前言:中文期刊网精心挑选了量子计算基本原理范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
量子计算基本原理范文1
【关键词】核磁共振成像;原理;系统
【中图分类号】R445.2【文献标识码】A【文章编号】1007-8517(2009)08-0047-01
早在20世纪40年代,人类就认识了核磁共振现象。但是这一现象在30多年以后才得到广泛应用。迄今为止,磁共振成像已经快速地成长为一个强有力的医学成像模式。本文将介绍核磁共振原理,核磁共振成像的原理,核磁共振成像系统的结构。
1磁共振成像基本原理
1.1核磁共振的基本原理原子核除具有电荷和质量外,许多原子核还具有自旋角动量 P,它与相应的磁偶极矩 之间关系为产 =γ( γ为旋磁比)。原子核的自旋角动量是量子化的,核磁矩也是量子化的。以 B0的方向为 z轴的正方向,则核磁矩的大小为: μ=γI(I+1)。
I的值可以是零、整数或半整数。按照量子力学原理,自旋角动量在z方向的分量为: Pz=mIh
成是在环路上运动的电流,原子核既有电荷又有电流,原子核既有电荷又有自旋,因此也就有相应的磁偶极矩 μ,它和角动量P的关系为: =γ。
用量子力学来描述核磁共振,当将将核磁矩置于沿z轴的静态磁场H0中,磁矩 μ与H0将有相互作用能,能量算符为 =-0=-γhH0Iz,Em==-γηH0m,其中m=I,I-1,I-2,……,-I+1,-I,总共2I+1个能级。
Em-1-Em=γηH0m,表示能级的间距与m值无关,即能级是等距的,其间距与磁强强度H0成正比。
为了观测能级间粒子的跃迁,在垂直于H0方向加一射频场:Ht=2H1cos(2νm),则能量算符: =-t=-γH1μxcos(2νm)=-2H1γIxcos(2νm),单位时间跃迁几率为: Pmm’=γ2H12<mtIxm>2δ(νmm’-ν),其中:νmm=Emm’h=γH0mt-m2π。
从δ(νmm’-ν)可知,只有当ν=γH0/2π时,不为零。这称为“共振条件”,ν0=γH0/2π称为共振频。
1.2磁共振成像基本原理磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。人体不同器官的正常组织与病理组织的T1是相对固定的,而且它们之间有一定的差别,T2也是如此。有如CT时,组织间吸收系数(CT值)差别是CT成像基础的道理。但MRI不像CT只有一个参数,即吸收系数,而是有T1、T2和自旋核密度(P)等几个参数,其中T1与T2尤为重要。因此,获得选定层面中各种组织的T1(或T2)值,就可获得该层面中包括各种组织影像的图像。
MRI的成像方法也与CT相似。有如把检查层面分成Nx,Ny,Nz…一定数量的小体积,即体素,用接收器收集信息,数字化后输入计算机处理,获得每个体素的T1(或T2),进行空间编码。用转换器将每个T值转为模拟灰度,而重建图像。利用灰度值把NMR参数作为空间坐标的函数表示出来。根据上面提到的NMR条件ω0=γB0,如果不考虑化学位移,J耦合等因素,样品中同一种原子核的在静磁场中的共振是一样的。根据NMR基本原理,处于均匀磁场B0中的自旋体系,其共振频率为ω0=γB0。为了得到成像区域任意点的空间信息,需要在主磁场上叠加三个彼此正交的梯度磁场Gx、Gy和Gz,分别用于层面选取、相位编码和频率编码。此时成像空间某一体元的共振频率为:ω0=γ(B0+xGx+yGy+zGz)。
2磁共振成像系统的基本结构
磁共振成像系统的基本结构,主要包括磁体部分、谱仪部分、计算机部分。其中谱仪部分又可以细分为射频发射单元、信号接收单元、脉冲梯度单元和脉冲序列控制单元。
磁体部分包括主磁体、射频线圈、梯度线圈和匀场线圈。用于磁共振成像的磁体可分为永磁型、常导型和超导型。射频线圈既有射频发射功能又有信号探测功能,因此射频线圈就有了发射线圈和接收线圈之分。匀场线圈由若干个小线圈所组成,构成以磁体中心为调解对象的线圈阵列。
谱仪部分包括射频发射单元、信号接收单元、脉冲梯度单元和脉冲序列控制单元。各部分功能都在核心板和母板中得到实现。计算机系统包括控制计算机、主计算机、图像显示、存档、传输等辅助设施。所用主计算机有工作站,也有用工业PC机,高场系统大部分用工作站,低场系统大部分用微机。控制计算机用来实现对整机的运行操作。主计算机和控制计算机之间有数据总线相连,各谱仪单元都和控制计算机有通讯联系。主计算机主要完成数据的处理,包括谱图变换,参数设置,图像重建,图像处理,病人资料的管理。其中实验部分参数设置主要由脉冲序列编译器来完成设置、修改和管理。
核磁共振是重要的检测手段和分析手段之一。随着其应用领域的拓展和深入,核磁共振谱仪技术也不断地发展和完善。本文研究了核磁共振原理,核磁共振成像的原理,核磁共振成像系统的结构,对使用相关仪器有很大帮助意义。
参考文献
[1]据栋林.核磁共振成像学[M].高等教育出版社,2004.
