生物特征识别技术范例6篇

前言:中文期刊网精心挑选了生物特征识别技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

生物特征识别技术

生物特征识别技术范文1

关键词:生物识别;微控制器;Blackfin;MSA

引言

生物特征识别技术是指利用人体固有的生理特征或行为特征来进行个人身份鉴别认证的技术。生物特征识别技术包括采用人体固有的生理特征(如人脸、指纹、虹膜、静脉)进行的身份认证技术和利用后天形成的行为特征(如签名、笔迹、声音、步态)进行的身份认证技术。与传统的身份鉴定手段相比,基于生物特征识别的身份鉴定技术具有如下优点:(1)不会遗忘或丢失,(2)防伪性能好,不易伪造或被盗,(3)“随身携带”,随时随地可用。正是由于生物特征身份识别认证具有上述优点,基于生物特征的身份识别认证技术受到了各国的极大重视。

生物特征识别技术及其发展趋势

目前,常用的生物特征识别技术所用的生物特征有基于生理特征的如人脸、指纹、虹膜,也有基于行为特征的如笔迹、声音等。下面就这些常见的生物特征识别技术的特点及其发展趋势作一简单介绍。

人脸识别

人脸识别作为一种基于生理特征的身份认证技术,与目前广泛应用的以密码、IC卡为媒介的传统身份认证技术相比,具有不易伪造、不易窃取、不会遗忘的特点,而人脸识别与指纹、虹膜、掌纹识别等生理特征识别技术相比,具有非侵犯性、采集方便等特点。因而人脸识别是一种非常自然、友好的生物特征识别认证技术。

人脸识别技术包括图像或视频中进行人脸检测、从检测出的人脸中定位眼睛位置、然后提取人脸特征、最后进行人脸比对等一系列相关的技术。

最早的人脸识别系统建成于20世纪60年代,该系统以人脸特征点的间距、比率等参数作为特征,构建了一个半自动的人脸识别系统。此时的人脸识别研究多集中于研究如何提取特征点进行人脸识别,如人脸特征器官(眼角、嘴角、鼻孔)的相对位置、大小、形状、面积及彼此间的几何关系等。由于这些特征点难以准确定位、鲁棒性差,因而采用这些方法的人脸识别系统的性能都很低。

自20世纪80年代开始,人脸识别技术出现了基于面部图像的方法。与基于特征点的方法相比,基于面部图像的方法不是提取人脸特征器官这一高层特征,而是将人脸作为一个图像整体,从图像中提取反映人脸特性的特征如DCT变换特征、小波特征、Gabor特征等等。基于面部图像的方法由于利用了更多的底层信息,以及统计模式识别方法的引入,使得这类方法具有非常高的识别率和非常好的鲁棒性。由于基于面部图像的人脸识别算法具有很高性能,目前已经出现了不少推广人脸识别技术的厂商,如国内的北京海鑫科金高科技股份有限公司、国外的LIID等。

为了评测基于面部图像的人脸识别算法的性能。美国ARPA和ARL于1993年至1996年建立了FERET数据库,用于评测当时的人脸识别算法的性能。共举行了三次测试FERET94、FERET95、FERET96。FERET测试的结果指出,光照、姿态和年龄变化会严重影响人脸识别的性能。

FERET的测试结果也表明了基于面部图像的方法的缺点。人脸是一个三维非刚体,具有姿态、表情等变化,人脸图像采集过程中易受到光照、背景、采集设备的影响。这些影响会降低人脸识别的性能。

为了克服姿态变化对人脸识别性能的影响,也为了进一步提高人脸识别性能,20世纪90年代后期,一些研究者开始采用基于3D的人脸识别算法。这些算法有的本身就采用三维描述人脸,有的则用二维图像建立三维模型,并利用三维模型生成各种光照、姿态下的合成图像,利用这些合成图像进行人脸识别。

2000年后,人脸识别算法逐渐成熟,出现了商用的人脸识别系统。为了评测这些商用系统的性能,也作为FERET测试的延续,美国有关机构组织了FRVT2000、FRVT2002、FRVT2006测试。测试结果表明,人脸识别错误率在FRVT2006上下降了至少一个数量级,这种性能的提升在基于图像的人脸识别算法和基于三维的人脸识别算法上都得到体现。此外,在可控环境下,虹膜、静态人脸和三维人脸识别技术的性能是相当的。此外,FRVT2006还展现了不同光照条件下人脸识别性能的显著提高,最后,FRVT2006表明人脸自动识别的性能优于人。值得一提的是,清华大学电子工程系作为国内唯一参加FRVT2006的评测的学术机构,其人脸自动识别性能优于人类。

FRVT2006为人脸识别后续的研究指明了方向,人脸识别中光照、年龄变化依然对人脸识别性能有很大影响,二维人脸识别的性能不比三维人脸识别差。

指纹识别

指纹识别技术是指通过比较不同人指纹中的特征点不同来区分不同人的身份。指纹识别技术通常由三个部分组成:对指纹图像进行预处理。提取特征值,并形成特征值模板。指纹特征值比对。

指纹图像预处理的目的是为了减少噪声干扰的影响,以便有效提取指纹特征值。常用的预处理方法有图像增强、图像平滑、二值化、图像细化等。

特征提取的目的就是从预处理后的指纹图像中,提取出能够表达该指纹图像与众不同的特征点的过程。最初特征提取是基于图像的,从图像整体中提取出特征进行比较,但该方法的精度和性能较低。现在一般采用基于特征点的方法,从图像中提取反应指纹特性的全局特征(如纹形、模式区、核心区、三角点、纹数等)和局部特征(如终结点、分叉点、分歧点、孤立点、环点等)。得到特征点后就可以对特征点进行编码形成特征值模板。

