著名的哥本哈根学派就是个很好的例子。1921年,在著名量子物理学家波尔的倡议下,成立了哥本哈根大学理论物理学研究所,由此形成哥本哈根学派。其中波恩、海森堡、泡利以及狄拉克等都是这个学派的主要成员。由于哥本哈根学派提供了很好的学术交流环境和学术氛围,在这个学派里鼓励发表不同的观点,不迷信权威,所以涌现出了很多重要的量子力学成果。(2)可以发现自己的不足;比如爱因斯坦于1919年在刚开始推导广义相对论的时候,在公式里人为增加了一个常数项,从而得出他起先所认为的静态宇宙模型。不过1922年亚历山大・弗里德曼摒弃了这个常数项,从而得出相应的宇宙膨胀理论。比利时牧师勒梅特应用这些解构造了宇宙大爆炸的最早模型,模型预言宇宙是从一个高温致密的状态演化而来。到1929年,哈勃等人又用实际的观测证明我们的宇宙的确处于膨胀状态。通过学术交流,爱因斯坦终于接受了宇宙膨胀理论,并承认添加宇宙常数项是他一生中犯下的最大错误。(3)可以激发自己的灵感;比如波尔在1911年从丹麦哥本哈根大学获得博士学位后去英国学习,先在剑桥汤姆逊主持的卡文迪许实验室工作,几个月后又去曼彻斯特在卢瑟福的手下搞科研,这使得他对汤姆逊关于原子的西瓜模型和卢瑟福的核式原子模型了如指掌,同时他又很熟悉普朗克和爱因斯坦的量子学说,这些学术交流活动激发了他的灵感,使得他最终于1913年初创造性地把普朗克的量子说和卢瑟福的原子核概念结合起来,提出了自己的波尔原子模型。(4)可以激励自己不断进步和成长。比如薛定谔在1925年受到爱因斯坦关于单原子理想气体的量子理论和德布罗意的物质波的假说的启发,从经典力学和几何光学间的类比提出了对应于波动光学的波动力学方程,从而奠定了波动力学的基础。但是他一开始并不清楚他自己建立的波动方程中的波具体代表什么物理概念。起初他试图把波函数解释为三维空间中的振动,把振幅解释为电荷密度,把粒子解释为波包,但他无法解决“波包扩散”的问题。最终经过他与波恩的多次学术交流,他逐渐认识到波函数其实是代表粒子在某时某个位置出现的几率,是一种几率波。

二、近代物理知识简介

近代物理的知识主要分为两大类:相对论和量子力学。相对论分为狭义相对论和广义相对论,内容包括伽利略坐标系、迈克尔逊-莫雷实验、洛伦兹变换、闵可夫斯基空间、质能关系式和相对论能量-动量关系式等。量子力学知识包括黑体辐射、光电效应、波尔原子模型、康普顿效应、德布罗意波、戴维逊和革末实验证实了电子的波动性、不确定性原理和薛定谔方程等。这些近代物理理论的公式通常比较复杂,需要用到高等数学的知识,比如薛定谔方程是一个偏微分方程,狄拉克方程里包含矩阵。因而对于近代物理公式的求解就变得十分困难,也不太直观。图2罗列了按时间顺序出现的课堂上需要讲授的量子力学公式。

黑体辐射公式描述的是频谱(单色能密度)u(v,T)和温度以及频率的关系式。光电效应是指每种金属存在截止频率。当照射在金属上的频率小于截止频率时,不管光强多大,照射时间多长,也不会有光电子产生。而当照射在金属上的频率大于截止频率时,不管光强多小,也会产生光电子,且响应时间小于1纳秒。光电子具有各种初速度,其最大初动能与光辐射频率成线性关系,而与光辐射强度无关。当频率在截止频率之上时,单位时间内发射出来的电子数目即光电流强度与光辐射强度成正比。在光电效应理论中,光的能量和光的频率成正比,光的动量和光的波长成反比。

波尔的原子模型给出了电子在分立轨道上的能量公式。能量和电荷的四次方成正比,跟定态的平方成反比。电子在定态具有分立的能量,在定态运动时不辐射电磁能量;但电子可以从一个定态能级跃迁到另一个能量低的定态能级,相应于两个能级差的能量将作为光子被释放出来。德布罗意公式则是给出了物体的能量和动量与其说对应的物质波的波长和频率之间的关系。动量和波长成反比,而能量和频率成正比。薛定谔方程精确地给出了物质波函数的表现形式。微观粒子的量子态可用波函数表示。当波函数确定,粒子的任何一个力学量及它们的各种可能的测量值的几率就完全确定。波函数跟粒子的质量和势能相关。波函数的自变量中包含空间坐标和时间坐标。由于薛定谔方程中出现虚数i,所以波函数原则上应是复数。它同时满足能量守恒,是线性的、单值解的。它给出的自由粒子解与简单的德布罗意波相一致,满足因果律。相对于薛定谔方程之于非相对论量子力学,狄拉克方程[4]是相对论量子力学的一项描述自旋-1/2粒子的波函数方程,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这个方程预言了反粒子的存在。

三、近代物理科学史和近代物理知识的结合讲解

近代物理课如果只是讲解近代物理知识,往往显得枯燥无味,难以理解。其实任何科学知识都不是凭空产生的,往往经历了好几代人的不懈努力,最终从量变到质变,导致相对论或量子力学的建立。薛定谔方程也不是一蹴而就,而是经过很多科学家几十年的努力。如果一开始就讲解薛定谔方程,同学们通常很难理解。而如果采用循序渐进的方法并结合科学史来讲,抽丝剥茧,逐渐揭开真理的面纱,那么同学们不光饶有兴趣,而且更容易理解。图3列出了结合科学史和科学人物的近代物理讲解流程。在讲解科学史的过程中,重点讲解科学人物和他们的研究方法,以及这些近代物理公式是怎么一步步得来的。通过近代物理知识和科学史的结合讲解,可以启发同学,让他们了解任何知识都是建立在前人知识和研究的基础上。比如普朗克的黑体辐射公式来自于瑞利-金斯定律和维恩位移定律的启发。瑞利-金斯定律能够解释低频率下的结果,却无法解释高频率下的测量结果。而维恩位移定律能够解释高频率下的结果,却无法解释低频率下的测量结果。而普朗克公式是把这两种定律公式进行一下内插。通过这种历史背景的介绍,同学们就对普朗克公式的来龙去脉知道得一清二楚,对此公式也就理解得更深刻。普朗克公式其实一开始是一个不得已而为之的公式,然后普朗克对此公式进行反推,发现只有认为能量是量子化的,才能得出跟实验结果相吻合的普朗克公式。能量是非连续而是分立的,即使这个想法在当时是多么背离人的日常经验和惊世骇俗,由于它是唯一的解释,普朗克也就不得不接受了这个能量量子化思想。