量子计算基本原理范文2
【关键词】量子;通信;技术;发展
对量子信息进行研究是将量子力学作为研究基础,根据量子并行、纠缠以及不可克隆特性,探索量子编码、计算、传输的可能性,以新途径、思路、概念打破原有的芯片极限。从本质来说:量子信息是在量子物理观念上引发的效应。它的优势完全来源于量子并行,量子纠缠中的相干叠加为量子通讯提供了依据,量子密码更多的取决于波包塌缩。理论上,量子通信能够实现通信过程,最初是通过光纤实现的,由于光纤会受到自身与地理条件限制,不能实现远距离通信,所以不利于全球化。到1993年,隐形传输方式被提出,通过创建脱离实物的量子通信,用量子态进行信息传输,这就是原则上不能破译的技术。但是,我们应该看到,受环境噪声影响,量子纠缠会随着传输距离的拉长效果变差。
一、量子通信技术
(一)量子通信定义
到目前为止,量子通信依然没有准确的定义。从物力角度来看,它可以被理解为物力权限下,通过量子效应进行性能较高的通信;从信息学来看,量子通信是在量子力学原理以及量子隐形传输中的特有属性,或者利用量子测量完成信息传输的过程。
从量子基本理论来看,量子态是质子、中子、原子等粒子的具体状态,可以代表粒子旋转、能量、磁场和物理特性,它包含量子测不准原理和量子纠缠,同时也是现代物理学的重点。量子纠缠是来源一致的一对微观粒子在量子力学中的纠缠关系,同时这也是通过量子进行密码传递的基础。Heisenberg测不准原理作为力学基本原理,是同一时刻用相同精度对量子动量以及位置的测量,但是只能精确测定其中的一样结果。
(二)量子通信原理
量子通信素来具有速度快、容量大、保密性好等特征,它的过程就是量子力学原理的展现。从最典型的通信系统来说具体包含:量子态、量子测量容器与通道,拥有量子效应的有:原子、电子、光子等,它们都可以作为量子通信的信号。在这过程中,由于光信号拥有一定的传输性,所以常说的量子通信都是量子光通信。分发单光子作为实施量子通信空间的依据,利用空间技术能够实现空间量子的全球化通信,并且克服空间链路造成的距离局限。
利用纠缠量子中的隐形量子传输技术作为未来量子通信的核心,它的工作原理是:利用量子力学,由两个光子构成纠缠光子,不管它们在宇宙中距离多远,都不能分割状态。如果只是单独测量一个光子情况,可能会得到完全随机的测量结果;如果利用海森堡的测不准原理进行测量,只要测量一个光子状态,纵使它已经发生变化,另一个光子也会出现类似的变化,也就是塌缩。根据这一研究成果,Alice利用随机比特,随机转换已有的量子传输状态,在多次传输中,接受者利用量子信道接收;在对每个光子进行测量时,同时也随机改变了自己的基,一旦两人的基一样,一对互补随机数也就产生。如果此时窃听者窃听,就会破坏纠缠光子对,Alice与Bob也就发觉,所以运用这种方式进行通信是安全的。
(三)量子密码技术
从Heisenberg测不准原理我们可以知道,窃听不可能得到有效信息,与此同时,窃听量子信号也将会留下痕迹,让通信方察觉。密码技术通过这一原理判别是否存在有人窃取密码信息,保障密码安全。而密钥分配的基本原理则来源于偏振,在任意时刻,光子的偏振方向都拥有一定的随机性,所以需要在纠缠光子间分设偏振片。如果光子偏振片与偏振方向夹角较小时,通过滤光器偏振的几率很大,反之偏小。尤其是夹角为90度时,概率为0;夹角为45度时,概率是0.5,夹角是0度时,概率就是1;然后利用公开渠道告诉对方旋转方式,将检测到的光子标记为1,没有检测到的填写0,而双方都能记录的二进制数列就是密码。对于半路监听的情况,在设置偏振片的同时,偏振方向的改变,这样就会让接受者与发送者数列出现差距。
(四)量子通信的安全性
从典型的数字通信来说:对信息逐比特,并且完全加密保护,这才是实质上的安全通信。但是它不能完全保障信息安全,在长度有限的密文理论中,经不住穷举法影响。同时,伪随机码的周期性,在重复使用密钥时,理论上能够被解码,只是周期越长,解码破译难度就会越大。如果将长度有限的随机码视为密钥,长期使用虽然也会具有周期特征,但是不能确保安全性。
从传统的通信保密系统来看,使用的是线路加密与终端加密整合的方式对其保护。电话保密网,是在话音终端上利用信息通信进行加密保护,而工作密钥则是伪随机码。
二、量子通信应用与发展
和传统通信相比,量子通信具有很多优势,它具有良好的抗干扰能力,并且不需要传统信道,量子密码安全性很高,一般不能被破译,线路时延接近0,所以具有很快的传输速度。目前,量子通信已经引起很多军方和国家政府的关注。因为它能建立起无法破译的系统,所以一直是日本、欧盟、美国科研机构发展与研究的内容。