指纹特征值比对就是把当前获得的指纹特征值与存储的指纹特征值模板进行匹配,并给出相似度的过程。

虹膜识别

虹膜相对而言是一个较新的生物特征。1983年,Flom与Safir申请了虹膜识别专利保护,使得虹膜识别方面的研究很少。1993年,Daugman发表了关于虹膜自动识别算法的开创性工作,奠定了世界上首个商业虹膜自动识别系统的基础。随着Flom和Safir专利在2005年的失效和CASIA及ICE2005中虹膜数据集的提供,虹膜识别算法的研究越来越蓬勃。ICE2006首次对虹膜识别算法性能进行了测试。

虹膜识别中需要解决如下两个难点问题:一是虹膜图像的获取,二是实现高性能的虹膜识别算法。

生物特征识别产品的发展趋势

生物特征识别产品逐步从单一PC处理,

转变为分布式计算。用独立的前端独立设备来完成生物特征的采集、预处理、特征提取和比对,而用中心PC或服务器完成与业务相关的处理。阐述这种方式较之传统方式的优点一由于前端采用嵌入式设备,因而自然提出了对数字信号处理器的要求。

生物特征识别技术对数字信号处理的挑战

为了获得更好的性能,研究者们从算法上、应用厂商从应用上对生物特征识别技术进行改进。这些算法根据不同生物特征的特点,采用新的数学模型,有效解决了现有算法的不足,使得生物特征识别技术性能上了一个新台阶。新的数学模型,较之以往的模型更为复杂,计算量更大。为了能够有效的在数字信号处理器上实现这些算法,要求数字信号处理器有更强的处理能力。我们下面结合人脸识别具体说生物特征识别技术对数字信号处理的挑战。

传统数字信号处理中核心算法之一就是傅立叶变换,该变换在通信、图像传输、雷达、声纳中都有很大的作用。但是,在相当长的时间里,由于傅立叶变换的计算量太大,即使采用计算机也很难对问题进行实时处理,所以并没有得到真正的运用。直到傅立叶变换的快速算法即快速傅立叶变换发现后,傅立叶变换的运算量大大缩短,从而使傅立叶变换在实际中得到了广泛的应用,也使得在数字信号处理器上实现傅立叶变换成为了可能。

尽管傅立叶变换对数学、物理产生了深远的影响,但对于大多数应用例如人脸识别而言是远远不够的。比如说人脸图像中,眼睛所含有的信息较其他部分对识别而言非常重要,需要找到一种方法,提取出眼睛这部分重要的信息,并尽量降低不重要的信息对识别的影响。这就需要对人脸图像进行局部分析。然而,傅立叶变换无法进行局部分析,使得傅里叶变换在人脸识别中的应用很有限。

为了提高性能,研究者将数字信号处理领域中新的复杂的变换如Gabor变换、小波变换引入人脸识别中,采用这些变换进行局部分析,提取出对人脸识别有用的特征,从而大大提高了人脸识别的性能。然而,Gabor变换和小波变换的计算量较之傅立叶变换而言非常大,为了在嵌入式设备上实现人脸识别系统,需要高主频、高性能的数字信号处理器来实现,这就对数字信号处理器的设计提出了一个很大的挑战。

从应用角度而言,为了良好的交互性,在实现人脸识别系统时,要求实时实现从视频采集到人脸识别全过程完成(或者至少在1~2秒钟内实现),否则,给人的感觉就不自然、不流畅。因而,从良好的交互性角度而言,在嵌入式设备上实现人脸识别系统需要高性能的数字处理器。

ADI公司的Blackfin系列处理器是一类专为满足当今嵌入式音频、视频和通信应用的计算要求和功耗约束条件而设计的新型16~32位嵌入式处理器。Blackfin处理器基于由ADI和Intel公司联合开发的微信号架构(MSA),它将一个32位RISC型指令集和双16位乘法累加(MAC)信号处理功能与通用型微控制器所具有的易用性组合在了一起。这种处理特征的组合使得Blackfin处理器能够在信号处理和控制处理应用中均发挥上佳的作用―在许多场合中免除了增设单独的异类处理器的需要。该能力极大地简化了硬件和软件设计实现任务。

目前,Blackfin处理器在单内核产品中可提供高达756MHz的性能。Blackfin处理器系列中的新型对称多处理器成员在相同的频率条件下实现了性能的翻番。Blackfin处理器系列还提供了低至0.8V的业界领先功耗性能。对于满足当今及未来的信号处理应用(包括宽带无线、具有音频/视频功能的因特网工具和移动通信)而言,这种商性能与低功耗的组合是必不可少的。

Blackfin处理器具有如下特点:

高性能处理器内核。Blackfin处理器架构基于一个10级RISCMCU/DSP流水线和一个专为实现最佳代码密度而设计的混合16/32位指令集架构,该架构很适合于全信号处理/分析能力。这种架构,使得人脸识别中的复杂的数字信号处理运算在Blackfin上很容易实现。

高带宽DMA能力。人脸识别中需要对图像块进行操作,这就涉及到内存数据存取。采用Blackfin的DMA控制器可以自动数据传输,所需的处理器内核开销极少。这样可以将宝贵的处理器的运算能力用于人脸识别的计算,减小数据存取对性能的影响。

・视频指令。人脸识别中最常进行的操作就是对像素值进行处理,Blackfin处理器具有对8位数据以及许多像素处理算法所常用的字长的固有支持,大大提高了人脸识别的处理速度。

・分层存储器。Blackfin具L1 Cache和L2Cache两级Cache,由于Cache较之外部存储器具有更快的存取速度,因而,在人脸识别时,可以把运算密集的代码放在L1 Cache或L2 Cache中,这样可以有效提高处理速度。