而能量量子化这个理论不管在当时看上去多么荒谬,还是有人慧眼识珠的。5年之后的1905年,爱因斯坦凭着他对物理学的敏锐欣然接受了能量量子化这个观点,并在此基础上解释了光电效应。近代物理的科学史是一环扣一环,十分引人入胜。在课堂上授课时通过人物->公式->人物…->公式的顺序把所有近代物理的公式合理地衔接起来,自成一个整体,同学们学习起来就会思路清晰,公式也会记得牢,进而对公式能活学活用。普朗克和爱因斯坦彼此惺惺相惜,而普朗克也是少数很快发现爱因斯坦狭义相对论重要性的人之一。在爱因斯坦发表光电效应的8年之后,波尔也接受了能量量子化这个观点,并进而创新性地提出了三个假设:(1)定态假设,即电子只能在一系列分立的轨道上绕核运动,这些轨道对应确定能量值的稳定态,电子在这些状态(轨道)上不辐射电磁波;(2)跃迁假设,即原子在不同定态之间跃迁,以电磁辐射形式吸收或发射能量;(3)角动量量子化假设,即电子轨道角动量是分立的,首尾位相相同的环波才能稳定存在。波尔根据这三种假设成功推导出了氢原子的光谱公式,和实验结果完全吻合。

接下来就轮到德布罗意登场。在波尔提出原子模型的10年之后,1923年德布罗意创新性地在他的博士论文里提出了波粒二象性的观点。以前的量子论观点都是围绕光和能量,没有触及实际的物质或粒子。而德布罗意破天荒地提出任何物体都具有波粒二象性,既包括光,也包括电子、原子甚至人体等所有宇宙中的物体。德布罗意当时的博士生导师朗之万不认可这个观点,但是他比较有责任心,没有直接否决掉德布罗意的博士论文,而是把论文寄给爱因斯坦定夺。而爱因斯坦对物理的理解十分透彻,他马上承认了德布罗意的博士论文的正确性,并且将论文送去柏林科学院,使此理论在物理学界广为传播。1924年,德布罗意又提出可以用晶体作光栅观察电子束的衍射来验证他的波粒二象性理论,因为电子的波长和晶格间距处于同一个数量级。很快就有人响应了德布罗意的实验设想,1927年,克林顿・戴维森和雷斯特・革末用电子轰击镍晶体,果然发现电子的衍射图谱,和布拉格定律预测的一模一样,这证实了德布罗意的波粒二象性理论正确无误。既然电子是一个波,那就应该有个波动方程。所以德布罗意的理论极大地启发了海森堡和薛定谔,导致这两位科学家同时在1925年分别发表了薛定谔方程和矩阵力学,两者可以得到同样的结果。薛定谔随后证明,两者在数学上是等效的。薛定谔方程使用微分方程的形式,比矩阵力学容易理解,所以近代物理的授课一般只讲薛定谔方程。薛定谔提出了薛定谔方程之后,又有个新问题,就是此方程不符合相对论协变性原理,即物理规律的形式在任何的惯性参考系中应该是相同的。所以需要有另外一个量子力学方程来满足相对论。这个任务最终是3年之后(即1928年)由狄拉克来完成的。至此,在讲述有趣的近代物理科学史的同时同学们也掌握了丰富的近代物理知识。

总而言之,在近代物理的教学过程中结合近代物理科学史进行授课,提高了同学们对于近代物理知识的理解和兴趣,避免了填鸭式的教育,让同学们在掌握知识的同时更了解了科学家们科学的研究方法,“授之以渔不如授之以鱼”。该教改收到了十分良好的效果。

参考文献:

[1]格雷克.牛顿传[M].北京:高等教育出版社,2004.

[2]艾萨克森.爱因斯坦传[M].长沙:湖南科技出版社,2012.

相对论和量子力学的关系范文2

在建立科学理论体系的过程中,往往需要以一系列巨量的、通常是至为复杂的实验、归纳和演绎工作为基础。而且人们一般相信科学知识就是在这个基础上产生和累积起来的。但只要这种认识活动过程是为一个协调一致的目标所固有,只要它真正属于科学研究自我累进的进程,则不论其如何复杂,仍只是过程性的,而不从根本上规定科学的性质、程序,乃至结论。这就使我们在考察复杂的科学认识活动时,可以抽取出高于具体手段的,基本上只属于人类心智与外在世界相联络的东西,即科学语言,来作为认识的中介物。

要说明科学语言何以能成为这样的中介,需要先对科学的认识结构加以分析。

作为一种形式化理论的近现代科学,其目的是力图摹写客观实在。这种摹写的认识论前提是一个外在的、自为的客体和作为其思维对立面的内在的主体间的双重存在。这一认识论前提在科学认识方面衍生出一个更实用的前提,就是把客体看作是一种自在的“像”或者“结构”(包括动态结构,比如动力学所概括的各种关系和过程)。

这一自在的实在具有由它的“自明性”所保证的严格规范性。这种自明性只在涉及存在与意识的根本关系时才可能引起怀疑。而科学是以承认这种自明性为前提的。因此科学实际就是关于具有自明性的实在的思维重构。它必须限于处理自在的实在,因为科学的严格规范性(主要表现为逻辑性)是由实在的自明性所保证的,任何超越实在的描述都会破坏这种描述的前提。这一点对稍后关于量子力学的讨论非常重要。

上述分析表明,科学的严格规范性并非如有唯理论倾向的观点所认为的那样,是来自思维,也并非如经验论观点所认为的来自具体手段对经验表象的操作,也并不象当代某些科学哲学家所认为的纯粹出于主体间的共同约定。科学的最高规范是存在在客观实在中的,是来自客体的自明性。一切具体手段只是以这种规范为目标而去企及它。