在城域通信分发与生成系统中,通过互联量子路由器,不仅能为任意量子密码机构成量子密码,还能为成对通信保密机利用,它既能用于逐比特加密,也能非实时应用。在严格的专网安全通信中,通过以量子分发系统和密钥为支撑,在城域范畴,任何两个用户都能实现逐比特密钥量子加密通信,最后形成安全性有保障的通信系统。在广域高的通信网络中,受传输信道中的长度限制,它不可能直接创建出广域的通信网络。如果分段利用量子密钥进行实时加密,就能形成安全级别较高的广域通信。它的缺点是,不能全程端与端的加密,加密节点信息需要落地,所以存在安全隐患。目前,随着空间光信道量子通信的成熟,在天基平台建立好后,就能实施范围覆盖,从而拓展量子信道传输。在这过程中,一旦量子中继与存储取得突破,就能进一步拉长量子信道的输送距离,并且运用到更宽的领域。例如:在潜安全系统中,深海潜艇与岸基指挥一直是公认的世界难题,只有运用甚长波进行系统通信,才能实现几百米水下通信,如果只是使用传统的加密方式,很难保障安全性,而利用量子隐形和存储将成为开辟潜通的新途径。
三、结束语
量子技术的应用与发展,作为现代科学与物理学的进步标志之一,它对人类发展以及科学建设都具有重要作用。因此,在实际工作中,必须充分利用通信技术,整合国内外发展经验,从各方面推进量子通信技术发展。
参考文献
[1]徐启建,金鑫,徐晓帆等.量子通信技术发展现状及应用前景分析[J].中国电子科学研究院学报,2009,4(5):491-497.
量子计算基本原理范文3
关键词:基础量子化学 教学实践 教学改革
量子化学是高等师范院校化学专业为硕士研究生开设的一门专业基础课程,其任务是使学生利用量子力学的基本原理和方法掌握微观物质运动的基本规律,探索物质的结构及结构与性能关系[1,2]。目前,量子化学理论已愈来愈广泛地应用到化学各个分支学科领域中,并渗透到其他自然学科中,从而使量子化学的教学在整个化学专业教学计划中的重要性日益增加。但它涉及面广,内容比较抽象,且具有极强的理论性,同时要求学生具有较强的空间思维能力,因而量子化学教学不仅对教师提出较高的素质要求,而且对教学方法提出新的课题。下面我结合多年来在量子化学教学改革中的探索和尝试,谈谈教学感受和体会。
三、开展第二课堂,培养学生计算技能
为了让学生把学到的量子化学理论运用到研究中,掌握一些专业软件的计算技巧,教师可利用课余时间开展第二课堂,为学生提供一个学习和实践的平台,给他们创造更多的锻炼机会。例如,搞有机合成的研究生,根据专业需要可以让这些学生学会过渡态的寻找和优化,通过理论计算探索反应机理,能预测最佳反应通道,为他们的研究方向提供理论支持;研究方向是无机配位化学,可以让这些学生学习一些金属配合物的计算方法,学习配合物电子吸收光谱、荧光光谱及磁性的计算,这些计算结果对合成具有特殊性能的配合物都是很有帮助的。在第二课堂中,也可以让基础较好的学生参与到自己的科研活动中,承担一部分力所能及的科研课题,使学生科研能力得到锻炼,激发他们的科研热情,拓宽他们的视野,同时自己通过学生的实践活动,找到自己课堂教学中的不足。第二课堂的开展,不仅把学生所学的理论知识转化成学生认识和解决实际问题的能力,更重要的是教师身上这些品质能够言传身教地影响学生,从而使学生具备创造的兴趣和素质。
四、结语
量子化学的教学改革取得了一定的效果,首先学生克服了量子化学难学的畏难心理,激发了学生学习量子化学的激情,可以在有限的教学时间内达到较好的教学效果;其次,通过开展第二课堂,将量子化学理论与科研实例有机地结合起来,培养了学生分析问题、解决问题及科研创新的能力。
参考文献:
量子计算基本原理范文4
一、简介
量子通信又称量子隐形传送(Quantum Teleportation),量子通信是由量子态携带信息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密通信过程。量子通信是一种全新通信方式,它传输的不再是经典信息而是量子态携带的量子信息,是未来量子通信网络的核心要素。
量子隐形传送所传输的是量子信息,它是量子通信最基本的过程。人们基于这个过程提出了实现量子因特网的构想。量子因特网是用量子通道来联络许多量子处理器,它可以同时实现量子信息的传输和处理。相比于经典因特网,量子因特网具有安全保密特性,可实现多端的分布计算,有效地降低通信复杂度等一系列优点。
量子通信与成熟的通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点,是21世纪国际量子物理和信息科学的研究热点。
二、基本原理
量子通信是利用了光子等粒子的量子纠缠原理。量子信息学告诉人们,在微观世界里,不论两个粒子间距离多远,一个粒子的变化都会影响另一个粒子的现象叫量子纠缠,这一现象被爱因斯坦称为“诡异的互动性”。科学家认为,这是一种“神奇的力量”,可成为具有超级计算能力的量子计算机和量子保密系统的基础。
量子态的隐形传输在没有任何载体的携带下,而只是把一对携带信息的纠缠光子分开来,将其一的光子发送到特定的位置,就能准确推测出另一个光子的状态,从而达到“超时空穿越”的通信方式和“隔空取物”的运输方式。