上述Blackfin处理器特点表明。Blackfin系列处理器非常适合处理需要高性能运算能力和高数据吞吐量的生物特征识别技术。

目前,Hisign已经将人脸识别的算法移植到ADI的Blackfin上,性能正在优化中。请继续关注。

生物特征识别技术范文2

1 生物特征传感器技术

通过某种原理可以测量生物特征,并将其转化成计算机可以处理的数字信号,这就是生物特征传感器的主要任务,也是生物特征识别的第一步。大部分的生物特征都是通过光学传感器如CCD 或CMOS 形成图像信号,例如人脸、指纹、虹膜、掌纹、手形、静脉等。但是虹膜和静脉图像需要主动的红外光源才可以得到细节清晰的个性特征。由于外加主动光源能够克服可见光线变化对生物特征的影响,所以最近在人脸识别领域有研究人员设计了红外成像设备,来克服人脸模式随光照变化的类内差异,从而大幅度提高了人脸识别的精度。

为了提高生物识别系统的易用性、舒适性和用户的接受程度,同时又要保证生物特征信号的质量,此外还要小巧精致、成本低廉,生物特征传感器技术还有许多需要改进的地方。例如最近已经有通过非接触方式采集的3D 指纹传感器技术。生物特征传感器的核心技术包括:

智能定位技术

生物特征获取装置必须让用户和识别系统处于合适的距离和位置才可以捕获合格的生物特征信号。最理想的方案是让采集装置自动判别用户的位置,然后主动调节光学系统或者直接通过机械装置移动采集设备,这样就可以降低对用户的要求,采集方式更加智能化和人性化。

人机接口设计

生物特征采集系统应该“以人为本”,符合人体工学,设计生物特征和采集装置之间的交互接口。通过开发用户自定位技术让用户在某种方式的导引下很快找到合适的成像位置。例如现有的人脸识别和虹膜识别系统中通常在采集装置上安装一面镜子或者设置一个注视点或者设计比较巧妙的光学系统,用户通过视觉或者语音反馈就可以比较迅速地找到适合成像的位置。

光学系统设计

主要是光学镜头组的设计和加工,如果需要主动光源照明的话还要在镜头上安装滤光片,根据成像距离设置主动光源。

机械控制技术

包括自动变焦的电控单元设计、配合用户的身高和距离进行程序调节的机械单元设计等。

生物特征传感器的核心技术还包括传感器电路设计; 信号传输与通信技术; 防撬报警技术以及和其他技术的有机结合。

2 活体检测技术

为了防止恶意者伪造和窃取他人的生物特征用于身份认证,生物识别系统必须具有活体检测功能,即判别向系统提交的生物特征是否来自有生命的个体。一般生物特征的活体判别技术利用的是人们的生理特征,例如活体指纹检测可以基于手指的温度、排汗、导电性能等信息, 活体人脸检测可以基于头部的移动、呼吸、红眼效应等信息,活体虹膜检测可以基于虹膜振颤特性、睫毛和眼皮的运动信息、瞳孔对可见光源强度的收缩扩张反应特性等。

此外,基于生物特征图像的光谱学信息也是进行活体检测的有效途径。例如打印的图像会形成有规律的纸质纹理特征,可以用频谱特征进行检测。此外,还可以通过人机互动的形式检测生物特征的活体特性; 使用多模态生物特征识别系统也可以提高伪造的难度。

从现有的技术水平看,活体检测功能一直是生物识别系统的薄弱环节,已经有研究人员使用伪造的指纹和人脸攻破了现有的系统,引发了有些用户对生物识别技术的信任危机。所以活体检测技术将是生物识别系统进入高端安全应用的最大瓶颈。

3 生物特征信号质量评价技术

在自动身份识别系统中,生物特征一般是以连续的视频流或者音频流的形式进行获取。由于有效的生物特征采集范围总是有限的,再加上人的运动、姿态变化等因素,传输到计算机的生物特征信号大部分都是不合格的。而高质量的生物特征信号是进行特征表达和身份识别的基础,低质量的生物特征信号有可能引起错误接收或错误拒绝,降低系统的稳定性和鲁棒性(系统的健壮性),浪费大量的计算资源在无效的生物特征信号处理上。

基于上述分析,我们可以从三个方面努力排除低质量生物特征信号对识别性能的影响:

■ 研究高性能的成像硬件平台;

■ 提高识别算法的鲁棒性;

■ 在生物识别系统中引入智能的质量评价软件模块,只容许较高质量的生物特征信号进行注册或识别。

在这些措施中设计有效的质量评价算法最实际。因为再鲁棒的识别算法能够接受的信号质量也是有限的。虽然已经有高性能的生物特征获取装置面世,但是价格十分昂贵,也解决不了根本问题。所以研究生物特征的质量评价算法对于识别系统性能的提高具有重要意义。

生物特征信号的质量评价可看做一个两类模式识别问题――将采集到的生物特征分为合格和不合格两种情况。如果要对合格信号量化打分,还要将评价指标定量化。生物特征信号的质量评价问题是一个比较困难的问题,因为造成特征信号质量差的原因千差万别,即负样本的种类太多,不胜枚举,很难设计一个分类器将所有的正负样本区分开。需要通过质量评价来过滤的低质量生物特征一般包括存在离焦模糊或运动模糊的图像,信噪比太低的信号,遮挡的图像等。一般可以从空域和频域两个角度出发去设计质量评价算法。

从产品实用化的角度考虑,生物识别系统现在遇到的最大的瓶颈之一就是信号的质量评价。一方面,为了拓宽系统的适用范围,提高产品的易用性,对用户更友好,为此,研究人员希望系统能在生物特征质量要求较低的条件下运作,但是同时又要求系统能有稳定的高精度。为了平衡这个矛盾,设计“稳、快、准”的质量评价算法将是必由之路。