在科学认识活动中,不论是一个思维过程还是一个实验过程,如果其中缺失了语言过程,那就什么意义都不会有。科学语言与人类思维形态固然有很大的关系,但是它们可能在一个很高的层次上有着共同的根源。就认识的高度而言,思维形态作为人类的一种意识现象,对它进行本质的追究,至少目前还不能完全放在客观实在的背景上。因此,在科学认识的层次上,思维形态完全可以被视为相对独立的东西。而科学语言则是明确地被置于实在自身这一背景之中的。这就使我们实际上可以把科学语言看作一种知识,它与系统的科学知识具有完全相同的确切性,即它首先是与实在自身相谐合,然后才以这种特殊性成为思维与对象之间的中介。这才能保证,既使科学语言所述说的科学是关于实在的确切图景,又使思维活动具备与实在相联络的手段。

科学语言作为一种知识所具备的上述特殊性,使它成为客观实在图景构成的基本要素,或科学知识的“基元”。思维形态不能独立地形成知识,但思维形态却提供某种方式,使科学语言所包含的知识基元获得某种特定的加成和组合,从而构成一种系统化的理论。这就是语言在认识中的中介作用。由于任何事物都必须“观念地”存乎人的意识中,才能为人的心智所把握,所以,在这个意义上,一个认识过程就是一个运用语言的过程。

二、数学语言

数学语言常常几乎就是科学语言的同义词。但实际上,科学语言所指的范围远比数学语言的范围大,否则就不会出现量子力学公式的解释问题。在自然科学发生以前,数学所起的作用也还不是后世的那种对科学的叙录。只是由于精密推理的要求所导致的语言理想化,才推进了数学的应用。但归根究底,数学与前面说的那种合乎客观实在的知识基元是不同的。将数学用作科学的语言,必须满足一个条件,即数学结构应当与实在的结构相关,但这一点并不是显然成立的。

爱因斯坦曾分析过数学的公理学本质。他说,对一条几何学公理而言,古老的解释是,它是自明的,是某一先验知识的表述,而近代的解释是,公理是思想的自由创造,它无须与经验知识或直觉有关,而只对逻辑上的公理有效性负责。爱因斯坦因此指出,现代公理学意义上的数学,不能对实在客体作出任何断言。如果把欧几里德几何作现代公理学意义上的理解,那么,要使几何学对客体的行为作出断言,就必须加上这样一个命题:固体之间的可能的排列关系,就象三维欧几里德几何里的形体的关系一样。〔1〕只有这样,欧几里德几何学才成为对刚体行为的一种描述。

爱因斯坦的这种看法与上文对科学语言的分析是基本上相通的。它可以说明,数学为什么会一贯作为科学的抽象和叙录工具,或者它为什么看上去似乎具有作为科学语言的“先天”合理性。

首先,作为科学的推理和记载工具的数学,实际上是从思维对实在的一些很基本的把握之上增长起来的。欧几里得几何学中的“点”、“直线”这样一些概念本身就是我们以某种方式看世界的知识。之所以能用这些概念和它们之间的关系去描绘实在,是因为这些“基元”已经包含了关于实在的信息(如刚体的实际行为)。

其次,数学体系的那种严密性其实主要是与人类思维的属性有关,尽管思维的严密性并不是一开始就注入了数学之中。如前所述,思维的严密性是由实在的自明性来决定的,是习得的。这就是说,数学之所以与实在的结构相关,只是因为数学的基础确切地说来自这种结构;而数学体系的自洽性是思维的翻版,因而是与实在的自明性同源的。

由此可见,数学与自然科学的不同仅表现在对于它们的结果的可靠性(或真实性)的验证上。也就是说,科学和数学同样作为思维与实在相互介定的产物,都有可能成为对实在结构的某种描述或“伪述”,并且都具有由实在的自明性所规定的严密性。但数学基本上只为逻辑自治负责,而科学却仅仅为描述的真实性负责。

事实正是如此。数学自身并不代表真实的世界。它要成为物理学的叙录,就必须为物理学关于实在结构的真实信息所重组。而用于重组实在图景的每一个单元,实际上是与物理学的基本知识相一致的。如果在几何光学中,欧几里德几何学不被“光线”及其传播行为有关的概念重组,它就只是一个纯粹的形式体系,而对光线的行为“不能作出断言”。非欧几何在现代物理学中的应用也同样说明了这一点。

三、物理学语言

虽然物理学是严格数学化的典范,但物理学语言的历史却比数学应用于物理学的历史要久远得多。

在认识的逻辑起点上,仅当认识论关系上一个外在的、恒常的(相对于主体的运动变化而言)对象被提炼和廓清时,才能保证一种仅仅与对象自身的内在规定性有关的语言描述系统成为可能。对此,人类凭着最初的直觉而有了“外部世界”、“空间”、“时间”、“质料”、“运动”等观念。显然,这些观念并非来自逻辑的推导或数学计算,它是人类世代传承的关于世界的知识的基元。

然后,需要对客观实在进行某种方式的剥离,才能使之通过语言进入我们的观念。一个客观实在,比如说,一个电子,当我们说“它”的时候,既指出了它作为离散的一个点(即它本身),又指出了它身处时空中的那个属性。而后一点很重要,因为我们正是在广延中才把握了它的存在,即从“它”与“其它”的关系中“找”出它来。

当我们按照古希腊人(比如亚里士多德)的方式问“它为什么是它”时,我们正在试图剥离“它”之所以为“它”的属性。但这个属性因其离散的本质,在时空中必为一个“奇点”,因而不能得到更多的东西。这说明,我们的语言与时空的广延性合若符节,而对离散性,即时空中的奇点,则无法说什么。如果我们按照伽利略的方式问“它是怎样的”时,我们正是在描绘它与广延有关的性质,即它与其它的关系。这在时空中呈现为一种结构和过程。对此我们有足够的手段(和语言)进行摹写。因为我们的语言,大多来自对时空中事物的经验。我们运用语言的主要方式,即逻辑思维,也就是时空经验的抽象和提升。

可见,近现代物理学语言是一种关于客观实在的时空形式及过程的语言,是一种广延性语言。几何学之所以在科学史上扮演着至为重要的角色,首先不在于它的严格的形式化,而在于它是关于实在的时空形式及过程的一个有效而简洁的概括,在于与物理学在面对实在时有着共同的切入点。