量子态隐形传输就是远距离传输,是在无比奇特的量子世界里,量子呈现的“纠缠”运动状态。该状态的光子如同有“心电感应”,能使需要传输的量子态“超时空穿越”,在一个地方神秘消失,不需要任何载体的携带,又在另一个地方瞬间出现。事实上,纠缠的两个粒子尽管可以在很远的距离上一个影响另一个,但它们无法传递任何信息。以密钥为例,当双方共享同一套密钥时,并没有发生信息的传递双方无法利用密钥做任何事情,直到加密的文本传来,密钥才有意义传送加密文本的速度仍然不可能超过光速。相对论没有失效。量子通信和传统通信的唯一区别在于,量子通信采用了一种新的密钥生成方式,而且密钥不可能被第三方获取。量子通信并不神奇。
在建立量子态隐形传输的基础上,科学家又叠加上了“后选择”算法,完成了一种新模型(P-CTCs)。“后选择”算法能够确保某一特定类型的量子信息态进行隐形传输,而将其他量子信息过滤掉。只有经“后选择”法认定传输前后能自相一致的量子信息态,才有资格得到这种“通行证”,进行隐形传输。这种情况下,时间旅行成立的先决条件就是一个自治、不产生矛盾的环境状态。它允许回到过去时空,但禁止一切可能在未来导致悖论产生的行为。
量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。
按其所传输的信息是经典还是量子而分为两类:前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。
三、存在问题
有人指出量子密码可能并非想象中的牢不可破。在2008年,就有瑞典林雪平大学学者拉森和挪威科技大学学者马卡罗夫分别指出量子通信体系的漏洞。虽然这些并不是量子密码原理的不完满,而是系统的不适应,却也让人们对未来的量子通信体系留有一些不确定。
而量子力学本身留给人们的不确定性更多。量子纠缠中超越光速的超距作用因违背光速不变原理而难以置信,而量子纠缠的发生机理至今(2012年)仍是未解之谜,量子力学与广义相对论之间的不相容问题列为当代科学所面临的四大难题之首。
四、应用状况
量子通信不仅在军事、国防等领域具有重要的作用,而且会极大地促进国民经济的发展。自1993年美国研究人员提出量子通信理论,美国国家科学基金会、国防高级研究计划局都对此项目进行了深入的研究。瑞士、法国等欧美国家也成立公司进行量子通信的商业研发。
欧盟在1999年集中国际力量致力于量子通信的研究,研究项目多达12个。
日本邮政省把量子通信作为21世纪的战略项目。
2009年,量子政务网、量子通信网相继在中国建成。这两个可投入实际使用的量子通信网络,标志着原本停留在纸面和实验室的量子保密通信,已经开始在人们的日常生活中应用。2011年,中国科学院启动了空间科学战略性先导科技专项,计划在2015年左右发射全球首颗“量子通讯卫星”。中国于2011年10月在青海湖首次成功实现了百公里量级的自由空间量子隐形传态和纠缠分发。
量子通信技术将给军事通信特别是潜艇通信带来革命性的影响。
参考文献
[1]GJB72A-2002 量子通信技术.
量子计算基本原理范文5
关键词:量子比特;量子力学;量子相干性;并行运算
0 引言
自1946年第一台电子计算机诞生至今,共经历了电子管、晶体管、中小规模集成电路和大规模集成电路四个时代。计算机科学日新月异,但其性能却始终满足不了人类日益增长的信息处理需求,且存在不可逾越的“两个极限”。
其一,随着传统硅芯片集成度的提高,芯片内部晶体管数与日俱增,相反其尺寸却越缩越小(如现在的英特尔双核处理器采用最新45纳米制造工艺,在143平方毫米内集成2.91亿晶体管)。根据摩尔定律估算,20年后制造工艺将达到几个原子级大小,甚至更小,从而导致芯片内部微观粒子性越来越弱,相反其波动性逐渐显著,传统宏观物理学定律因此不再适用,而遵循的是微观世界焕然一新的量子力学定理。也就是说,20年后传统计算机将达到它的“物理极限”。
其二,集成度的提高所带来耗能与散热的问题反过来制约着芯片集成度的规模,传统硅芯片集成度的停滞不前将导致计算机发展的“性能极限”。如何解决其发热问题?研究表明,芯片耗能产生于计算过程中的不可逆过程。如处理器对输入两串数据的异或操作而最终结果却只有一列数据的输出,这过程是不可逆的,根据能量守恒定律,消失的数据信号必然会产生热量。倘若输出时处理器能保留一串无用序列,即把不可逆转换为可逆过程,则能从根本上解决芯片耗能问题。利用量子力学里的玄正变换把不可逆转为可逆过程,从而引发了对量子计算的研究。
1 量子计算的基本原理
1.1 传统计算的存储方式