4 生物信号的定位与分割技术

经过处理后的掌纹纹路更清晰了

从生物特征获取装置采集得到的原始信号一般不仅包括生物特征本身,还包括背景信息,例如原始的虹膜图像中包括虹膜、瞳孔、巩膜、眼皮和睫毛等多个区域,真正能有效鉴别人们身份的图像内容也就在虹膜区域。所以必须从原始信号中分割出感兴趣内容进行特征提取。定位和分割算法一般都是基于生物特征在图像结构和信号分布方面的先验知识。例如人脸检测就是要从图像中找到并定位人脸区域,一直是计算机视觉领域的研究热点。

2001年美国的Viola 和Jones提出了用易于计算的Harr 小波特征来描述人脸模式,用AdaBoost来训练人脸检测分类器,取得了人脸检测领域的突破性进展,实现了实时检测视频中的人脸图像,而且准确率也非常高。这个方法对计算机视觉和生物识别领域的影响都很大,现在商业化的人脸识别系统基本上都是使用这种人脸检测方法或者其变种。而且这种通过机器学习训练弱分类器的方法也被推广到了一般视觉对象的检测和识别上。指纹的分割算法一般是基于指纹区域和背景区域的图像块灰度方差的差异特性; 虹膜的定位主要利用瞳孔/虹膜/巩膜存在较大的灰度跳变并且成圆形的边缘分布结构特征; 掌纹的定位一般是基于手指之间的参考点来构建参考坐标系。

5 生物特征信号增强技术

得到了分割后的特征区域后,有的生物特征识别方法需要在特征提取前对感兴趣区域进行增强,主要目的包括去噪和凸显特征内容。例如人脸和虹膜图像一般用直方图均衡化的方法增强图像信息的对比度; 指纹一般用频域的方法得到脊线分布的频率和方向特征后进行纹路增强; 对于比较模糊的生物特征信号,可以考虑使用超分辨率的方法或者逆向滤波的方法进行增强。

6 生物特征信号的校准技术

为了克服不同时刻采集的生物特征信号之间的平移、尺度和旋转变换,需要将参与比对的两个生物特征进行对齐。有的生物特征校准在特征提取之前完成,例如常用主动形状模型(Active Shape Model)和主动表观模型(Active Appearance Model)进行人脸对齐; 有的生物特征校准的过程就是特征匹配的过程。生物特征信号的校准结果对于识别精度的影响很大,所以也有学者认为生物特征识别最重要的问题是校准技术。

7 生物特征表达与抽取技术

对于生物特征识别,不管是外行还是内行,人们首先想到的问题就是: 机器是用什么特征进行身份识别的?什么是生物特征信号中凸现个性化差异的本质特征?这就是生物识别的基本的、原理性的问题。对于这个问题在个别的生物特征识别领域得到了共识,例如指纹识别,大家都公认细节点(包括末梢点和分叉点)是描述指纹特征的最佳表达方式,所以国际上就有统一的基于细节点信息的指纹特征模板交换标准,给不同厂商的指纹识别系统的兼容性和数据交换带来了便利。但是在其他生物识别领域,例如人脸、虹膜、掌纹等领域研究人员还在不断探索最佳的特征表达模型。虽然这些领域的特征表达方法的种类繁多,部分算法也已经取得了很好的识别性能,但是人脸识别、虹膜识别、掌纹识别的根本问题―― “什么是人脸、虹膜或掌纹图像的本质特征及其有效表达?”一直没有得到权威和普遍认同的回答。

这是因为每个人脸、虹膜和掌纹图像的特征表达方法都是基于某种信号处理方法或者某个计算机视觉或者某个模式识别的理论,“公说公有理,婆说婆有理”,大家对于这些图像的本质特征表达还没有进行深入的研究。现在生物特征表达领域的流行趋势是把各种经典的或者新提出的图像分析方法依次去试,有点撞大运的感觉,产生这种现象的根源是大家没有基础理论的指导,不知道向哪个方向努力好。由于各种方法各自为“政”,造成生物特征模板的数据交换格式难以统一和标准化。例如人脸、虹膜和掌纹的数据交换标准只能基于图像,这是因为大家找不到一个统一的、权威的图像特征表达方法。

相对于基于特征的数据交换标准,基于图像的交换标准在计算和存储资源的占用、传输速率等多方面都处于下风。例如在电子护照应用中,统一格式的生物数据都存放在非接触IC 芯片中,在识别前需要通过无线读卡器从护照IC 中读出生物数据,这时基于特征的方法比基于图像的方法快100 倍,而且基于图像的方法还要多一个特征提取的步骤才能得到用户护照中的生物特征。所以不管是对于研究还是应用,生物特征信号本质特征的尽快确定都是最重要的。

通过模拟这些生物体神经细胞对外界视觉刺激的信息编码规则,计算机视觉研究人员提出了Ordinal Measures(定序测量特征)来表达图像内容。中科院自动化所生物识别与安全技术研究中心通过拓展原始的定序测量特征的内涵,提出了多极子滤波器的概念,建立了虹膜图像特征表达的一般框架,证明了虹膜图像区域之间的排序测度特征等价于虹膜物理表面不同位置反光率之间的大小顺序关系,是独立于光照、对比度等外界因素的虹膜图像的本质特征。