上述讨论表明了近现代物理学语言格式包含着它的基本用法和一个根深蒂固的传统,这是由客观实在和复杂的历史因素所规定的。至为关键的是,它必须而且只是关于实在的时空形式及过程的描述。可以想象,离开了这种用法和传统,“另外的描述”是不可能在这种语言中获得意义的。而这正是量子力学碰到的问题。

四、量子力学的语言问题

上文说明,在描摹实在时,人类本是缺乏固有的丰富语言的。西方自古希腊以来,由于主、客体间的某种相互介定而实现了有关实在的时空形式和过程的观念及相应的逻辑思维方式。任何一种特定的语言,随着时代的变迁和认识的深入,某些概念的含义会发生变化,并且还会产生新的语言基元。有时,这样的变化和增长是革命性的。但不可忽视的是,任何有革命性的新观念首先必须在与传统语言的关系中获得意义,才能成为“革命性的”。在自然科学中,一种新理论不论提出多么“新”的描述,它都必须仍然是关于时空形式及过程的,才能在整体的科学语言中获得意义。例如,相对论放弃了绝对时空、进而放弃了粒子的观念,但代之而起的那种连续区概念仍然是时空实在性的描述并与三维空间中的经验有着直接联系。

量子力学的情况则不同。微观粒子从一个态跃迁到另一个态的中间过程没有时空形式;客体的时空形式(波或粒子)取决于实验安排;在不观测的情况下,其时空形式是空缺的;并且,观测所得的客体的时空形式并不表示客体在观测之前的状态。这意味着,要么微观实在并不总是具有独立存在的时空形式,要么是人类无法从认识的角度构成关于实在的时空形式的描述。这两种选择都将超出现有的物理学语言本身,而使经典物理学语言在用于解释公式和实验结果时受到限制。

量子力学的这个语言问题是众所周知的。波尔试图通过互补原理和并协原理把这种限制本身上升为新观念的基础。他多次强调,即使古典物理学的语言是不精确的、有局限性的,我们仍然不得不使用这种语言,因为我们没有别的语言。对科学理论的理解,意味着在客观地有规律地发生的事情上,取得一致看法。而观测和交流的全过程,是要用古典物理学来表达的。〔2〕

量子力学的反对者爱因斯坦同样清楚这里的语言问题。他把玻尔等人尽力把量子力学与实验语言沟通起来所作的种种附加解释称之为“绥靖哲学”(Beruhigunsphilosophie)〔3〕或“文学”〔4〕,这实际上指明了互补原理等观念是在与时空经验相关的科学语言之外的。爱因斯坦拒绝承认量子力学是关于实在的完备描述,所以并不以为这些附加解释会在将来成为科学语言的新的有机内容。

薛定谔和玻姆等人从另一个角度作出的考虑,反映了他们以为玻尔、海森堡、泡利和玻恩等人的观点回避了经典语言与实在之间的深刻矛盾,而囿于语言限制并为之作种种辩解。薛定谔说:“我只希望了解在原子内部发生了什么事情。我确实不介意您(指玻尔)选用什么语言去描述它。”〔5〕薛定谔认为,为了赋予波函数一种实在的解释,一种全新的语言是可以考虑的。他建议将N个粒子组成的体系的波函数解释为3N维空间中的波群,而所谓“粒子”则是干涉波的共振现象,从而彻底抛弃“粒子”的概念,使量子力学方程描述的对象具有连续的、确定的时空状态。

固然,几率波的解释使得理论的数学结构不能对应于实在的时空结构,如果让几率成为实验观察中首要的东西,就会让客观实在在描述中成了一种“隐喻”。然而薛定谔的解释由于与三维空间中的经验没有明显的联系,也成了另一种隐喻,仍然无法作为一种科学语言而获得充分的意义。

玻姆的隐序观念与薛定谔的解释在语言问题上是相似的。他所说的“机械序”〔6〕其实就是以笛卡尔坐标为代表的关于广延性空间的描述。这种描述由于经典物理学的某些限定而表现出明显的局限性。玻姆认为量子力学并未对这种序作出真正的挑战,在一定程度上指出了量子力学的保守性。他企图建立一种“隐序物理学”,将量子解释为多维实在的投影。他以全息摄影和其它一些思想实验为比喻,试图将客观实在的物质形态、时空属性和运动形式作全新的构造。但由于其基础的薄弱,仍然只是导致了另一种脱离经验的描述,也就是一种形而上学。

这里所说的“基础”指的是,一种全新的语言涉及主客体间完全不同的相互介定。它涉及对客体的完全不同的剥离方式,也就是说,现行科学语言及其相关思维方式的整个基础都将改变。然而,现实地说,这不是某一具有特定对象和方法的学科所能为的。

可见,试图通过一种全新的语言来解决量子力学的语言问题是行不通的。这个问题比通常所能想象的要无可奈何得多。

五、量子力学何种程度上是“革命性”的

量子力学固然在解决微观客体的问题方面,是迄今最成功的理论,然而这种应用上的重要性使人们有时相信,它在观念上的革命也是成功的。其实,上述语言与实在图景的冲突并未解决。量子力学的种种解释无法在科学语言的基础上必然过渡到那种非因果、非决定论观念所暗示的宇宙图景。这就使我们有必要对量子力学“革命性”的程度作审慎的认识。

正统的量子力学学者们都意识到应该通过发展思维的丰富性来解决面临的困难。他们作出的重要努力的一个方面是提出了很多与经典物理学不同的新观念,并希望这些新观念能逐渐溶入人类的思想和语言。其中玻恩用大量的论述建议几率的观念应该取代严格因果律的概念。〔7〕测不准原理以及其中的广义坐标、广义动量都是为粒子而设想的,却又不能描述粒子在时空中的行为,薛定谔认为应该放弃受限制的旧概念,而玻尔却认为不能放弃,可以用互补原理来解决。玻尔还希望,波函数这样的“新的不变量”将逐渐被人的直觉所把握,从而进入一般知识的范围。〔8〕这相当于说,希望产生新的语言基元。