首先回顾传统计算机的工作原理。传统电子计算机采用比特作为信息存储单位。从物理学角度,比特是两态系统,它可保持其中一种可识别状态,即“1”或者“()”。对于“1”和“0”,可利用电流的通断或电平的高低两种方法表示,然后可通过与非门两种逻辑电路的组合实现加、减、乘、除和逻辑运算。如把0~0个数相加,先输入“00”,处理后输入“01”,两者相“与”再输入下个数“10”,以此类推直至处理完第n个数,即输入一次,运算一次,n次输入,n次运算。这种串行处理方式不可避免地制约着传统计算机的运算速率,数据越多影响越深,单次运算的时间累积足可达到惊人的数字。例如在1994年共1600个工作站历时8月才完成对129位(迄今最大长度)因式的分解。倘若分解位数多达1000位,据估算,即使目前最快的计算机也需耗费1025年。而遵循量子力学定理的新一代计算机利用超高速并行运算只需几秒即可得出结果。现在让我们打开量子计算的潘多拉魔盒,走进奇妙神秘的量子世界。
1.2 量子计算的存储方式
量子计算的信息存储单位是量子比特,其两态的表示常用以下两种方式:
(1)利用电子自旋方向。如向左自转状态代表“1”,向右自转状态代表“0”。电子的自转方向可通过电磁波照射加以控制。
(2)利用原子的不同能级。原子有基态和激发态两种能级,规定原子基态时为“0”,激发态时为“1”。其具体状态可通过辨别原子光谱或核磁共振技术辨别。
量子计算在处理0~n个数相加时,采用的是并行处理方式将“00”、“01”、“10”、“11”等n个数据同时输入处理器,并在最后做一次运算得出结果。无论有多少数据,量子计算都是同时输入,运算一次,从而避免了传统计算机输入一次运算一次的耗时过程。当对海量数据进行处理时,这种并行处理方式的速率足以让传统计算机望尘莫及。
1.3 量子叠加态
量子计算为何能实现并行运算呢?根本原因在于量子比特具有“叠加状态”的性质。传统计算机每个比特只能取一种可识别的状态“0”或“1”,而量子比特不仅可以取“0”或“1”,还可同时取“0”和“1”,即其叠加态。以此类推,n位传统比特仅能代表2n中的某一态,而n位量子比特却能同时表示2n个叠加态,这正是量子世界神奇之处。运算时量子计算只须对这2n个量子叠加态处理一次,这就意味着一次同时处理了2n个量子比特(同样的操作传统计算机需处理2n次,因此理论上量子计算工作速率可提高2n倍),从而实现了并行运算。
量子叠加态恐怕读者一时难以接受,即使当年聪明绝顶的爱因斯坦也颇有微词。但微观世界到底有别于我们所处的宏观世界,存在着既令人惊讶又不得不承认的事实,并取得了多方面验证。以下用量子力学描述量子叠加态。
现有两比特存储单元,经典计算机只能存储00,01,10,11四位二进制数,但同一时刻只能存储其中某一位。而量子比特除了能表示“0”或“1”两态,还可同时表示“0”和“1”的叠加态,量子力学记为:
lφ〉=al1〉+blO〉
其中ab分别表示原子处于两态的几率,a=0时只有“0”态,b=0时只有“1”态,ab都不为0时既可表示“0”,又可表示“1”。因此,两位量子比特可同时表示4种状态,即在同一时刻可存储4个数,量子力学记为:
1.4 量子相干性
量子计算除可并行运算外,还能快速高效地并行运算,这就用到了量子的另外一个特性――量子相干性。
量子相干性是指量子之间的特殊联系,利用它可从一个或多个量子状态推出其它量子态。譬如两电子发生正向碰撞,若观测到其中一电子是向左自转的,那么根据动量和能量守恒定律,另外一电子必是向右自转。这两电子间所存在的这种联系就是量子相干性。
可以把量子相干性应用于存储当中。若某串量子比特是彼此相干的,则可把此串量子比特视为协同运行的同一整体,对其中某一比特的处理就会影响到其它比特的运行状态,正所谓牵一发而动全身。量子计算之所以能快速高效地运算缘归于此。然而令人遗憾的是量子相干性很难保持,在外部环境影响下很容易丢失相干性从而导致运算错误。虽然采用量子纠错码技术可避免出错,但其也只是发现和纠正错误,却不能从根本上杜绝量子相干性的丢失。因此,到达高效量子计算时代还有一段漫长曲折之路。
2 对传统密码学的冲击
密码通信源远流长。早在2500年前,密码就已广泛应用于战争与外交之中,当今的文学作品也多有涉猎,如汉帝赐董承的衣带诏,文人墨客的藏头诗,金庸笔下的蜡丸信等。随着历史的发展,密码和秘密通讯备受关注,密码学也应运而生。防与攻是一个永恒的活题,当科学家们如火如荼地研究各种加密之策时,破译之道也得以迅速发展。
传统理论认为,大数的因式分解是数学界的一道难题,至今也无有效的解决方案和算法。这一点在密码学有重要应用,现在广泛应用于互联网,银行和金融系统的RSA加密系统就是基于因式难分解而开发出来的。然而,在理论上包括RSA在内的任何加密算法都不是天衣无缝的,利用穷举法可一一破解,只要衡量破解与所耗费的人力物力和时间相比是否合理。如上文提到传统计算机需耗费1025年才能对1000位整数进行因式分解,从时间意义上讲,RSA加密算法是安全的。但是,精通高速并行运算的量子计算一旦问世,萦绕人类很久的因式分解难题迎刃而解,传统密码学将受到前所未有的巨大冲击。但正所谓有矛必有盾,相信届时一套更为安全成熟的量子加密体系终会酝酿而出。