在这个框架下,虹膜特征抽取甚至可以简化成简单的加减运算,成功地解决了虹膜识别从PC 向嵌入式平台移植的计算复杂性难题。通过定序测量特征,研究中心还建立了掌纹图像特征表达的一般框架,统一了该领域识别性能最好的三种掌纹识别方法。并针对低分辨率掌纹图像上主线和皱纹线灰度模式特点,提出了新颖的十字架形微分滤波器来抽取掌纹图像中的定序测量特征。实验结果表明新的掌纹识别方法不仅识别精度远高于主流方法,并且计算速度比最好方法快一倍。

8 生物特征的匹配技术

特征匹配就是计算两个生物特征样本的特征向量之间的相似度。图匹配算法也在指纹细节点模式、人脸模式、虹膜斑块模式的相似性度量中得到成功应用。

9 生物特征数据库检索与分类技术

收集掌纹信息

随着生物特征识别技术在人类日常生活中的普及,使用人数的增长必然导致生物特征数据库的不断扩大。这种规模的扩大不仅仅表现在数据存储量的扩大,还表现在从数据库中搜索某一条记录所耗费的时间的增加。例如在一对多的超大规模(如一个城市、一个国家、一个行业的人群)生物识别应用中,完成一次识别的时间的长度将会让人无法忍受。这是任何一项成熟的生物识别技术从小规模应用向大规模应用转化时不可避免的问题。

虽然可以使用并行计算技术来减少每次识别的时间,如果有一个生物特征粗分类的方法就可以实现分层次的生物识别: 根据生物特征向量将数据库中所有的模板分成若干个大类,在大规模识别时首先判断输入生物特征所属的大类,然后首先和这个大类的数据库模板进行比对,这样就可以(至少从期望值)减少等待识别结果的时间。例如指纹可以根据奇异点的个数和位置信息分成拱形、尖拱形、左旋形、右旋形和旋涡形等几个大类。在虹膜识别研究领域也有人利用分形维特征将虹膜数据库分成四大类。这些分类方法的准确率都高于90%,结果是令人鼓舞的。利用生物特征模式,还可以实现人种分类、性别分类等。所以生物特征粗分类和数据库检索技术将是一个很有前途的研究方向,下一步研究的重点是增加类别数,提高分类的准确率。

10 生物特征识别系统的性能评价

迄今为止,任何的生物特征识别系统或者方法都有出错的可能。对系统的识别精度给出客观、准确的评估其实是一个很复杂的问题,它受测试样本的数量、质量、评估指标等因素的影响,但是这对应用单位和司法部门却是一个很关注的焦点问题。所以生物特征识别方法的性能测评已成为生物特征识别研究的一个重要方向。对于1∶1比对的身份验证系统,错误有两种情况: 一是把不同人的生物特征识别为同一类,称为错误接收; 另一种可能是把同一人的生物特征识别为不同类,称为错误拒绝。

一般可以从理论和实验两个方面评估一个生物识别方法的性能指标。从理论方面可以研究生物特征的唯一性,即对影响错误接收和错误拒绝的各种参数进行准确建模,从每种生物特征识别方法的本质和机理出发给出理论上可以取得的错误率的下界。这个工作是很有意义也是难度很大的。例如司法界对通过指纹匹配结果来指认罪犯还存在着很大争议,虽然有研究人员宣称地球上找不到指纹特征完全相同的两个人,但是在自动或者人工指纹识别系统中,到底需要多大的相似度才可以完全确认两枚指纹的同源性?识别出错的准确概率到底是多少?已经有研究人员对这个问题进行了比较深入的研究,但是并没有完全解决好这个问题。

链接:生物识别也需要安全技术

生物特征识别技术范文3

苹果系统把扫描的信息存储在本地――也就是说不会上传到某个主数据库。无处不在的iOS设备利用生物特征来进行自我身份识别,也许让消费者感到很方便。而公司和政府对生物特征识别技术的使用,恐怕是许多人都未曾意识到的。

本周早些时候,美联社报道说,两家大型金融机构从客户求助电话中提取声纹来帮助防范欺诈。“脸书”网站拥有许多专家称之为目前最大的面部识别数据库,标记每个人的照片,而它的一些研究人员还在研究更先进的系统。此外,美国联邦调查局上个月宣布,它的“下一代识别”系统,即NGI,已经“满负荷运转”。该系统据悉包含虹膜扫描、指纹和面部识别数据库。美国电子产品维权基金会说,到2015年,NGI面部识别数据库中的照片数量将达到5200万张――其中多数为犯罪分子的照片。

但是,随着生物特征识别技术越来越普遍,专家担心消费者对利用个人特征进行身份验证蕴含的陷阱还没有充分的认识。

美国乔治敦大学法学院隐私和技术中心主管阿尔瓦罗・贝多亚说:“以前用来认证的钥匙往往是我们拥有的实物。后来变成我们所知的一些东西,比如密码。现在开始使用我们之所以成为我们的特征。”

与其他形式的数字验证技术不同,生物识别标记是不可改变的。贝多亚解释说:“你可以改变密码,但不着实经过一番周折,是改变不了自己的脸和指纹的。”

贝多亚说,更糟糕的是,多数生物特征是天然公开的。他说:“知道我的密码的只有那些我告诉他们密码的人,某些情况下还有我登录的设备。但我碰触的任何地方都会留下我的指纹,我的脸在所到之处的每个摄像头前晃动,我的‘脸书’个人简介中也有。”

美国公民自由联盟的分析师杰伊・斯坦利说:“生物特征不是秘密。它们是每个人独一无二的特征,这一点很完美,但这不等同于秘密。”

前不久,美国网络空间可信任身份国家战略的负责人杰里米・格兰特接受记者采访,承认虽然生物特征的使用越来越流行,但由于一些原因恐怕不适合成为所有情况的最优方案。他说:“具体如何运用是很要命的。”