另一方面,海森堡等人提出,问题应该通过放弃“时空的客观过程”这种思想来解决。〔9〕这又引起了量子力学的客观性问题。

这些努力在很大程度上是具有保守性的。

我们试把量子力学与相对论作比较。相对论的革命性主要表现在,通过对时间和空间的相对性的分析,建立起时间、空间和运动的协变关系,从而了绝对时空、绝对同时性等旧观念,并代之以新的时空观。重要的是,在这里,绝对时空和绝对同时性是从理论上作为逻辑必然而排除掉的。四维时空不变量对三维空间和一维时间的性质依赖于观察者的情形作了简洁的概括,既不引起客观性危机,又与人类的时空经验有着直接关联。相对论排除了物理学内部由于历史和偶然因素形成的一些含混概念,并给出了更加准确明晰的时空图景。它因此而在科学语言的范围内进入了一般知识。

量子力学的情况则不同。它的保守性主要表现在:

第一,严格因果律并不是从理论的内部结构中逻辑地排除的。只是为了保护几率波解释,才不得不放弃严格因果律,这只是一种人为地避免逻辑矛盾的处理。

第二,不完全连续性、非完全决定论等观念并没有构成与人类的时空经验相关联的自洽的实在图景。互补原理和并协原理并没有从理论内部挽救出独立存在于时空的客体的概念,又没有证明这种概念是不必要的(如相对论之于“以太”那样)。因此,量子力学的有关哲学解释看似抛弃旧观念,建立新观念,实际上,却由于这些从理论结构上说是附加的解释超出了关于实在的描述,因而破坏了以实在的自明性为保证的描述的前提。所以它实际上对观念的丰富和发展所作的贡献是有限的。

第三,量子力学内在地不能过渡到关于个别客体的时空形式及过程的模型,使得它的反对者指责说这意味着位置和动量这样的两个性质不能同时是实在的。而为了保护客观性,它的支持者说,粒子图像和波动图象并不表示客体的变化,而是表示关于对象的统计知识的变化。〔10〕这在关于实在的时空形式及过程的科学语言中,多少有不可知论的味道。

第四,人们必须习惯地设想一种新的“实在”观念以便把充满矛盾的经验现象统一起来。在对客体的时空形式作抽象时,这种方法是有效的。而由于波函数对应的不是个别客体的行为,所以大多新的“实在”几乎都是形而上学的构想。薛定谔和玻姆的多维实在、玻姆在阐释哥本哈根学派观点时提出的那种包含了无限潜在可能性的“第三客体”〔11〕,都属于这种构想。玻恩也曾表示,量子力学描述的是同一实在的排斥而又互补的多个影像。〔12〕这有点象是在物理学语言中谈论“混元”或“太极”一样,很难说对观念有积极的建设。

本文从科学语言的角度,对量子力学尤其是它的哲学基础的保守性作出一些分析,这并不是在相对论和量子力学之间作价值上的优劣判断。也许量子力学的真正价值恰恰在于它所碰到的困难是根本性的。

海森堡等人与新康德主义哲学家G·赫尔曼进行讨论时,赫尔曼提出,在科学赖以发生的文化中,“客体”一词之所以有意义,正在于它被实质、因果律等范畴所规定,放弃这些范畴和它们的决定作用,就是在总体上不承认经验的可能性。〔13〕我们应该注意到,赫尔曼所使用的“经验”一词,实际上是人类对客观事物的广延性和分立性的经验。这种经验是科学的实在图景成立的基础或真实性的保证,逻辑是它的抽象和提升。

在本文的前三节已经谈到,自从古希腊人力图把日常语言理想化而创立了逻辑语言以来,西方的科学语言就一直是在实在的广延性和分立性的介定下发展起来的。我们也许可以就此推测,对于人的认识而言,世界是广延优势的,但如果因此认为实在仅限于广延性方面,却是缺乏理由的。广延性优势在语言上的表现之一是几何优势。西方传统中的代数学思想是代数几何化,即借助空间想象来理解数的。不论毕达哥拉斯定理还是笛卡尔坐标都一样。直角三角形的斜边是直观的,而根号2不是。我们可以用前者表明后者,而不能反过来。可是一个离散的数量本身究竟是什么呢?它是否与实在的另一方面或另一部分(非广延的)相应?也许在微观领域里不再是广延优势而量子力学的困难与此有关?

如果量子力学面临的是实在的无限可能性向语言的有限性的挑战,那么问题的解决就不单单是语言问题,甚至不单单是目前形态的物理学的问题。它将涉及整个认识活动的基础。玻尔似乎是深刻地意识到这一点的。他说“要做比这些更多的事情完全是在我们目前的手段之外。”〔14〕他还有一句格言;“同一个正确的陈述相对立的必是一个错误的陈述;但是同一个深奥的真理相对立的则可能是另一个深奥的真理。”〔15〕

参考文献和注释

〔1〕〔3〕〔4〕《爱因斯坦文集》第一卷,商务印书馆,1994,第137、241、304页。

〔2〕〔5〕〔9〕〔13〕〔14〕〔15〕海森堡:《原子物理学的发展和社会》,中国社会科学出版社,1985,第141、84、82、131、47、112页。

〔6〕玻姆:《卷入——展出的宇宙和意识》,载于罗嘉昌、郑家栋主编:《场与有——中外哲学的比较与融通(一)》,东方出版社,1994年。

〔7〕玻恩:《关于因果和机遇的自然哲学》,商务印书馆,1964年。

相对论和量子力学的关系范文3

2000多年前的物理学,中国、古希腊都有研究,但是真正意义上的精确科学,也就是说用数学、微积分这样的精确科学,实际上是在中世纪即在15世纪16世纪的时候,也就是牛顿、伽利略的时代,开创了物理学精确科学的先河,此后物理学得到了很大发展,后来的热学、电磁学、声学、连续介质动力学等问题也在十七、十八、十九三个世纪取得了很大发展。现在就从牛顿、伽利略时代起谈谈物理学的发展与人类的文明进步的关系。

一、工业革命前的人类文明

工业革命前的物理学虽然在漫长的历史进程中不断发展,但是并没有给人类带来生产力上的巨大改变,人类还处于刀耕火种的农业时代,那是的生产力很低下,人们的生活水平上千年来没有真正的突破。

二、人类的机械化时代

牛顿力学的建立和热力学的发展导致了第一次工业革命

1665年夏,年仅23的牛顿因英国爆发瘟疫而避居乡下,他一生最重要的成果,几乎所有的重要数学物理思想多诞生与不这个时期。在他45岁时,划时代的伟大巨著《自然哲学之数学原理》出版,奠定了整个经典物理学的基础,并对其他自然科学的发展产生了不可磨灭的推动和影响。