3 近期研究成果
目前量子计算的研究仍处于实验阶段,许多科学家都以极大热忱追寻量子计算的梦想,实现方案虽不少,但以现在的科技水平和实验条件要找到一种合适的载体存储量子比特,并操纵和观测其微观量子态实在是太困难了,各界科学家历时多年才略有所获。
(1)1994年物理学家尼尔和艾萨克子利用丙胺酸制出一台最为基本的量子计算机,虽然只能做一些像1+1=2这样简单的运算,但对量子计算的研究具有里程碑的意义。
(2)2000年8月IBM用5个原子作为处理和存储器制造出当时最为先进的量子计算机,并以传统计算机无法匹敌的速度完成对密码学中周期函数的计算。
(3)2000年日本日立公司成功开发出“单电子晶体管”量子元件,它可以控制单个电子的运动,且具有体积小,功耗低的特点(比目前功耗最小的晶体管约低1000倍)。
(4)2001年IBM公司阿曼顿实验室利用核磁共振技术建构出7位量子比特计算机,其实现思想是用离子两个自转状态作为一个量子比特,用微波脉冲作为地址。但此法还不能存储15位以上的量子单元。
(5)2003年5月《Nature》杂志发表了克服量子相关性的实验结果,对克服退相干,实现量子加密、纠错和传输在理论上起到指导作用,从此量子通信振奋人心。
(6)2004年9月,NTT物性科学研究所试制出新一代存储量子比特的新载体――“超导磁束量子位”。它可通过微波照射大幅度提高对量子比特自由度的控制,其量子态也相对容易保持。
量子计算基本原理范文6
关键词:量子密码;量子加密;测不准原理;EPR关联;量子纠缠
中图分类号:TP393文献标识码:A 文章编号:1009-3044(2007)03-10732-02
1 引言
传统的加密系统,不管是对密钥技术还是公钥技术,其密文的安全性完全依赖于密钥的秘密性。密钥必须是由足够长的随机二进制串组成,一旦密钥建立起来,通过密钥编码而成的密文就可以在公开信道上进行传送。然而为了建立密钥,发送方与接收方必须选择一条安全可靠的通信信道,但由于截收者的存在,从技术上来说,真正的安全很难保证,而且密钥的分发总是会在合法使用者无从察觉的情况下被消极监听。
近年来,由于量子力学和密码学的结合,诞生了量子密码学,它可完成仅仅由传统数学无法完成的完善保密系统。量子密码学是在量子理论基础上提出了一种全新的安全通信系统,它从根本上解决量子特性不可忽视,测量动作是量子力学的一个组成部分。在这些规律中,对量子密码学起关键作用的是Heisenberg测不准原理,即测量量子系统时通常会对该系统产生干扰,并产生出关于该系统测量前状态的不完整信息,因此任何对于量子信道进行监测的努力都会以某种检测的方式干扰在此信道中传输的信息。
本文内容安排如下:第二部分回顾经典的密码术,第三部分说明基于EPR纠缠对的量子加密原理和技术,第四部分介绍量子密码术,最后给出结论。
2 经典密码术
一般而言,加密体系有两大类别,公钥加密体系与私钥加密体系。经典保密通信原理如图1所示:
图1经典保密通信原理图
密码通信是依靠密钥、加密算法、密码传送、解密、解密算法的保密来保证其安全性.它的基本目的使把机密信息变成只有自己或自己授权的人才能认得的乱码。具体操作时都要使用密码讲明文变为密文,称为加密,密码称为密钥。完成加密的规则称为加密算法。讲密文传送到收信方称为密码传送。把密文变为明文称为解密,完成解密的规则称为解密算法。如果使用对称密码算法,则K=K’ , 如果使用公开密码算法,则K 与K’ 不同。整个通信系统得安全性寓于密钥之中。
公钥加密体系基于单向函数(one way function)。即给定x,很容易计算出F (x),但其逆运算十分困难。这里的困难是指完成计算所需的时间对于输入的比特数而言呈指数增加。举例而言,RSA (Rivest, Shamir, Adleman ) 即是具有代表性的公开密钥算法,其保密性建立在分解有大素数因子的合数的基础上。公钥体系由于其简单方便的特性在最近20年得以普及,现代电子商务保密信息量的95%依赖于RSA算法。但其存在以下主要缺陷。首先,人们尚无法从理论上证明算法的不可破性,尽管对于己知的算法,计算所需的时间随输入的比特数呈指数增加,我们只要增加密钥的长度即可提高加密体系的安全性,但没人能够肯定是否存在更为先进的快速算法。其次,随着量子计算机技术的迅速发展,以往经典计算机难以求解的问题,量子计算机可以迎刃而解。例如应用肖氏(Shor's )量子分解因式算法可以在多项式时间内轻易破解加密算法。
另一种广泛使用的加密体系则基于公开算法和相对前者较短的私钥。例如DES (Data Encryption Standard, 1977)使用的便是56位密钥和相同的加密和解密算法。这种体系的安全性,同样取决于计算能力以及窃听者所需的计算时间。事实上,1917年由Vernam提出的“一次一密码本”(one time pad) 是唯一被证明的完善保密系统。这种密码需要一个与所传消息一样长度的密码本,并且这一密码本只能使用一次。然而在实际应用中,由于合法的通信双方(记做Alice和Bob)在获取共享密钥之前所进行的通信的安全不能得到保证,这一加密体系未能得以广泛应用。