生物特征识别技术范文4

我们常说的生物特征识别技术是指人体生物特征识别技术,这是一种利用人体生物特征来进行身份识别的技术。人体生物特征包括生理特征和行为特征,生理特征包括DNA、指纹、掌纹、人脸、虹膜等特征,行为特征包括语音、笔迹、步态等特征。生物特征识别技术为身份识别提供了一个解决方案,同时, 生物识别技术也是目前最方便最安全的识别技术。利用生物特征技术来识别人的身份,正成为IT行业的一项重要革新。

宋江的画像张贴在城门口,杨白劳的指纹按在喜儿的卖身契上,这些广为流传的故事就是人工人脸识别和指纹识别的早期应用。现代版的生物特征识别技术则采用了计算机技术,而更集中地应用则出现在“9・11”恐怖事件后。目前,生物特征识别已成为科技和应用热点。

与其他生物特征识别技术相比,人脸识别具有三个优点: 后验识别性能优越; 人脸图像的普遍性; 非接触式的操作方式。

人脸图像由于年龄、姿态、表情、光照等因素而具有“一人千面”的特点,因此,人脸识别面临多方面的挑战。

人脸识别包括三方面:

辩识 解决“他是谁”的问题,这是一个一对多的识别,例如在大数据库中去寻找和一模拟像对应的目标人。

认证 解决“声称的他是不是他”的认证问题,例如二代证的人证同一的查验。

监视识别 解决“谁是他”的问题,例如高危人员的监控、智能追逃。

人脸识别技术进展

人脸识别的方法很多,包括:

基于特征脸(PCA)的人脸识别方法

特征脸方法是基于KL变换的人脸识别方法。高维的图像空间经过KL变换后得到一组新的正交基,保留其中重要的正交基,由这些基可以构成低维线性空间。将人脸图像在这些低维线性空间进行投影,由此形成识别的特征向量,这就是特征脸方法的基本思想。这种方法需要较多的训练样本,而且完全是基于图像的统计特性。

神经网络的人脸识别方法

神经网络的输入可以是降低分辨率的人脸图像、局部区域的自相关函数、局部纹理的二阶矩等。这类方法同样需要较多的样本进行训练。

弹性匹配的人脸识别方法

弹性匹配法在二维的空间中定义了一种对于通常的人脸变形具有一定的不变性的距离,并采用属性拓扑图来代表人脸,拓扑图的任一顶点均包含一特征向量,用来记录人脸在该顶点位置附近的信息。该方法结合了灰度特性和几何因素,在比对时可以允许图像存在弹性形变,在克服表情变化对识别的影响方面收到了较好的效果,同时对于单个人也不再需要多个样本进行训练。

线段Hausdorff距离(LHD)的人脸识别方法

LHD是基于从人脸灰度图像中提取出来的线段图,它定义的是两个线段集之间的距离,与众不同的是,LHD并不建立不同线段集之间线段的一一对应关系,因此它更能适应线段图之间的微小变化。实验结果表明,该方法在不同光照条件下和不同姿态情况下有较好的表现,但是它在大表情的情况下识别效果不好。

支持向量机(SVM)的人脸识别方法

近年来,支持向量机是统计模式识别领域的一个新的热点,它试图使得学习机在经历风险和泛化能力上达到一种妥协,从而提高学习机的性能。支持向量机主要解决的是一个2分类问题,它的基本思想是试图把一个低维的线性不可分的问题转化成一个高维的线性可分的问题 。实验结果表明SVM有较好的识别率。

几何特征的人脸识别方法

几何特征可以是眼、鼻、嘴等部件的形状或类型以及它们之间的几何关系(如相互之间的距离)。这些算法识别速度快,但识别率较低。

人脸识别的方法很多,当前的一个研究方向是多方法的融合,以提高识别率。

人脸识别系统的应用

人脸识别系统主要包括人脸检测、特征提取和特征比对三部分。根据近年来的研究体会,我们认为标准人脸的形成工作在人脸识别中具有重要的地位。人脸识别通用系统的框图如图1所示。

清华大学电子工程系于2005年1月研制成功一套大型人脸识别系统并通过了公安部组织的专家鉴定。

该系统在人脸识别算法上有多项创新并具有自主知识产权,如基于人脸部件主分量分析的多模式人脸识别方法(MMP-PCA)、改进的Hausdorff人脸识别方法、基于人脸轮廓的分类方法、实时人脸图像的归一化处理技术等都具有鲜明的创新特点。

该系统在运行大型数据库(256万人脸)的实验环境下,识别率和比对速度处于国内领先水平,综合性能处于国际先进水平,并在一些公安部门得到了实际应用。

该系统已拥有256万人脸识别数据库,6台服务器组成机群计算机并行进行识别,人脸识别速度已达到256万/秒。该系统的框图如图2所示。

图3、五种部件

此系统具有单机四路活动人脸并行检测的能力,8部摄像机按4部一组,其视频图像送到并行图像采集卡,由计算机实现人脸检测,所实现的人脸检测速率达到90幅/秒。当人脸在水平±45°之间变化的时候,通过多部摄像机实现并行人脸检测,达到了等同于水平±15°之间变化的高识别率。此系统具有无线人脸的识别功能,应用手机拍摄人脸图像,通过无线传输,发送到人脸识别系统进行人脸识别,并把识别结果(包括人脸识别数据库中的人脸图像和个人身份档案)发回手机,这项功能有助于公安部门移动办案; 它还具有文档资料和人脸图像混合的识别查询功能,这项功能有助于提高查找犯罪嫌疑人的准确率; 具有组合人像和模糊人像的识别查询功能,这项功能将使人脸识别技术的应用具有更大的广泛性; 具有眼镜摘除的人脸识别功能,从而解决了眼镜识别的难题; 具有处理多图片的能力,实现了不同类别的多特征描述的人脸识别。