三、人类的电气化时代

经典电磁学是研究宏观电磁现象和客观物体的电磁性质。人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。

19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。法拉第用过的线圈

电和磁之间的联系被发现后,人们认识到电磁力的性质在一些方面同万有引力相似。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。

19世纪下半叶,麦克斯韦总结宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。该理论实现了物理学的第三次综合,即电、磁、光的综合。

四、人类的高科技时代

人类社会发展到今天,已进入信息时代、核能时代、新材料时代和太空时代,也就是说进入了高科技时代。而这一切的基础是20世纪物理学革命的产物――相对论和量子力学。

19世纪,经典物理学的成就到达了顶峰。可是,世纪末的迈克尔逊-莫雷实验和黑体辐射实验形成了物理学万里晴空中的“两朵乌云”;而电子、X射线和放射性等新发现,使经典物理学遇到了极大的困难。有的物理学家呼唤:“我们仍然在期待着第二个牛顿。”需要巨人的时代造就了巨人。这第二个牛顿便是爱因斯坦。

1905年,爱因斯坦以“同时”的相对性为突破口,提出了“光速不变原理”和物理规律在惯性系中不变的“相对性原理”,导出了洛仑兹变换,从而驱散了第一朵“乌云”。这就是狭义相对论。在此基础上,他又得到的质能相当的推论E=mc2,预示了原子能利用的可能。

1913~1916年,爱因斯坦从引力场中一切物体具有相同的加速度得到启发,提出了“加速参照系与引力场等效”和物理规律在非惯性系中不变的“相对性原理”,从而得到了引力场方程。这就是广义相对论。他预言,光线从太阳旁边通边时会发生弯曲。1919年,英国天文学家爱丁顿以全日蚀观测证实了这一预言,从而开创了现代天文学的新纪元。爱因斯坦也因此名噪全球。

1900年,普朗克为驱散第二朵“乌云”,提出了“能量子”假设,量子论诞生了。1905年,爱因斯坦在此基础上提出“光量子”假说,用光的波粒二象性成功地解释了“光电效变”。同年,他把量子概念用点阵振动来解释固体比热。1912年,爱因斯坦又由量子概念提出了光化学当量定律。1916年,他由玻尔的原子理论提出了自发发射和受激发射的概念,孕育了激光技术。此后,对量子力学的建立作出重要贡献的著名物理学家还有:1923年提出实物粒子也具有波粒二象性的德布罗意,1925年建立量子力学的矩阵力学体系的玻恩和海森伯等,1926年建立量子力学的波动方程的薛定谔。同年,玻恩给出了波函数的统计诠释,海森伯提出反映微观世界特性的“不确定度关系”。量子力学揭示了微观世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学的发展奠定了理论基础。它是20世纪物理学革命的。

相对论和量子力学的关系范文4

关键词:实验探究;边缘科学知识 ;综合科学知识;实际应用科学知识

江西省2008年实行人教版高中物理新课程至今,教材有较大突破,体现为以下几点:

一、教材将以前的三本书分成七本书,其中必修为两本,是所有学生必学的内容。选修有五本,是侧重理科学生学习的。而且选修的五本就不同省份高考的考生来说,只须选学其中四本。这样学生的负担大大降低了。

二、教材内容梯度好,栏目丰富。

例如选修3-4第十一章机械振动共分五节,第一节主要通过水平弹簧振子、沙漏的摆动、竖直弹簧振子的实验探究得出简谐运动的位移随时间变化的关系,从而定义简谐振动。书中的两个两“做一做”又从其他角度实验探究验证简谐振动的位移随时间变化的图象,该节提供了七个实验探究简谐振动的位移随时间变化的图象,让学生思维更开阔,对简谐振动定义获得过程留下很深的络印,和较大的兴趣。

三、教材新增实际应用的理论探究,对学生理解新问题有更深的指导,有利于提高学生的综合素质。

例如选修3-4第十二章机械波新增了“多普勒效应”和“惠更斯原理”两节。通过学习“多普勒效应”,学生就能理解如何测车速来监控车的违章情况;如何算出星球靠靠近或远离我们的速度;彩超的原理等,还可激发学生对科学的兴趣。通过学习“惠更斯原理”,学生增强了对波的反射、折射、衍射现象的逻辑理解,对学生利用逻辑思维理解和分析问题有较大的提高。

四、教材新增了对边缘科学的学习

例如选修3-2第十章“传感器”和选修3-4第十五章“相对论简介”,让学生知道狭义相对论和广义相对论的基本逻辑理解,对科学的探究有更广的猜想。而传感器是实际应用较普遍的,介绍了光敏电阻、热敏电阻、温控开关等文件在电器中的工作原理,还有一些常见电路的分析,使学生对电子技术在现代化产品的开发与应用有了解,加强了学生对科学学习的重要性认识和兴趣。

五、增设实验,培养探索式学习

选修3-5第十六章第一节 实验:探究碰撞中的变量

从生产、生活中的现象(包括实验现象)中提出研究的问题——碰撞前后会不会有什么物理量保持不变呢?接着提出了猜想。为了证实猜想而提出了“实验的基本思路”和实验中“需要考虑的问题”。同时,提供三套实验方案供学校选择,最后让学生亲自动手,经历并体验寻找碰撞中“不变量”的过程。重点是引导学生经历碰撞问题的研究过程。

一方面为下两节“动量和动量定理”“动量守恒定律”的引入提高实验的基础;另一方面,让学生亲自经历探究自然规律的过程,感悟自然界的和谐与统一;同时,将实验技能的训练与科学探究过程的体验,有机地结合。教科书设计这一节实验课,重在培养探究式学习的目的。

六、增设与其它学科相关知识,提高学习认识综合知识的联系。牢固树立人类对世界探求是不断深入的思想。

例如:3-5第十七章 波粒二象性 第5节“不确定性关系”,本节内容是在上一节基础上进一步深化的。学生已经知道单个微观粒子的运动具有不确定性,但它在空间某点出现的概率却可通过波动规律确定。本节通过光的单缝衍射实验,具体分析了这种不确定性的数量关系,给出了量子力学中一个著名的教学关系式——不确定性关系:。通过介绍经典物理学和围观物理学中物理模型与物理现象的巨大差异,量子力学对社会进步的重要性及对量子理论的论争,为学生用新的观点来认识微观物理世界提供了有效的空间,也为学生今后学习量子力学搭建过渡之桥。虽然我们不可能知道单个粒子运动情况,但是大量粒子的运动却是有规律的。这种随机现象遵从统计规律,要从波的理论推测它的哪个地方的几率有多大。反复强化这个概念,不确定性关系的模型才能逐渐在学生心中建立。通过物理模型与物理现象的教学,让学生明确,模型是人类认识自然的一种方式,模型是对自然的一种抽象、纯化,但模型本身并不是自然本身。