现代密码学认为,任何加密体系的加密解密算法都是可以公开的,其安全性在于密钥的保密性。实际上,由于存在被动窃听的可能性,如果通信双方完全通过在经典信道上传输经典信息,则在双方之间建立保密的密钥是不可能的。然而,量子物理学的介入彻底改变了这一状况。
3 量子加密的原理和技术
量子加密是目前科学界公认唯一能实现绝对安全的通信方式。它依赖于两点:一是基本量子力学效应(如测不准原理,Bell 原理量子不可克隆定理);二是量子密钥分配协议量子密码系统能够保证:(1)合法的通信双方可觉察潜在的窃听者并采取相应的措施;(2)使窃听者无法破解量子密码,无论破译者有多么强大的计算能力。同时,量子密码通信不是用来传送密文或明文,而是用来建立和传送密码本,这个密码本是绝对安全的。到目前为止,实现量子加密的方案主要有如下几种:
(1)基于两组共扼正交基的四状态方案,其代表为BB84协议;
(2)基于两个非正交态的二状态方案,其代表为B92协议;
(3)基于EPR纠缠对的方案,其代表为E91协议;
(4)基于BB84协议与B92协议的4+2协议。
在这里我们主要介绍一下基于EPR纠缠对的方案,Ekert 于1991年提出的基于EPR的量子密钥分配协议(E91)充分利用了量子系统的纠缠特性,通过纠缠量子系统的非定域性来传递量子信息,取代了BB84 协议中用来传递量子位的量子信道,因而可以更加灵活地实现密钥分配。此外,与BB84 不同的是,E91协议借助于Bell 不等式来验证是否存在窃听者,而在BB84 和B92 中,都是通过随机校验来实现窃听验证。
虽然量子密钥分配协议的安全性与Bell不等式之间的确切关系尚不清楚,但是利用Bell不等式的确可以保证量子密钥分配是无条件安全的。也就是说无论Eve采取多么高明的窃听策略,采用多么精密的窃听设备,她的窃听行为必然影响纠缠态,进而使Bell不等式成立。
其中任意角度均表示光子的偏振方向。量子位的信息编码规则为:
相应的测量算子为:
根据上述设置,E91密钥分配的操作按如下步骤实施:
(1)Alice等概率的从{│ω0>,│ω1>,│ω2>}中随机选取一个纠缠态│ωj> ,保留第一个量子位,并把第二个量子位发送给Bob. Alice没有必要记住│ωj>究竟处于什么态, 只要保证三种纠缠态被等概率的选取。该过程可以在密钥分配前任何方便的时候进行,而且还可以有Bob或者可靠的第三方执行。
(2)Alice和Bob各自独立地测量自己的量子位,测量算子等概率地从{M0,M1,M2}中随机选取。
(3)Alice直接记录测量结果对应的编码信息比特,Bob则记录编码信息比特的反码。
(4)Alice和Bob在公开的经典信道公布自己所选取的测量算子。当然,Alice和Bob 都不透露自己的测量结果。
(5)Alice和Bob保留相同的测量算子所对应的信息比特作为原始密钥(raw key)。其余的信息比特记为排异位(rejected bits),与BB84和B92不同,排异位不再被丢弃,而是被公布以用来验证Bell不等式是否成立,并以此判断是否存在窃听者。
然而根据量子力学,对于上述纠缠纯态,应有β= -0.5,Alice和Bob可以利用公布的排异位分别计算β ,若Bell不等式成立,即β≥0 ,则表明纠缠态已经被破坏,原始密钥是不可靠的; Bell不等式不成立,即 β
最后,Alice和Bob利用经典纠错码对密钥进行纠错,最后施行保密增强生成最终密钥。
4 量子密码术
考虑到环境噪声和窃听者的作用,以防止窃听者获得尽可能多信息从而实现高效的量子密码传输通信。因此在实际通信系统中,所有量子密钥分发协议都要完成以下四个过程:
4.1 量子传输
不同量子密码协议有不同的量子传输方式,但它们有一个共同点:都是利用量子力学原理(如海森堡测不准原理)。在实际的通信系统中,在量子信道中Alice随机选取单光子脉冲的光子极化态和基矢,将其发送给Bob, Bob再随机选择基矢进行测量,测到的比特串记为密码本。但由于噪声和Eve的存在而使接受信息受到影响,特别是Eve可能使用各种方法对Bob进行干扰和监听,如量子拷贝,截取转发等,根据测不准原理,外界的干扰必将导致量子信道中光子极化态的改变并影响Bob的测量结果,由此可以对窃听者的行为进行检测和判定。这也是量子密码区别于其它密码体制的重要特点。
4.2 筛选数据