这套大型人脸识别系统采用了MMP-PCA人脸识别算法、基于脸形分类的人脸识别方法和改进型的线段Hausdorff距离人脸识别方法。

图4、线段边缘示例

MMP-PCA人脸识别算法的特点是构造了特征脸、特征眼眉、特征眼睛、特征鼻子、特征嘴巴并根据各自的重要性程度进行特征融合。该识别算法与传统的特征脸和单纯的部件PCA方法相比,灵活性更好、识别率更高。

首先,通过人脸定位,从整个人脸中自动提取出如图3所示的脸、眼+眉、眼、鼻、嘴5种部件。我们将5种部件进行组合,并根据人脸部件在识别中的重要性程度,对脸、眼睛+眉毛、眼睛、鼻子、嘴巴的特征进行融合。由此形成了31种不同的人脸识别模式。

图5、脸型特征点图示

线段Hausdorff距离是通过比较不同人脸图像的线段边缘图之间的距离来进行识别的。该方法主要包括两个部分,一部分是线段边缘图的提取,一部分是两个线段集之间距离的定义。线段边缘图的提取中首先用canny算法提取边缘(如4所示),之后提出了一个线段匹配过程从边缘图得到了线段边缘图。定义了线段之间的距离,它包括线段的水平距离、垂直距离以及角度距离等,在比较线段集的Hausdorff距离过程中,根据不同的部件进行加权,而且,我们提出了一个线段邻域的概念,即线段对的选择局限在目标图带匹配线段的一个给定区域,提高线段边缘图之间的匹配速度和精度。

我们选用一种改进的ASM方法来获取人脸形状特征。选取101个特征点来表示人脸的形状特征,其中用27个点表示脸型轮廓,用24个点表示眉毛,用22个点表示眼睛,用16个点表示鼻子,用12个点表示嘴巴(如图5所示)。

应用基于样本(点集)之间的Hausdorff距离的ISODATA动态聚类算法,依据脸部的各种形状特征对人脸进行分类。

同一个人的形状特征应该分布在一定的范围内,这样就可以设计出一个应用形状特征对脸型进行“两类划分”。具体做法是: 先将人脸的形状特征信息存储起来,利用同一人在样本空间中分布的相似性等特点,进行人脸识别时可以先从数据库中将与待识别人脸相似性很低的人脸剔除掉,并通过与其他人脸识别方法的识别结果相融合,以此来提高人脸的识别率。表中给出了该系统的人脸识别率。

针对不同的具体应用,还有监视人脸识别系统和认证人脸识别系统。图6给出了监视人脸识别系统的框图。

在图6中,每一个监控识别工作站支持4路摄像机并行地进行活动人脸的检测与识别,根据需要,4部摄像机可以安装在独立的4个通道,也可以安装在一个通道.当安装在同一个通道时,则可以适应更大的姿态变化。该系统最大的特点是行进中的人脸识别,即被识别人以通常的行进速度行走,系统实时地进行人脸识别。这一特点,既能完成人脸识别的功能,又能保持现有通畅的通道。

基于二代证的身份认证系统的结构可以有多种工作模式: 人脸认证模式、指纹认证模式,人脸+指纹认证模式。由于二代证中的人脸图像采用了高压缩率的有损压缩算法,人脸图像质量较差,导致身份认证的准确率较低。当然,也可以采用不低于1KB存储容量的IC卡。

模拟像的人脸识别

模拟像的人脸识别有模拟像的查档识别功能,即模拟像对已知身份数据库的查询(如前科数据库); 有模拟像倒查档识别功能,即当前人对未破案的模拟像数据库的查询; 也有按模拟像串案查询的识别功能,即模拟像对未破案的模拟像库的查询。

在公安业务的工作流程中,对于面部保留较好的无名尸源,可以采用临摹的方法进行人像组合。对于不具备人像组合条件的无名尸源,则通过颅像复原的方法形成无名尸源的模拟像。对于视频监控的人脸图像,可以先进行模糊图像复原,以此得到人脸部件(如眼、眉、嘴)的图像,参照模糊图像复原的图像和原始的监控图像,采用人像组合的方法获得视频监控的人脸图像的模拟像。

生物特征识别技术范文5

关键词:生物识别;特征提取;脊线跟踪

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2017)03-0168-02

Biometric Identification Technology Used in Intelligent Terminal

DUAN Pei-pei,YUAN Xin, HOU Na

(School of Computer Science,Xi'an Shiyou University,Xi'an710065,China)

Abstract: With the development of information and network technologies, intelligent terminals are widely used. The personal identity on the network is blurry so that some reliable biometric recognition technology are used to guarantee the safety and property of people. In the paper, an identification algorithm based on fingerprint identification is proposed.

Experiments have shown that the method extracts fingerprint features well and can improve the effect of the personal identification.

Key words: biometric identification; feature extraction; ridge line tracing

1 概述

近年来,信息、网络技术发展迅猛,依托这些技术,社交媒体、电子商务等各类应用也愈发丰富。数码产品,尤其是智能终端的种类和应用场合也越来越多。事实上,在网络全球化的当下,典型智能终端设备――手机几乎可以视作是台“移动电脑”。然而,在这些应用场合中,个人的身份在网络中其实是既模糊又数字化的,故而为了保证信息安全、财产安全,必须提高用户身份识别的准确率。

常规的终端设备多使用基于身份识别与密码相结合的方式来对用户访问进行控制,可这些方法也存在一些诸如:安全性差、密码易失及易被盗用等潜在问题。故而,随着技术及新的应用模式的发展,智能终端设备对于人机交互间安全性和便捷性的需求也就更为突出了。