教材简要介绍了量子力学对人类社会的重要贡献,让学生明确已学的能量子、光子、波粒二象性、不确定关系是量子力学的基础,尽管以量子理论为基础建立起来的现代技术已取得巨大成功。但是,对于“量子”的图景和哲学意义,却一直存在严重的分歧和激烈的争论。让学生树立科学是不断发展的思想,将争议回归到爱因斯坦那句话:整整50年有意识的思考,并没有使我更接近“光量子是什么”这个问题的答案。现在的理论并不是对微观粒子运动规律的终极观念,这种为了满足我们“肉眼凡胎”而创立的模型,虽然比较完美地解释了现在所观测到的一切,但随着认识的深入,我们现在认为的单个微粒运动的随机规律也可能是不完备的模型,我们也可能会了解它的真实图景,科学研究没有终点站。

相对论和量子力学的关系范文5

关键词:量子力学;经典科学世界图景;非机械决定论;整体论;复杂性;主客体互动

Abstract: As one of three revolutions of physics in 20th century, quantum mechanics has greatly transformed the world view of classical science in many aspects. Quantum mechanics breaks though the mechanical determinism in classical science, transforming it into nonmechanical determinism; it changes scientific cognitive process from the theory of reductionism to the theory of wholism; it shifts the way of thinking from pursuing simplicity to exploring the complexity; it also establishes the interaction between subject and object in scientific researches.

Key words: quantum mechanics; world view of classical science; nonmechanical determinism; wholism; complexity; interaction between subject and object

经典科学基本上是指由培根、牛顿、笛卡儿等开创的,近三百年内发展起来的一整套观点、方法、学说。经典科学世界图景的最大特征是机械论和还原论,片面强调分解而忽视综合。以玻尔、海森伯、玻恩、泡利、诺伊曼等为代表的哥本哈根学派的量子力学理论三部曲:统计解释—测不准原理—互补原理所反映的主要观点是:微观粒子的各种力学量(位置、动量、能量等)的出现都是几率性的;量子力学对微观粒子运动的几率性描述是完备的,对几率性的原因不需要也不可能有更深的解释;决定论不适用于量子力学领域;仪器的作用同观察对象具有不可分割性,确立了科学活动中主客体互动关系。[1]量子力学的发展从根本上改变了经典科学世界

图景。

一、量子力学突破了经典科学的机械决定论,遵循因果加统计的非机械决定论

经典力学是关于机械运动的科学,机械运动是自然界最简单也是最普遍的运动。说它最简单,因为机械运动比较容易认识,牛顿等人又采取高度简化的方法研究力学,获得了空前成功;说它最普遍,因为机械力学有广泛的用途,容易把它绝对化。[2]机械决定论是建立在经典力学的因果观之上,解释原因和结果的存在方式和联系方式的理论。机械决定论认为因和果之间的联系具有确定性,无论从因到果的轨迹多么复杂,沿着轨迹寻找总能确定出原因或结果;机械决定论的核心在于只要初始状态一定,则未来状态可以由因果法则进行准确预测。[3]其实,机械决定论仅仅适用于宏观物体,而对于微观领域以及客观世界中大量存在的偶然现象的研究就产生了统计决定论。[4]

量子力学是对经典物理学在微观领域的一次革命。量子力学所揭示的微观世界的运动规律以及以玻尔为代表的哥本哈根学派对量子力学的理解,同物理学机械决定论是根本相悖的。[5]按照量子理论,微观粒子运动遵守统计规律,我们不能说某个电子一定在什么地方出现,而只能说它在某处出现的几率有多大。

玻恩的统计解释指出,因果性是表示事件关系之中一种必然性观念,而机遇则恰恰相反地意味着完全不确定性,自然界同时受到因果律和机遇律的某种混合方式的支配。在量子力学中,几率性是基本概念,统计规律是基本规律。物理学原理的方向发生了质的改变:统计描述代替了严格的因果描述,非机械决定论代替了机械决定论的统治。

经典统计力学虽然也提出了几率的概念,但未能从根本上动摇严格决定论,量子力学的冲击则使机械决定论的大厦坍塌了。量子力学揭示并论证了人们对微观世界的认识具有不可避免的随机性,它不遵循严格的因果律。任何微观事件的测定都要受到测不准关系的限定,不可能确切地知道它们的位置和动量、时间和能量,只能描述和预言微观对象的可能的行为。因此,量子力学必须是几率的、统计的。而且,随着认识的发展,人们发现量子统计的随机性,不是由于我们知识和手段的不完备性造成的,而是由微观世界本身的必然性(主客体相互作用)所注定。

二、量子力学使得科学认识方法由还原论转化为整体论

还原论作为一种认识方法,是指把高级运动形式归结为低级运动形式,用研究低级运动形式所得出的结论代替对高级运动形式的本质认识的观点。它用已分析得出的客观世界中的主要的、稳定的观点和规律去解释、说明要研究的对象。其目的是简化、缩小客体的多样性。这种方法在人类认识处于初级水平上无疑是有效的。如牛顿将开普勒和伽利略的定律成功地还原为他的重力定律。但是还原论形而上学的本质,以及完全还原是不可能的,决定了还原论不能揭示世界的全貌。

量子力学认为整体与部分的划分只有相对意义,整体的特征绝非部分的叠加,而是部分包含着整体。部分作为一个单元,具有与整体同等甚至还要大的复杂性。部分不仅与周围环境发生一定的外在联系,同时还要表现出“主体性”,可将自身的内在联系传递到周边,并直接参与整体的变化。因而,部分与整体呈现了有机的自觉因果关系。在特定的临界状态,部分的少许变化将引起整体的突变。[6]