在量子传输中由于噪声,特别是Eve 的存在,将使光子态序列中光子的偏振态发生变化。另外,实际系统中,Bob 的检测仪也不可能百分之百正确地记录测量结果,所以,A1ice 和Bob 比较测量基后会放弃所有那些在传送过程中没有收到或测量失误,或由于各种因素的影响而不合要求的测量基,然后,他们可以公开随机的选择一些数据进行比较,再丢弃,计算出错误率,若错误率超过一定的阈值,应考虑窃听者的存在。A1ice和Bob放弃所有的数据并重新传光子序列,若是可以接收的结果,则A1ice和Bob将剩下的数据保存下来,所获得数据称为筛选数据。假设量子传输中A1ice传给Bob的量子比特(Qubit)为m bit,筛选掉m-n bit,则得到的原数据为n bit。在这个过程中可以检测出明显的Eve的存在。
4.3 数据纠错
所得到的n bit的筛选数据并不能保证A1ice和Bob各自保存完全的一致性,通信双方仍不能保证各自保存的全部数据没被窃听。因此要对原数据进行纠错。人们提出了几种方法,经研究后提出以下方法:
(1)A1ice和Bob约定好随机的变换他们bit 串的位置来打乱错误的位置;
(2)将bit 串分成大小为K 的区,K的选取应使每一个区的错误尽可能的小;
(3)对于每一个区,A1ice和Bob计算并公开宣布了奇偶校验结果;
(4)若相同,A1ice和Bob约定放弃该区的最后一个比持;
(5)若不同,用log(K)反复查找来定位和纠正区中的错误;
(6)由于奇偶校验只能发现奇数个同时出现的错误,所以仍会有小部分错误存在,为了解决这种情况,反复以上步骤,不断地增加区的大小。
4.4 保密增强
保密加强是为了进一步提高所得密钥的安全性,它是一种非量子方法,其具体实现为假设Alice 发给Bob 一个随机变量W , 如一个随机的n bit 串,在随机变量V 中,窃听者Eve 获得一个正确的随机变量V, 设对应的比特为t
4.5 身份认证
经过以上的过程,获得了一个对窃听者Eve完全安全的密钥,但他假定朋Alice和Bob都是合法的,并没有对A1ice和Bob的身份认证。可能会出现A1ice或M是假冒的情况,因此我们在原BM4协议中加人身份认证这一过程:我们可以从量子密钥中获取认证密钥而实现。将以上过程所得到的密钥称为原密钥(Raw Key)rK,将其分成三个部分:rK=Ka+Kb+K,其中Ka,Kb用于身份确认。具体过程如下:A1ice秘密地从rK中选取Ka,并发送给Bob,同时Bob秘密地从rK中选取Kb并发送给A1ice,然后A1ice和Bob分别以Kb,Ka利用单向哈希函数获得各自的秘密密钥Ka',Kb'。最后A1ice和Bob利用双钥认证体制实现身份确认。
5 结论
量子密码术是量子物理学和密码学相结合的一门新兴科学,它成功地解决了传统密码学中单靠数学无法解决的问题并引起国际上高度重视,是主要应用于量子信息领域的一个重要课题。近年来,许多国内外研究机构对量子密码通信的研究非常活跃,这种新的密码通信不同于经典的密码通信,有着绝对安全的优点。
总之,随着单光子探测等技术的不断发展,量子密码通信技术在全光网络和卫星通信等领域的应用潜力会不断挖掘并成为现实,当量子计算机成为现实时经典密码体制将无安全可言,量子密码术将成为保护数据安全的最佳选择之一。因此,对量子保密通信技术以及为合法通信者间的安全通信的进一步研究将是一项非常有意义的工作。
参考文献:
[1]Nicolas Gisin, Gre′ goire Ribordy, Wolfgang Tittel, and Hugo Zbinden,Quantum cryptography[J], REVIEWS OF MODERN PHYSICS, VOLUME 74, JANUARY 2002.
[2]DAVID S. PEARSON, CHIP ELLIOTT, ON THE OPTIMAL MEAN PHOTON NUMBER FOR QUANTUM CRYPTOGRAPHY[J], Quantum Information and Computation, Vol. 0, No. 0 (2003) 000C000.
[3]Chip Elliott,Dr. David Pearson,Dr. Gregory Troxel,Quantum Cryptography in Practice[J], PREPRINT C May 1, 2003
[4]Daniel Collins, Nicolas Gisin and Hugues de Riedmatten,Quantum Relays for Long Distance Quantum Cryptography[R],14 November 2003.
[5]Norbert Lu¨tkenhaus,Security against individual attacks for realistic quantum key distribution[J],PHYSICAL REVIEW A, VOLUME 61, 052304.