就目前而言,生物识别技术可以说是使用较为广泛,且安全性、准确性均较高的识别技术。此类识别技术通过将计算机、光学、生物传感器和生物统计学原理等高科技手段密切结合,利用人体固有的生理特性以及生理特征来实现身份鉴定[1]。指纹识别即为其中典型应用之一。本次设计将讨论指纹生物特征用于智能终端身份识别的实现过程,包括:个体特征获取、生物特征图像预处理、特征提取、身份鉴定等步骤[2]。

2 基于生物特征的身份识别算法

本次设计将基于指纹特征完成身份识别,整个设计大致分为几个步骤:个体特征获取、生物特征图像预处理、特征提取、身份鉴定。不过,在实现时,处理过程如下:

图1 生物特征识别过程

2.1 生物特征图像预处理

实际上,对特征获取所得的生物特征图进行预处理是整个身份鉴定过程的基础。由于环境、身体,甚至采集设备均可能影响生物特征的采集效果,所以预处理其实就是要削弱这类不良干扰的影响,并将其转变成二值点线细化图。然而,由于图像本身质量问题和预处理过程中可能带来的某些噪声,为了在提取细节特征时剥离伪特征,可通过以下几个步骤来获得正确的指纹特征:

图2 指纹特征预处理过程

上图中不同模块的功能为:由于实际采集的图像很可能存在灰度不均匀的现象,为了使后续处理有较为统一的图像规格,需对图像做规一化处理。随后,通过图像增强来改善指纹图像质量,以使其细节更清晰,突出和保留生物体固有特征的过程。进而,再通过求取方向图及滤波完成指纹图像的变换表示。二值化进一步对图像纹线进行处理,使其更能突显生物体的重要特征。最后,经过细化处理,使得原本不清晰的图像转换为特征鲜明的图像。

2.2 生物特征提取

文中采用的生物特征其实就是指纹特征。故而此处,特征提取其实就是要提取指纹的细节特征,也就是把纹线走向、端点和分叉点等能够充分表示生物体唯一性的特征尽量多地提取出来。考虑到该技术在智能终端应用中的准确性,特征提取算法必须能够尽可能多地提取能代表生物个体原始信息的有效特征。具体来说,此处要提取的特征应满足:

1)提取的特征应能保持生物特征的独特性。

2)所提取的特征应具有紧凑性,尽可能不含冗余信息。

3)能适应不同的匹配算法。

本文用脊线跟踪的方法完成对生物细节特征的选取,以保证特征点选择的有效性。算法通过对指纹图像进行像素点搜索,首先确定其基本特征点;然后,根据指纹方向图和脊线间的平均距离完成脊线跟踪,进一步对前面搜索到的细节特征进行选取,以得到有效特征点,并通过对其相对位置进行分析,将之用作指纹的细节特征信息[3]。实际上,除了对待提取特征的考虑外,因槭窃谥悄苤斩酥杏τ茫所以提取生物特征的算法应尽可能简捷、高效,且抗噪能力要强。本文采用的分析方法提取的指纹细节特征能更好地抵抗指纹图像处理过程中的干扰,也为随后的特征匹配做好了准备。

图3 特征提取点(“~”所示为分叉点,“×”所示为端点)

2.3 生物特征匹配

获得生物特征之后就可以进行匹配分析,进而实现生物特征识别了。在本文涉及的应用中,生物特征匹配其实也就是完成指纹特征的匹配。为了解决匹配问题,其实需要分别提取出两幅指纹图像各自的细节特征,然后将两组细节进行比对,以判定它们是否来自同一个体。

一般而言,指纹匹配常使用基于纹理信息以及基于点模式的匹配方法,本文使用后者,也就是根据指纹脊线的端点以及分叉点来完成识别。在匹配过程中,将会把提取到的特征点和模板图像中的特征点进行比较,并根据两幅图像之间相差绝对值的大小判定匹配图像。在实际应用中,随着匹配条件的改变,识别效果也必然随之改变。通常情况下,该条件越严格,识别出错的概率自然就越低。

3 小结

生物识别技术以其自身的特点和优势,在很多场合中应用,作为其中典型应用的指纹识别技术尤其得到了更多的关注。在利用指纹生物特征进行身份识别的各类应用场合中,对身份识别性能的要求自然也各异。在安全需求较高的应用场合,识别率要尽量高;而在一些日常识别应用中,此类要求会有所下降。所以,在不同的智能终端应用系统中,识别参数的选取也各不相同。即便如此,本文研究的方法在应用时,仍可满足应用需求。

参考文献:

[1] 韩玉峰,王小林,张传文.生物特征识别技术研究及应用[J].微计算机信息,2012(3).

生物特征识别技术范文6

摘 要:人脸识别技术是当今模式识别和人工智能领域的一个重要研究方向,对于维护国家安全和社会稳定、打击各类犯罪活动具有十分重大的意义。本文介绍了人脸识别技术的概念、发展历史及常用人脸识别方法。并探讨了人脸识别面临的难题,最后对人脸识别未来的发展和应用做一个简要的展望。

关键词:人脸识别;数字图像处理;特征脸

引言:人脸是人类视觉交互中最重要的模式,人脸识别技术(FRT)是模式识别和人工智能领域的一个前沿课题。在新兴的信息安全应用领域,人脸识别技术提供了一种更为安全可靠易用的身份鉴别手段,从而提升整个网络信息系统的安全性能。

1 人脸识别技术概述

人脸识别技术就是通过计算机提取人脸的特征,并根据这些特征进行身份验证的一种技术。人脸与人体的其他生物特征一样与生俱来,它们所具有的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提。同其他生物特征识别技术相比,人脸识别技术具有操作简单、结果直观、隐蔽性好的优越性.科技情报开发与经济,2008,18(21):155-157.