波粒二象性是微观世界的本质特征,也是量子论、量子力学理论思想的灵魂。用经典观点来看,也就是按照还原论的思想,粒子与波毫无共同之处,二者难以形成直观的统一图案,这是经典物理学通过部分还原认识整体的方法,是“向上的原因”。可是微观粒子在某些实验条件下,只表现波动性;而在另一些实验条件下,只表现粒子性。这两种实验结果不能同时在一次实验中出现。于是,玻尔的互补原理就在客观上揭示了微观世界的矛盾和我们关于微观世界认识的矛盾,并试图寻找一种解决矛盾的方法,这就是微观粒子既具有粒子性又具有波动性,即波粒二象性。这就是整体论观点强调的“向下的原因”,即从整体到部分。同样,海森伯的测不准原理说明不能同时测量微观粒子的动量和位置,这也说明绝不能把宏观物体的可观测量简单盲目地还原到微观。由此我们可以看出,造成经典科学观与现代科学观认识论和方法论不同的根本在于思考和观察问题的层面不同。经典科学一味地强调外在联系观,而量子力学则更强调关注事物内部的有机联系。所以,量子力学把内在联系作为原因从根本上动摇了还原论观点。

三、量子力学使得科学思维方式由追求简单性发展到探索复杂性

从经典科学思维方式来看,世界在本质上是简单的。牛顿就说过,自然界喜欢简单化,而不喜欢用什么多余的原因以夸耀自己。追求简单性是经典科学奋斗的目标,也是推动它获取成功的动力。开普勒以三条简明的定律揭示了看似复杂的太阳系行星运动,牛顿更是用单一的万有引力说明了千变万化的天体行为。因而现代科学是用简单性解释复杂性,这就隐去了自然界的丰富多样性。

量子力学初步揭示了客观世界的复杂性。经典科学的简单性是与把物理世界理想化相联系的。经典物理学所研究的是理想的物质客体。它不但用理想化的“质点”、“刚体”、“理想气体”来描述物体,而且把研究对象的条件理想化,使研究的视野仅仅局限于人们自己制定的范围之内。而客观世界并不是如此,特别是进入微观领域,微观粒子运动的几率性、随机性;观测对象和观测主体不可分割性等都足以说明自然界本身并不是我们想象的那么简单。

在现代科学中,牛顿的经典力学成了相对论的低速现象的特例,成为非线性科学中交互作用近似为零的情况,在量子力学中是测不准关系可以忽略时的理论表述。复杂性的提出并不是要消灭简单性,而是为了打破简单性独占的一统地位。复杂性是把简单性作为一个特例包含其中,正如莫兰所说的,复杂性是简单性和复杂性的统一。复杂性比简单性更基本,可能性比现实性更基本,演化比存在更基本。[7]今天的科学思维方式,不是以现实来限制可能,而是从可能中选择现实;不是以既存的实体来确定演化,而是在演化中认识和把握实体。复杂性主张考察被研究对象的复杂性,在对其作出层次与类别上的区分之后再进行沟通,而不是仅仅限于孤立和分离,它强调的是一种整体的协同。

四、量子力学使科学活动中主客体分离迈向主客互动

经典科学思维方式的一个指导观念就是,认为科学应该客观地、不附加任何主观成分地获取“照本来样子的”世界知识。玻尔告诉人们,根本不存在所谓的“真实”,除非你首先描述测量物理量的方式,否则谈论任何物理量都是没有意义的!测量,这一不被经典物理学考虑的问题,在面对量子世界如此微小的测量对象时,成为一个难以把握的手段。因为研究者的介入对量子世界产生了致命的干扰,使得测量中充满了不确定性。在海森伯看来,在我们的研究工作由宏观领域进入微观领域时,我们就会遇到一个矛盾:我们的观测仪器是宏观的,可是研究对象却是微观的;宏观仪器必然要对微观粒子产生干扰,这种干扰本身又对我们的认识产生了干扰;人只能用反映宏观世界的经典概念来描述宏观仪器所观测到的结果,可是这种经典概念在描述微观客体时又不能不加以限制。这突破了经典科学完全可以在不影响客体自然存在的状态下进行观测的假定,从而建立了科学活动中主客体互动的关系。

例如,关于光到底是粒子还是波,辩论了三百多年。玻尔认为这完全取决于我们如何去观察它。一种实验安排,人们可以看到光的波现象;另一种实验安排,人们又可以看到光的粒子现象。但就光子这个整体概念而言,它却表现出波粒二象性。因此,海森伯就说,我们观测的不是自然本身,而是由我们用来探索问题的方法所揭示的自然。[8]

量子力学的发展表明,不存在一个客观的、绝对的世界。唯一存在的,就是我们能够观测到的世界。物理学的全部意义,不在于它能够描述出自然“是什么”,而在于它能够明确,关于自然我们能够“说什么”。

参考文献

[1]林德宏. 科学思想史[M].第2版.南京:江苏科学技术出版社,2004:270-271.

[2]郭奕玲,沈慧君. 物理学史[M].第2版.北京:清华大学出版社,1993:1-2.

[3]刘敏,董华. 从经典科学到系统科学[J].科学管理研究,2006,24(2):44-47.

[4]宋伟.因果性、决定论与科学规律[J].自然辩证法研究,1995,11(9):25-30.

[5]彭桓武. 量子力学80寿诞[J].大学物理,2006,25(8):1-2.

[6]疏礼兵,姜巍. 近现代科学观的演进及其启示[J].科学管理研究,2004,22(5):56-58.

相对论和量子力学的关系范文6

二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。

在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。我想谈一谈我对这个问题的一些看法和观点。首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。

一、历史的回顾

十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。

然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!

把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。

在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。

虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。

回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。

1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。

2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。

我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。

3)深入探索各层次间的联系。

这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。

上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。

爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]

现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:

1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。

2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。

三、现代物理学的理论基础是完美的吗?

相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的

呢?我们来审思一下这个问题。

1)对相对论的审思

当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。

时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。

爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。

我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。

弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。

在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')

有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。

1)对量子力学的审思

从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。

现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。

1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。

2)可能应该从两方面去控寻现代物理学革命的突破口。(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础,重新定义时间、空间,建立新的理论

3)由于现代物理学尚未发生“危机”,因此目前发生现代物理学革命的条件也许还不成熟,物理学的发展和物理学革命都有赖于在物理实验和对客观物质世界的观测中获得新的结果,实验和观测是发展物理学的量重要手段,这是我们要关注的首要问题。然而,科学的发展和物理学的发展有本身的逻辑,符合客观规律的、有真知灼见的思维也是一个关键。